1
|
Qiu B, Zhong Z, Dou L, Xu Y, Zou Y, Weldon K, Wang J, Zhang L, Liu M, Williams KE, Spence JP, Bell RL, Lai Z, Yong W, Liang T. Knocking out Fkbp51 decreases CCl 4-induced liver injury through enhancement of mitochondrial function and Parkin activity. Cell Biosci 2024; 14:1. [PMID: 38167156 PMCID: PMC10763032 DOI: 10.1186/s13578-023-01184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND AND AIMS Previously, we found that FK506 binding protein 51 (Fkbp51) knockout (KO) mice resist high fat diet-induced fatty liver and alcohol-induced liver injury. The aim of this research is to identify the mechanism of Fkbp51 in liver injury. METHODS Carbon tetrachloride (CCl4)-induced liver injury was compared between Fkbp51 KO and wild type (WT) mice. Step-wise and in-depth analyses were applied, including liver histology, biochemistry, RNA-Seq, mitochondrial respiration, electron microscopy, and molecular assessments. The selective FKBP51 inhibitor (SAFit2) was tested as a potential treatment to ameliorate liver injury. RESULTS Fkbp51 knockout mice exhibited protection against liver injury, as evidenced by liver histology, reduced fibrosis-associated markers and lower serum liver enzyme levels. RNA-seq identified differentially expressed genes and involved pathways, such as fibrogenesis, inflammation, mitochondria, and oxidative metabolism pathways and predicted the interaction of FKBP51, Parkin, and HSP90. Cellular studies supported co-localization of Parkin and FKBP51 in the mitochondrial network, and Parkin was shown to be expressed higher in the liver of KO mice at baseline and after liver injury relative to WT. Further functional analysis identified that KO mice exhibited increased ATP production and enhanced mitochondrial respiration. KO mice have increased mitochondrial size, increased autophagy/mitophagy and mitochondrial-derived vesicles (MDV), and reduced reactive oxygen species (ROS) production, which supports enhancement of mitochondrial quality control (MQC). Application of SAFit2, an FKBP51 inhibitor, reduced the effects of CCl4-induced liver injury and was associated with increased Parkin, pAKT, and ATP production. CONCLUSIONS Downregulation of FKBP51 represents a promising therapeutic target for liver disease treatment.
Collapse
Affiliation(s)
- Bin Qiu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
- Department of Pharmacology, Yale University School of Medicine, New Haven, CI, 06520, USA
| | - Zhaohui Zhong
- General Surgery Department, Peking University People's Hospital, Beijing, 100032, China
| | - Longyu Dou
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yuxue Xu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yi Zou
- Greehey Children's Cancer Research Institute, UT Health, San Antonio, TX, 78229, USA
| | - Korri Weldon
- Greehey Children's Cancer Research Institute, UT Health, San Antonio, TX, 78229, USA
| | - Jun Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Lingling Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Ming Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Kent E Williams
- Department of Medicine, Indiana University, School of Medicine, Indianapolis, 46202, USA
| | - John Paul Spence
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, 46202, USA
| | - Richard L Bell
- Department of Psychiatry, Indiana University, School of Medicine, Indianapolis, 46202, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, UT Health, San Antonio, TX, 78229, USA
| | - Weidong Yong
- Department of Surgery, Indiana University, School of Medicine, Indianapolis, 46202, USA.
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| | - Tiebing Liang
- Department of Medicine, Indiana University, School of Medicine, Indianapolis, 46202, USA.
| |
Collapse
|
2
|
LeFort KR, Rungratanawanich W, Song BJ. Melatonin Prevents Alcohol- and Metabolic Dysfunction- Associated Steatotic Liver Disease by Mitigating Gut Dysbiosis, Intestinal Barrier Dysfunction, and Endotoxemia. Antioxidants (Basel) 2023; 13:43. [PMID: 38247468 PMCID: PMC10812487 DOI: 10.3390/antiox13010043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Melatonin (MT) has often been used to support good sleep quality, especially during the COVID-19 pandemic, as many have suffered from stress-related disrupted sleep patterns. It is less known that MT is an antioxidant, anti-inflammatory compound, and modulator of gut barrier dysfunction, which plays a significant role in many disease states. Furthermore, MT is produced at 400-500 times greater concentrations in intestinal enterochromaffin cells, supporting the role of MT in maintaining the functions of the intestines and gut-organ axes. Given this information, the focus of this article is to review the functions of MT and the molecular mechanisms by which it prevents alcohol-associated liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), including its metabolism and interactions with mitochondria to exert its antioxidant and anti-inflammatory activities in the gut-liver axis. We detail various mechanisms by which MT acts as an antioxidant, anti-inflammatory compound, and modulator of intestinal barrier function to prevent the progression of ALD and MASLD via the gut-liver axis, with a focus on how these conditions are modeled in animal studies. Using the mechanisms of MT prevention and animal studies described, we suggest behavioral modifications and several exogenous sources of MT, including food and supplements. Further clinical research should be performed to develop the field of MT in preventing the progression of liver diseases via the gut-liver axis, so we mention a few considerations regarding MT supplementation in the context of clinical trials in order to advance this field of research.
Collapse
Affiliation(s)
- Karli R. LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| | | | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| |
Collapse
|
3
|
He Z, Zeng Y, Li S, Lin L, Zhou R, Wang F, Yang W, Wu Y, Yang J, Chen A, Wang Z, Yang H, Zhao X, Xiao W, Li L, Gong S. Gut Commensal Fungi Protect Against Acetaminophen-Induced Hepatotoxicity by Reducing Cyp2a5 Expression in Mice. Front Microbiol 2022; 13:944416. [PMID: 35903481 PMCID: PMC9315200 DOI: 10.3389/fmicb.2022.944416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aims Drug-induced liver injury (DILI) is a common cause of acute liver failure and represents a significant global public health problem. When discussing the gut-liver axis, although a great deal of research has focused on the role of gut microbiota in regulating the progression of DILI, the gut commensal fungal component has not yet been functionally identified. Methods Mice were pretreated with fluconazole (FC) to deplete the gut commensal fungi and were then subject to acetaminophen (APAP) gavage. In addition, transcriptome sequencing was performed to identify differentially expressed genes (DEGs) between control and fluconazole-pretreated groups of the mice challenged with APAP. Results Gut commensal fungi ablation through fluconazole pretreatment predisposed mice to APAP-induced hepatotoxicity, characterized by elevated serum liver enzyme levels and more severe centrilobular necrosis, which appears to be caused by robust inflammation and oxidative stress. The 16S rDNA sequencing results indicated that Akkermansia muciniphila abundance had significantly decreased in gut fungi-depleted mice, whereas increased abundance of Helicobacter rodentium was observed. The gene interaction network between DEGs identified by the transcriptome sequencing highlighted a significant enrichment of Cyp2a5 in the liver of APAP-treated mice that were preadministrated with fluconazole. Pharmacological inhibition of Cyp2a5 by 8-methoxypsoralen (8-MOP) could significantly attenuate hepatic inflammation and oxidative stress in mice, thereby conferring resistance to acute liver injury caused by APAP administration. Conclusion Our data highlighted the significance of gut commensal fungi in hepatic inflammation and oxidative stress of APAP mice, shedding light on promising therapeutic strategies targeting Cyp2a5 for DILI treatment.
Collapse
Affiliation(s)
- Zhuoen He
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yunong Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shuyu Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lizhen Lin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ruisi Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Fangzhao Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wenjiao Yang
- Department of Simulation Center, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yuhao Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Junhao Yang
- School of Life Science, South China Normal University, Guangzhou, China
| | - Ali Chen
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhang Wang
- School of Life Science, South China Normal University, Guangzhou, China
| | - Hong Yang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wei Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China
- Wei Xiao,
| | - Lei Li
- Department of Respiratory and Critical Care Medicine, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
- Lei Li,
| | - Shenhai Gong
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Shenhai Gong,
| |
Collapse
|
4
|
Morgan L, Antenos M, Kirby GM. Nrf2-mediated induction of Cyp2a5 partially protects against reductive endoplasmic reticulum stress in mouse hepatocytes. Toxicology 2022; 471:153162. [PMID: 35341795 DOI: 10.1016/j.tox.2022.153162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022]
Abstract
Cytochrome P450 2a5 (Cyp2a5) is distinct from other P450 enzymes in that it is induced in the endoplasmic reticulum (ER) of mouse hepatocytes in conditions that are injurious to the liver. These conditions cause ER stress eventually resulting in apoptosis if not rectified. We previously showed that mouse hepatic Cyp2a5 is induced during reductive ER stress caused by the intramolecular disulfide form of dithiothreitol, trans-4,5-dihydroxy-1,2-dithiane (DTTox), and that overexpression of Cyp2a5 provides partial protection against apoptosis due to bilirubin (BR), a compound known to cause ER stress. The purpose of this study was to investigate the mechanism of Cyp2a5 gene regulation by DTTox and to determine if Cyp2a5 plays a cytoprotective role during reductive ER stress. Exposure to DTTox (10 mM) and another reductive ER stressor, 2-mercaptoethanol (1 mM), for 48 h markedly increased Cyp2a5 protein levels in primary mouse hepatocytes. In addition, DTTox transactivated Cyp2a5 via a mechanism involving the transcription factor nuclear factor-(erythroid-derived 2)-like 2 (Nrf2). Expression of the BR-conjugating enzyme, UDP glucuronosyl transferase 1A1 (UGT1A1) was also increased after DTTox treatment, however, this was reduced by Cyp2a5 overexpression. Hemin, a porphyrin inducer of Cyp2a5, induced mRNA splicing of X-box binding protein 1 (XBP-1), a transcription factor involved in the ER stress response, however, this was also reduced by Cyp2a5 overexpression. Finally, overexpression of Cyp2a5 partially blocked DTTox-mediated caspase-3 cleavage in Hepa 1-6 cells suggesting a cytoprotective role during ER stress. These findings demonstrate that Nrf2-mediated induction of Cyp2a5 in a reducing ER environment provides partial protection against ER stress-induced apoptosis by decreasing XBP-1 mRNA splicing and caspase-3 cleavage.
Collapse
Affiliation(s)
- Larry Morgan
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Monica Antenos
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Gordon M Kirby
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
5
|
Humpton TJ, Hall H, Kiourtis C, Nixon C, Clark W, Hedley A, Shaw R, Bird TG, Blyth K, Vousden KH. p53-mediated redox control promotes liver regeneration and maintains liver function in response to CCl 4. Cell Death Differ 2022; 29:514-526. [PMID: 34628485 PMCID: PMC8901761 DOI: 10.1038/s41418-021-00871-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 11/09/2022] Open
Abstract
The p53 transcription factor coordinates wide-ranging responses to stress that contribute to its function as a tumour suppressor. The responses to p53 induction are complex and range from mediating the elimination of stressed or damaged cells to promoting survival and repair. These activities of p53 can modulate tumour development but may also play a role in pathological responses to stress such as tissue damage and repair. Using a p53 reporter mouse, we have previously detected strong induction of p53 activity in the liver of mice treated with the hepatotoxin carbon tetrachloride (CCl4). Here, we show that p53 functions to support repair and recovery from CCl4-mediated liver damage, control reactive oxygen species (ROS) and limit the development of hepatocellular carcinoma (HCC), in part through the activation of a detoxification cytochrome P450, CYP2A5 (CYP2A6 in humans). Our work demonstrates an important role for p53-mediated redox control in facilitating the hepatic regenerative response after damage and identifies CYP2A5/CYP2A6 as a mediator of this pathway with potential prognostic utility in human HCC.
Collapse
Affiliation(s)
- Timothy J Humpton
- The Francis Crick Institute, London, NW1 1AT, UK.
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
| | - Holly Hall
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Christos Kiourtis
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - William Clark
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Ann Hedley
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Robin Shaw
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Thomas G Bird
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | | |
Collapse
|
6
|
Humpton TJ, Hock AK, Kiourtis C, Donatis MD, Fercoq F, Nixon C, Bryson S, Strathdee D, Carlin LM, Bird TG, Blyth K, Vousden KH. A noninvasive iRFP713 p53 reporter reveals dynamic p53 activity in response to irradiation and liver regeneration in vivo. Sci Signal 2022; 15:eabd9099. [PMID: 35133863 PMCID: PMC7612476 DOI: 10.1126/scisignal.abd9099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Genetically encoded probes are widely used to visualize cellular processes in vitro and in vivo. Although effective in cultured cells, fluorescent protein tags and reporters are suboptimal in vivo because of poor tissue penetration and high background signal. Luciferase reporters offer improved signal-to-noise ratios but require injections of luciferin that can lead to variable responses and that limit the number and timing of data points that can be gathered. Such issues in studying the critical transcription factor p53 have limited insight on its activity in vivo during development and tissue injury responses. Here, by linking the expression of the near-infrared fluorescent protein iRFP713 to a synthetic p53-responsive promoter, we generated a knock-in reporter mouse that enabled noninvasive, longitudinal analysis of p53 activity in vivo in response to various stimuli. In the developing embryo, this model revealed the timing and localization of p53 activation. In adult mice, the model monitored p53 activation in response to irradiation and paracetamol- or CCl4-induced liver regeneration. After irradiation, we observed potent and sustained activation of p53 in the liver, which limited the production of reactive oxygen species (ROS) and promoted DNA damage resolution. We propose that this new reporter may be used to further advance our understanding of various physiological and pathophysiological p53 responses.
Collapse
Affiliation(s)
- Timothy J Humpton
- The Francis Crick Institute, London, NW1 1AT, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Andreas K Hock
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Christos Kiourtis
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Marco De Donatis
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Frederic Fercoq
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Sheila Bryson
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Douglas Strathdee
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Leo M. Carlin
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Thomas G. Bird
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, EH164TJ, United Kingdom
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Karen H Vousden
- The Francis Crick Institute, London, NW1 1AT, United Kingdom
| |
Collapse
|
7
|
Kim SD, Morgan L, Hargreaves E, Zhang X, Jiang Z, Antenos M, Li B, Kirby GM. Regulation of Cytochrome P450 2a5 by Artemisia capillaris and 6,7-Dimethylesculetin in Mouse Hepatocytes. Front Pharmacol 2021; 12:730416. [PMID: 34880749 PMCID: PMC8645941 DOI: 10.3389/fphar.2021.730416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
Jaundice is a potentially fatal condition resulting from elevated serum bilirubin levels. For centuries, herbal remedies containing Artemisia capillaris Thunb. including the compound 6,7-dimethylesculetin (DE) have been used in Asia to prevent and treat jaundice in neonates. DE activates an important regulator of bilirubin metabolism, the constitutive androstane receptor (CAR), and increases bilirubin clearance. In addition, murine cytochrome P450 2a5 (Cyp2a5) is known to be involved in the oxidative metabolism of bilirubin. Moreover, treatment of mice with phenobarbital, a known inducer of both CAR and Cyp2a5, increases expression of Cyp2a5 suggesting a potential relationship between CAR and Cyp2a5 expression. The aim of this study is to investigate the influence of Artemisia capillaris and DE on the expression and regulatory control of Cyp2a5 and the potential involvement of CAR. Treatment of mouse hepatocytes in primary culture with DE (50 μM) significant increased Cyp2a5 mRNA and protein levels. In mice, Artemisia capillaris and DE treatment also increased levels of hepatic Cyp2a5 protein. Luciferase reporter assays showed that CAR increases Cyp2a5 gene transcription through a CAR response element in the Cyp2a5 gene promoter. Moreover, DE caused nuclear translocation of CAR in primary mouse hepatocytes and increased Cyp2a5 transcription in the presence of CAR. These results identify a potential CAR-mediated mechanism by which DE regulates Cyp2a5 gene expression and suggests that DE may enhance bilirubin clearance by increasing Cyp2a5 levels. Understanding this process could provide an opportunity for the development of novel therapies for neonatal and other forms of jaundice.
Collapse
Affiliation(s)
- Sangsoo Daniel Kim
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Larry Morgan
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Elyse Hargreaves
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Xiaoying Zhang
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.,Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Zhihui Jiang
- He'nan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Monica Antenos
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Ben Li
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Gordon M Kirby
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
8
|
Yang T, Poenisch M, Khanal R, Hu Q, Dai Z, Li R, Song G, Yuan Q, Yao Q, Shen X, Taubert R, Engel B, Jaeckel E, Vogel A, Falk CS, Schambach A, Gerovska D, Araúzo-Bravo MJ, Vondran FWR, Cantz T, Horscroft N, Balakrishnan A, Chevessier F, Ott M, Sharma AD. Therapeutic HNF4A mRNA attenuates liver fibrosis in a preclinical model. J Hepatol 2021; 75:1420-1433. [PMID: 34453962 DOI: 10.1016/j.jhep.2021.08.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Therapeutic targeting of injuries that require transient restoration of proteins by mRNA delivery is an attractive approach that, until recently, has remained poorly explored. In this study, we examined the therapeutic utility of mRNA delivery for liver fibrosis and cirrhosis. Specifically, we aimed to demonstrate the therapeutic efficacy of human hepatocyte nuclear factor alpha (HNF4A) mRNA in mouse models of fibrosis and cirrhosis. METHODS We investigated restoration of hepatocyte functions by HNF4A mRNA transfection in vitro, and analyzed the attenuation of liver fibrosis and cirrhosis in multiple mouse models, by delivering hepatocyte-targeted biodegradable lipid nanoparticles (LNPs) encapsulating HNF4A mRNA. To identify potential mechanisms of action, we performed microarray-based gene expression profiling, single-cell RNA sequencing, and chromatin immunoprecipitation. We used primary liver cells and human liver buds for additional functional validation. RESULTS Expression of HNF4A mRNA led to restoration of the metabolic activity of fibrotic primary murine and human hepatocytes in vitro. Repeated in vivo delivery of LNP-encapsulated HNF4A mRNA induced a robust inhibition of fibrogenesis in 4 independent mouse models of hepatotoxin- and cholestasis-induced liver fibrosis. Mechanistically, we discovered that paraoxonase 1 is a direct target of HNF4A and it contributes to HNF4A-mediated attenuation of liver fibrosis via modulation of liver macrophages and hepatic stellate cells. CONCLUSION Collectively, our findings provide the first direct preclinical evidence of the applicability of HNF4A mRNA therapeutics for the treatment of fibrosis in the liver. LAY SUMMARY Liver fibrosis and cirrhosis remain unmet medical needs and contribute to high mortality worldwide. Herein, we take advantage of a promising therapeutic approach to treat liver fibrosis and cirrhosis. We demonstrate that restoration of a key gene, HNF4A, via mRNA encapsulated in lipid nanoparticles decreased injury in multiple mouse models of fibrosis and cirrhosis. Our study provides proof-of-concept that mRNA therapy is a promising strategy for reversing liver fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Taihua Yang
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany; Present address of TY, Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, , China
| | | | - Rajendra Khanal
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Qingluan Hu
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Zhen Dai
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Ruomeng Li
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Guangqi Song
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Qinggong Yuan
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Qunyan Yao
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Xizhong Shen
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Richard Taubert
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Bastian Engel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Daniela Gerovska
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Marcos J Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Florian W R Vondran
- Department of General, Visceral and Transplant Surgery Regenerative Medicine and Experimental Surgery, Hannover Medical School, Hannover, Germany; German Center for Infection Research Partner Site Hannover-Braunschweig Hannover, Germany
| | - Tobias Cantz
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Nigel Horscroft
- CureVac AG, Tübingen, Germany; Present address of NH, MRM Health NV Technologie park-Zwijnaarde 94, 9052 Gent, Belgium
| | - Asha Balakrishnan
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | | | - Michael Ott
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
9
|
Effect of Uncaria rhynchophylla against Thioacetamide-Induced Acute Liver Injury in Rat. Can J Gastroenterol Hepatol 2021; 2021:5581816. [PMID: 34557455 PMCID: PMC8455208 DOI: 10.1155/2021/5581816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/26/2021] [Indexed: 12/17/2022] Open
Abstract
Both oxidative stress (OS) and inflammation are two fundamental pathological processes of acute liver injury (ALI). The current work is to investigate the effect and possible mechanism of Uncaria rhynchophylla (UR) on thioacetamide- (TAA-) induced ALI in rats. UR (100 and 200 mg/kg) was orally administrated with TAA (200 mg/kg of bodyweight, intraperitoneal injection) for 3 consecutive days. ALI was confirmed using histological examination and the factors associated with OS and liver function activity measured in serum. Moreover, expressions of inflammation and collagen-related proteins were measured by the Western blot analysis. Myeloperoxidase (MPO), which mediates OS in the ALI control group, was manifested by a significant rise compared with the normal group. UR significantly reduced AST, ALT, and ammonia levels in serum. The nuclear factor-κB (NF-κB) activation induced by TAA led to increase both inflammatory mediators and cytokines. Whereas, UR administration remarkably suppressed such an overexpression. UR supplementation improved matrix metalloproteinases (MMPs) such as MMP-1, -2, and -8. In contrast, tissue inhibitors of metalloproteinases- (TIMP-) 1 level increased significantly by UR treatment. In addition, the histopathological analysis showed that the liver tissue lesions were improved obviously by UR treatment. UR may ameliorate the effects of TAA-induced ALI in rats by suppressing both OS through MPO activation and proinflammatory factors through NF-κB activation. In conclusion, UR exhibited a potent hepatoprotective effect on ALI through the suppression of OS.
Collapse
|
10
|
Yeh H, Chiang CC, Yen TH. Hepatocellular carcinoma in patients with renal dysfunction: Pathophysiology, prognosis, and treatment challenges. World J Gastroenterol 2021; 27:4104-4142. [PMID: 34326614 PMCID: PMC8311541 DOI: 10.3748/wjg.v27.i26.4104] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
The population of patients with hepatocellular carcinoma (HCC) overlaps to a high degree with those for chronic kidney disease (CKD) and end-stage renal disease (ESRD). The degrees of renal dysfunction vary, from the various stages of CKD to dialysis-dependent ESRD, which often affects the prognosis and treatment choice of patients with HCC. In addition, renal dysfunction makes treatment more difficult and may negatively affect treatment outcomes. This study summarized the possible causes of the high comorbidity of HCC and renal dysfunction. The possible mechanisms of CKD causing HCC involve uremia itself, long-term dialysis status, immunosuppressive agents for postrenal transplant status, and miscellaneous factors such as hormone alterations and dysbiosis. The possible mechanisms of HCC affecting renal function include direct tumor invasion and hepatorenal syndrome. Finally, we categorized the risk factors that could lead to both HCC and CKD into four categories: Environmental toxins, viral hepatitis, metabolic syndrome, and vasoactive factors. Both CKD and ESRD have been reported to negatively affect HCC prognosis, but more research is warranted to confirm this. Furthermore, ESRD status itself ought not to prevent patients receiving aggressive treatments. This study then adopted the well-known Barcelona Clinic Liver Cancer guidelines as a framework to discuss the indicators for each stage of HCC treatment, treatment-related adverse renal effects, and concerns that are specific to patients with pre-existing renal dysfunction when undergoing aggressive treatments against CKD and ESRD. Such aggressive treatments include liver resection, simultaneous liver kidney transplantation, radiofrequency ablation, and transarterial chemoembolization. Finally, focusing on patients unable to receive active treatment, this study compiled information on the latest systemic pharmacological therapies, including targeted and immunotherapeutic drugs. Based on available clinical studies and Food and Drug Administration labels, this study details the drug indications, side effects, and dose adjustments for patients with renal dysfunction. It also provides a comprehensive review of information on HCC patients with renal dysfunction from disease onset to treatment.
Collapse
Affiliation(s)
- Hsuan Yeh
- Department of Nephrology, Chang Gung Memorial Hospital and Chang Gung University, Taipei 105, Taiwan
| | - Chun-Cheng Chiang
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Tzung-Hai Yen
- Department of Nephrology, Chang Gung Memorial Hospital and Chang Gung University, Taipei 105, Taiwan
| |
Collapse
|
11
|
Li J, Song D, Zhang B, Guo J, Li W, Zhang X, Zhao Q. Hepatoprotective Effects of Heracleum candicans Against Carbon Tetrachloride-Induced Acute Liver Injury in Rats. Dose Response 2021; 19:15593258211029510. [PMID: 34290575 PMCID: PMC8278464 DOI: 10.1177/15593258211029510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 01/08/2023] Open
Abstract
Purpose: To determine the hepatoprotective mechanisms of Heracleum candicans in rats with acute liver injury induced by carbon tetrachloride (CCl4). Methods: Rats were intragastrically administered H candicans twice a day for 14 consecutive days and were intraperitoneally challenged with CCl4. Alanine aminotransferase and aspartate aminotransferase were measured to indicate liver injury. Malondialdehyde antioxidant enzyme activity and tumor necrosis factor-alpha and interleukin 6 secretion were measured as liver injury indicators. Histopathological tests were conducted to determine whether H candicans ameliorated liver injury. Results: CCl4-induced liver injury led to significant increases in liver injury biochemical indicators transaminase and malondialdehyde activities. H candicans pretreatments inhibited these increases. Pathological sections in pretreated samples exhibited reduced vacuole formation, neutrophil infiltration, and necrosis. Conclusion: H candicans increases the antioxidant capacity of the liver and maintains hepatocyte function in the face of CCl4-induced injury.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China.,Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Dan Song
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China.,Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Bintao Zhang
- Xianyang Central Hospital, Xianyang, Shaanxi, China
| | - Jinwei Guo
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Wenping Li
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Xiaoying Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China.,Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Qin Zhao
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China.,Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| |
Collapse
|
12
|
Bao YL, Wang L, Pan HT, Zhang TR, Chen YH, Xu SJ, Mao XL, Li SW. Animal and Organoid Models of Liver Fibrosis. Front Physiol 2021; 12:666138. [PMID: 34122138 PMCID: PMC8187919 DOI: 10.3389/fphys.2021.666138] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis refers to the process underlying the development of chronic liver diseases, wherein liver cells are repeatedly destroyed and regenerated, which leads to an excessive deposition and abnormal distribution of the extracellular matrix such as collagen, glycoprotein and proteoglycan in the liver. Liver fibrosis thus constitutes the pathological repair response of the liver to chronic injury. Hepatic fibrosis is a key step in the progression of chronic liver disease to cirrhosis and an important factor affecting the prognosis of chronic liver disease. Further development of liver fibrosis may lead to structural disorders of the liver, nodular regeneration of hepatocytes and the formation of cirrhosis. Hepatic fibrosis is histologically reversible if treated aggressively during this period, but when fibrosis progresses to the stage of cirrhosis, reversal is very difficult, resulting in a poor prognosis. There are many causes of liver fibrosis, including liver injury caused by drugs, viral hepatitis, alcoholic liver, fatty liver and autoimmune disease. The mechanism underlying hepatic fibrosis differs among etiologies. The establishment of an appropriate animal model of liver fibrosis is not only an important basis for the in-depth study of the pathogenesis of liver fibrosis but also an important means for clinical experts to select drugs for the prevention and treatment of liver fibrosis. The present study focused on the modeling methods and fibrosis characteristics of different animal models of liver fibrosis, such as a chemical-induced liver fibrosis model, autoimmune liver fibrosis model, cholestatic liver fibrosis model, alcoholic liver fibrosis model and non-alcoholic liver fibrosis model. In addition, we also summarize the research and application prospects concerning new organoids in liver fibrosis models proposed in recent years. A suitable animal model of liver fibrosis and organoid fibrosis model that closely resemble the physiological state of the human body will provide bases for the in-depth study of the pathogenesis of liver fibrosis and the development of therapeutic drugs.
Collapse
Affiliation(s)
- Yu-long Bao
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Li Wang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Hai-ting Pan
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Tai-ran Zhang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Ya-hong Chen
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shan-jing Xu
- School of Medicine, Shaoxing University, Shaoxing, Chian
| | - Xin-li Mao
- School of Medicine, Shaoxing University, Shaoxing, Chian
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shao-wei Li
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
13
|
Chen X, Acquaah-Mensah GK, Denning KL, Peterson JM, Wang K, Denvir J, Hong F, Cederbaum AI, Lu Y. High-fat diet induces fibrosis in mice lacking CYP2A5 and PPARα: a new model for steatohepatitis-associated fibrosis. Am J Physiol Gastrointest Liver Physiol 2020; 319:G626-G635. [PMID: 32877213 PMCID: PMC8087345 DOI: 10.1152/ajpgi.00213.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity is linked to nonalcoholic steatohepatitis. Peroxisome proliferator-activated receptor-α (PPARα) regulates lipid metabolism. Cytochrome P-450 2A5 (CYP2A5) is a potential antioxidant and CYP2A5 induction by ethanol is CYP2E1 dependent. High-fat diet (HFD)-induced obesity and steatosis are more severe in CYP2A5 knockout (cyp2a5-/-) mice than in wild-type mice although PPARα is elevated in cyp2a5-/- mice. To examine why the upregulated PPARα failed to prevent the enhanced steatosis in cyp2a5-/- mice, we abrogate the upregulated PPARα in cyp2a5-/- mice by cross-breeding cyp2a5-/- mice with PPARα knockout (pparα-/-) mice to create pparα-/-/cyp2a5-/- mice. The pparα-/-/cyp2a5-/- mice, pparα-/- mice, and cyp2a5-/- mice were fed HFD to induce steatosis. After HFD feeding, more severe steatosis was developed in pparα-/-/cyp2a5-/- mice than in pparα-/- mice and cyp2a5-/- mice. The pparα-/-/cyp2a5-/- mice and pparα-/- mice exhibited comparable and impaired lipid metabolism. Elevated serum alanine transaminase and liver interleukin-1β, liver inflammatory cell infiltration, and foci of hepatocellular ballooning were observed in pparα-/-/cyp2a5-/- mice but not in pparα-/- mice and cyp2a5-/- mice. In pparα-/-/cyp2a5-/- mice, although redox-sensitive transcription factor nuclear factor erythroid 2-related factor 2 and its target antioxidant genes were upregulated as a compensation, thioredoxin was suppressed, and phosphorylation of JNK and formation of nitrotyrosine adduct were increased. Liver glutathione was decreased, and lipid peroxidation was increased. Interestingly, inflammation and fibrosis were all observed within the clusters of lipid droplets, and these lipid droplet clusters were all located inside the area with CYP2E1-positive staining. These results suggest that HFD-induced fibrosis in pparα-/-/cyp2a5-/- mice is associated with steatosis, and CYP2A5 interacts with PPARα to participate in regulating steatohepatitis-associated fibrosis.
Collapse
Affiliation(s)
- Xue Chen
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - George K. Acquaah-Mensah
- 2Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Worcester, Massachusetts
| | - Krista L. Denning
- 3Department of Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Jonathan M. Peterson
- 4Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee
| | - Kesheng Wang
- 5Department of Family and Community Health, School of Nursing, Health Sciences Center, West Virginia University, Morgantown, West Virginia
| | - James Denvir
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Feng Hong
- 6Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Jining, China
| | - Arthur I. Cederbaum
- 7Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yongke Lu
- 1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia,8Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
14
|
Susilo RJK, Winarni D, Husen SA, Hayaza S, Punnapayak H, Wahyuningsih SPA, Sajidah ES, Darmanto W. Hepatoprotective effect of crude polysaccharides extracted from Ganoderma lucidum against carbon tetrachloride-induced liver injury in mice. Vet World 2019; 12:1987-1991. [PMID: 32095051 PMCID: PMC6989327 DOI: 10.14202/vetworld.2019.1987-1991] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
Background and Aim Natural products are currently widely used as alternative treatments for liver disease. The study aimed to determine the hepatoprotective effect of crude polysaccharides extracted from Ganoderma lucidum against liver injury induced by carbon tetrachloride (CCl4). Materials and Methods Twenty-four male BALB/C mice were randomly divided into six groups. Serum and liver samples were taken on day 10 after G. lucidum administration. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) were measured using enzyme-linked immunosorbent assays, and the histology of the liver was evaluated using light microscopy. Results G. lucidum extract significantly decreased the levels of ALT, AST, and MDA and significantly increased the levels of SOD and CAT. In the histological evaluation, the liver tissue of CCl4-treated mice exhibited hydropic degeneration, necrosis, and sinusoidal dilatation. G. lucidum extract administration improved this liver tissue histopathology. Conclusion Crude polysaccharides extracted from G. lucidum showed a hepatoprotective effect, regenerating damaged liver tissue.
Collapse
Affiliation(s)
| | - Dwi Winarni
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Saikhu Akhmad Husen
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Suhailah Hayaza
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Hunsa Punnapayak
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia.,Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Elma Sakinatus Sajidah
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Win Darmanto
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
15
|
Nicotine enhances alcoholic fatty liver in mice: Role of CYP2A5. Arch Biochem Biophys 2018; 657:65-73. [PMID: 30222954 DOI: 10.1016/j.abb.2018.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/28/2018] [Accepted: 09/14/2018] [Indexed: 01/03/2023]
Abstract
Tobacco and alcohol are often co-abused. Nicotine can enhance alcoholic fatty liver, and CYP2A6 (CYP2A5 in mice), a major metabolism enzyme for nicotine, can be induced by alcohol. CYP2A5 knockout (cyp2a5-/-) mice and their littermates (cyp2a5+/+) were used to test whether CYP2A5 has an effect on nicotine-enhanced alcoholic fatty liver. The results showed that alcoholic fatty liver was enhanced by nicotine in cyp2a5+/+ mice but not in the cyp2a5-/- mice. Combination of ethanol and nicotine increased serum triglyceride in cyp2a5+/+ mice but not in the cyp2a5-/- mice. Cotinine, a major metabolite of nicotine, also enhanced alcoholic fatty liver, which was also observed in cyp2a5+/+ mice but not in the cyp2a5-/- mice. Nitrotyrosine and malondialdehyde (MDA), markers of oxidative/nitrosative stress, were induced by alcohol and were further increased by nicotine and cotinine in cyp2a5+/+ mice but not in the cyp2a5-/- mice. Reactive oxygen species (ROS) production during microsomal metabolism of nicotine and cotinine was increased in microsomes from cyp2a5+/+ mice but not in microsomes from cyp2a5-/- mice. These results suggest that nicotine enhances alcoholic fatty liver in a CYP2A5-dependent manner, which is related to ROS produced during the process of CYP2A5-dependent nicotine metabolism.
Collapse
|
16
|
Islas JF, Moreno-Cuevas JE. A MicroRNA Perspective on Cardiovascular Development and Diseases: An Update. Int J Mol Sci 2018; 19:E2075. [PMID: 30018214 PMCID: PMC6073753 DOI: 10.3390/ijms19072075] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
In this review, we summarize the latest research pertaining to MicroRNAs (miRs) related to cardiovascular diseases. In today's molecular age, the key clinical aspects of diagnosing and treating these type of diseases are crucial, and miRs play an important role. Therefore, we have made a thorough analysis discussing the most important candidate protagonists of many pathways relating to such conditions as atherosclerosis, heart failure, myocardial infarction, and congenital heart disorders. We approach miRs initially from the fundamental molecular aspects and look at their role in developmental pathways, as well as regulatory mechanisms dysregulated under specific cardiovascular conditions. By doing so, we can better understand their functional roles. Next, we look at therapeutic aspects, including delivery and inhibition techniques. We conclude that a personal approach for treatment is paramount, and so understanding miRs is strategic for cardiovascular health.
Collapse
Affiliation(s)
- Jose Francisco Islas
- Tecnologico de Monterrey, Grupo de Investigación con Enfoque Estratégico en Bioingeniería y Medicina Regenerativa, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, NL 64710, Mexico.
| | - Jorge Eugenio Moreno-Cuevas
- Tecnologico de Monterrey, Grupo de Investigación con Enfoque Estratégico en Bioingeniería y Medicina Regenerativa, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, NL 64710, Mexico.
| |
Collapse
|
17
|
Tsafou K, Tiwari PB, Forman-Kay JD, Metallo SJ, Toretsky JA. Targeting Intrinsically Disordered Transcription Factors: Changing the Paradigm. J Mol Biol 2018; 430:2321-2341. [PMID: 29655986 DOI: 10.1016/j.jmb.2018.04.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/21/2018] [Accepted: 04/05/2018] [Indexed: 12/21/2022]
Abstract
Increased understanding of intrinsically disordered proteins (IDPs) and protein regions has revolutionized our view of the relationship between protein structure and function. Data now support that IDPs can be functional in the absence of a single, fixed, three-dimensional structure. Due to their dynamic morphology, IDPs have the ability to display a range of kinetics and affinity depending on what the system requires, as well as the potential for large-scale association. Although several studies have shed light on the functional properties of IDPs, the class of intrinsically disordered transcription factors (TFs) is still poorly characterized biophysically due to their combination of ordered and disordered sequences. In addition, TF modulation by small molecules has long been considered a difficult or even impossible task, limiting functional probe development. However, with evolving technology, it is becoming possible to characterize TF structure-function relationships in unprecedented detail and explore avenues not available or not considered in the past. Here we provide an introduction to the biophysical properties of intrinsically disordered TFs and we discuss recent computational and experimental efforts toward understanding the role of intrinsically disordered TFs in biology and disease. We describe a series of successful TF targeting strategies that have overcome the perception of the "undruggability" of TFs, providing new leads on drug development methodologies. Lastly, we discuss future challenges and opportunities to enhance our understanding of the structure-function relationship of intrinsically disordered TFs.
Collapse
Affiliation(s)
- K Tsafou
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - P B Tiwari
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - J D Forman-Kay
- Molecular Medicine, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto M5G 1X8, Canada
| | - S J Metallo
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - J A Toretsky
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA.
| |
Collapse
|
18
|
Lu Y, Cederbaum AI. Cytochrome P450s and Alcoholic Liver Disease. Curr Pharm Des 2018; 24:1502-1517. [PMID: 29637855 PMCID: PMC6053342 DOI: 10.2174/1381612824666180410091511] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/30/2018] [Accepted: 04/06/2018] [Indexed: 12/19/2022]
Abstract
Alcohol consumption causes liver diseases, designated as Alcoholic Liver Disease (ALD). Because alcohol is detoxified by alcohol dehydrogenase (ADH), a major ethanol metabolism system, the development of ALD was initially believed to be due to malnutrition caused by alcohol metabolism in liver. The discovery of the microsomal ethanol oxidizing system (MEOS) changed this dogma. Cytochrome P450 enzymes (CYP) constitute the major components of MEOS. Cytochrome P450 2E1 (CYP2E1) in MEOS is one of the major ROS generators in liver and is considered to be contributive to ALD. Our labs have been studying the relationship between CYP2E1 and ALD for many years. Recently, we found that human CYP2A6 and its mouse analog CYP2A5 are also induced by alcohol. In mice, the alcohol induction of CYP2A5 is CYP2E1-dependent. Unlike CYP2E1, CYP2A5 protects against the development of ALD. The relationship of CYP2E1, CYP2A5, and ALD is a major focus of this review.
Collapse
Affiliation(s)
- Yongke Lu
- Department of Health Sciences, College of Public Health, East Tennessee State University
- Center of Excellence for Inflammation, Infectious Disease and Immunity, East Tennessee State University
| | - Arthur I. Cederbaum
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
19
|
Zhou Z, Park S, Kim JW, Zhao J, Lee MY, Choi KC, Lim CW, Kim B. Detrimental effects of nicotine on thioacetamide-induced liver injury in mice. Toxicol Mech Methods 2017; 27:501-510. [PMID: 28440100 DOI: 10.1080/15376516.2017.1323256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
AIM Nicotine exerts a number of physiological effects. The purpose of this study was to determine the effects of nicotine on thioacetamide (TAA)-induced liver fibrosis in mice. MATERIALS AND METHODS For in vivo experiments, hepatic fibrosis was induced by TAA (0.25 g/kg, i.p.) three times a week for 6 weeks. Mice of TAA treated groups were administered daily with distilled water and nicotine (50 or 100 μg/mL) via gastrogavage throughout the experimental period. For in vitro experiments, HepG2 (human liver cancer cell line) and LX-2 (human hepatic stellate cell line) were used to determine oxidative stress and fibrosis, respectively. RESULTS Compared to control groups, TAA treated groups had significantly differences in serum alanine transferase and aspartate aminotransferase levels and nicotine accentuated liver injury. Moreover, nicotine increased the mRNA levels of TAA-induced transforming growth factor-β (TGF-β) and collagen type I alpha 1 in the liver. Nicotine also increased TAA-induced oxidative stress. Histological examination confirmed that nicotine aggravated the degree of fibrosis caused by TAA treatment. Additionally, nicotine enhanced hepatic stellate cell activation via promoting the expression of α-smooth muscle actin. CONCLUSIONS Oral administration of nicotine significantly aggravated TAA-induced hepatic fibrosis in mice through enhancing TGF-β secretion and TAA-induced oxidative stress. The increase in TGF-β levels might be associated with the strengthening of oxidative processes, subsequently leading to increased hepatic stellate cell activation and extracellular matrix deposition. These results suggest that patients with liver disease should be advised to abandon smoking since nicotine may exacerbate hepatic fibrosis.
Collapse
Affiliation(s)
- Zixiong Zhou
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Surim Park
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Jong Won Kim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Jing Zhao
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Moo-Yeol Lee
- College of Pharmacy, Dongguk University, Goyang, Gyeonggi-do, Republic of Korea
| | - Kyung Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Chae Woong Lim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
20
|
Cytochrome P450-2E1 promotes fast food-mediated hepatic fibrosis. Sci Rep 2017; 7:39764. [PMID: 28051126 PMCID: PMC5209674 DOI: 10.1038/srep39764] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/28/2016] [Indexed: 02/08/2023] Open
Abstract
Cytochrome P450-2E1 (CYP2E1) increases oxidative stress. High hepatic cholesterol causes non-alcoholic steatohepatitis (NASH) and fibrosis. Thus, we aimed to study the role of CYP2E1 in promoting liver fibrosis by high cholesterol-containing fast-food (FF). Male wild-type (WT) and Cyp2e1-null mice were fed standard chow or FF for 2, 12, and 24 weeks. Various parameters of liver fibrosis and potential mechanisms such as oxidative and endoplasmic reticulum (ER) stress, inflammation, and insulin resistance (IR) were studied. Indirect calorimetry was also used to determine metabolic parameters. Liver histology showed that only WT fed FF (WT-FF) developed NASH and fibrosis. Hepatic levels of fibrosis protein markers were significantly increased in WT-FF. The nitroxidative stress marker iNOS, but not CYP2E1, was significantly elevated only in FF-fed WT. Serum endotoxin, TLR-4 levels, and inflammatory markers were highest in WT-FF. FAS, PPAR-α, PPAR-γ, and CB1-R were markedly altered in WT-FF. Electron microscopy and immunoblot analyses showed significantly higher levels of ER stress in FF-fed WT. Indirect calorimetry showed that Cyp2e1-null-mice fed FF exhibited consistently higher total energy expenditure (TEE) than their corresponding WT. These results demonstrate that CYP2E1 is important in fast food-mediated liver fibrosis by promoting nitroxidative and ER stress, endotoxemia, inflammation, IR, and low TEE.
Collapse
|
21
|
Lu Y, Cederbaum AI. Alcohol Upregulation of CYP2A5: Role of Reactive Oxygen Species. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2016; 1:117-130. [PMID: 29756048 PMCID: PMC5944604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hepatic cytochrome P450 (CYP) 2E1 and CYP2A5 activate many important drugs and hepatotoxins. CYP2E1 is induced by alcohol, but whether CYP2A5 is upregulated by alcohol is not known. This article reviews recent studies on the induction of CYP2A5 by alcohol and the mechanism and role of reactive oxygen species (ROS) in this upregulation. Chronic feeding of ethanol to wild type mice increased CYP2A5 catalytic activity and protein and mRNA levels. This induction was blunted in CYP2E1 knockout mice and by a CYP2E1 inhibitor, but was restored in CYP2E1 knockin mice, suggesting a role for CYP2E1 in the induction of CYP2A5 by alcohol. Since CYP2E1 actively generates ROS, the possible role of ROS in the induction of CYP2A5 by alcohol was determined. ROS production was elevated by ethanol treatment. The antioxidants N-acetyl cysteine and vitamin C lowered the alcohol-induced elevation of ROS and blunted the alcohol-mediated induction of CYP2A5. These results suggest that ROS play a novel role in the crosstalk between CYP2E1 and CYP2A5. Alcohol treatment activated nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2), a transcription factor which up-regulates expression of CYP2A5. The antioxidants blocked the activation of Nrf2. The alcohol-induced elevation of CYP2A5, but not CYP2E1, was lower in Nrf2 knockout mice. We propose that increased generation of ROS from the alcohol-induced CYP2E1 activates Nrf2, which subsequently up-regulates the expression of CYP2A5. Thus, a novel consequence of the alcohol-mediated induction of CYP2E1 and increase in ROS is the activation of redox-sensitive transcription factors, such as Nrf2, and expression of CYP2A5. Further perspectives on this alcohol-CYP2E1-ROS-Nrf2-CYP2A5 pathway are presented.
Collapse
Affiliation(s)
- Yongke Lu
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Arthur I Cederbaum
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|