1
|
Lages YV, Maisonnette SS, Marinho B, Rosseti FP, Krahe TE, Landeira-Fernandez J. Behavioral effects of chronic stress in Carioca high- and low-conditioned freezing rats. Stress 2021; 24:602-611. [PMID: 34030584 DOI: 10.1080/10253890.2021.1934445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Chronic unpredictable mild stress (CUMS) is a widely used model to study stress-coping strategies in rodents. Different factors have been shown to influence whether animals adopt passive or active coping responses to CUMS. Individual adaptation and susceptibility to the environment seem to play a critical role in this process. To further investigate this relationship, we examined the effects of CUMS on Carioca high- and low-conditioned freezing rats (CHF and CLF, respectively), bidirectional lines of animals selected for high and low freezing in response to contextual cues that were previously associated with footshocks. For this purpose, the behavior of CHF and CLF animals was evaluated in the contextual fear conditioning, open field, elevated T maze, and forced swimming tests before and after 21 days of CUMS. For all tests, CHF rats were more susceptible to the effects of CUMS compared to CLF. CHF animals exposed to CUMS displayed a reduction in freezing behavior, decreased number of entries and time spent in the center of the open field, greater latencies to become immobile, and increased avoidance and escaping behaviors in the elevated T maze. Overall, these findings support the hypothesis that a heightened susceptibility to the environment exerts a strong influence on coping responses to chronic stress.
Collapse
Affiliation(s)
- Yury V Lages
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia S Maisonnette
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Beatriz Marinho
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia P Rosseti
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thomas E Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Witkin JM, Smith JL, Golani LK, Brooks EA, Martin AE. Involvement of muscarinic receptor mechanisms in antidepressant drug action. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 89:311-356. [PMID: 32616212 DOI: 10.1016/bs.apha.2020.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Conventional antidepressants typically require weeks of daily dosing to achieve full antidepressant response in antidepressant responders. A newly evolving group of compounds can engender more rapid response times in depressed patients. These drugs include the newly approved antidepressant (S)-ketamine (esketamine, Spravato). A seminal study by Furey and Drevets in 2006 showed antidepressant response in patients after only a few doses with the antimuscarinic drug scopolamine. Several clinical reports have generally confirmed scopolamine as a rapid-acting antidepressant. The data with scopolamine are consistent with the adrenergic/cholinergic hypothesis of mania/depression derived from clinical reports originating in the 1970s from Janowsky and colleagues. Additional support for a role for muscarinic receptors in mood disorders comes from the greater efficacy of conventional antidepressants that have relatively high levels of muscarinic receptor blocking actions (e.g., the tricyclic antidepressant amitriptyline vs the selective serotonin reuptake inhibitor fluoxetine). There appears to be appreciable overlap in the mechanisms of action of scopolamine and other rapid-acting antidepressants (ketamine) or putative rapid-acting agents (mGlu2/3 receptor antagonists) although gaps exist in the experimental literature. Current hypotheses regarding the mechanisms underlying the rapid antidepressant response to scopolamine posit an M1 receptor subtype-initiated cascade of biological events that involve the amplification of AMPA receptors. Consequent impact on brain-derived neurotrophic factor and mTor signaling pathways result in the induction of dendritic spines that enable augmented functional connectivity in brain areas regulating mood. Two major goals for research in this area focus on finding ways in which scopolamine might best be utilized for depressed patients and the discovery of alternative compounds that improve upon the efficacy and safety of scopolamine.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Witkin Consulting Group, Carmel, IN, United States; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, United States; Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States.
| | - Jodi L Smith
- Peyton Manning Children's Hospital, Ascension St. Vincent, Indianapolis, IN, United States
| | - Lalit K Golani
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | | | | |
Collapse
|
3
|
Yazdi A, Doostmohammadi M, Pourhossein Majarshin F, Beheshti S. Betahistine, prevents kindling, ameliorates the behavioral comorbidities and neurodegeneration induced by pentylenetetrazole. Epilepsy Behav 2020; 105:106956. [PMID: 32062106 DOI: 10.1016/j.yebeh.2020.106956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Abstract
A seizure may occur because of the imbalance between glutamate and gamma-aminobutyric acid (GABA). Recurrent seizures induce some cognitive problems, such as, depression, learning and memory deficits, and neurodegeneration. Histamine is an appropriate therapeutic target for epilepsy via its effect on regulating neurotransmitter release. Also, evidence indicates the effect of histamine on neuroprotection and alleviating cognitive disorders. An ideal antiepileptic drug is a substance, which has both anticonvulsant effects and decreases the comorbidities that are induced by repeated seizures. Betahistine dihydrochloride (betahistine) is a structural analog of histamine. It acts as histamine H1 receptor agonist and H3 receptor antagonist, which enhances histaminergic neuronal activities. In the present study, we examined the effect of betahistine administration on seizure scores, memory deficits, depression, and neuronal loss induced by pentylenetetrazole (PTZ). Eight- to ten-week-old BALB/c male mice (20-25 g) received betahistine, 1, and 10 mg/kg daily from 7 days before the onset of PTZ-induced kindling until the end of the establishment of the kindling. We found that betahistine prevented generalized tonic-clonic seizures induction and diminished forelimb clonic seizures intensity. Also, it decreased cell death in the hippocampus and cortex, ameliorated the memory deficit and depression induced by PTZ in the kindled animals. Altogether, these results indicate that pretreatment and repetitive administration with betahistine exerts antiepileptogenic and anticonvulsant activity. These findings might be due to the neuroprotective impact of betahistine in the hippocampus and cortex.
Collapse
Affiliation(s)
- Azadeh Yazdi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammadmahdi Doostmohammadi
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Farshid Pourhossein Majarshin
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Siamak Beheshti
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
4
|
Harro J. Animal models of depression: pros and cons. Cell Tissue Res 2018; 377:5-20. [PMID: 30560458 DOI: 10.1007/s00441-018-2973-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022]
Abstract
Animal models of depression are certainly needed but the question in the title has been raised owing to the controversies in the interpretation of the readout in a number of tests, to the perceived lack of progress in the development of novel treatments and to the expressed doubts in whether animal models can offer anything to make a true breakthrough in understanding the neurobiology of depression and producing novel drugs against depression. Herewith, it is argued that if anything is wrong with animal models, including those for depression, it is not about the principle of modelling complex human disorder in animals but in the way the tests are selected, conducted and interpreted. Further progress in the study of depression and in developing new treatments, will be supported by animal models of depression if these were more critically targeted to drug screening vs. studies of underlying neurobiology, clearly stratified to vulnerability and pathogenetic models, focused on well-defined endophenotypes and validated for each setting while bearing the existing limits to validation in mind. Animal models of depression need not to rely merely on behavioural readouts but increasingly incorporate neurobiological measures as the understanding of depression as human brain disorder advances. Further developments would be fostered by cross-fertilizinga translational approach that is bidirectional, research on humans making more use of neurobiological findings in animals.
Collapse
Affiliation(s)
- Jaanus Harro
- Division of Neuropsychopharmacology, Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Ravila 14A Chemicum, 50411, Tartu, Estonia.
| |
Collapse
|
5
|
Dagenhardt J, Trinh A, Sumner H, Scott J, Aamodt E, Dwyer DS. Insulin Signaling Deficiency Produces Immobility in Caenorhabditis elegans That Models Diminished Motivation States in Man and Responds to Antidepressants. MOLECULAR NEUROPSYCHIATRY 2017; 3:97-107. [PMID: 29230398 PMCID: PMC5701274 DOI: 10.1159/000478049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/06/2017] [Indexed: 01/05/2023]
Abstract
Defects in insulin signaling have been reported in schizophrenia and major depressive disorder, which also share certain negative symptoms such as avolition, anhedonia, and apathy. These symptoms reflect diminished motivational states, which have been modeled in rodents as increased immobility in the forced swimming test. We have discovered that loss-of-function mutations in the insulin receptor (daf-2) and syntaxin (unc-64) genes in Caenorhabditis elegans, brief food deprivation, and exposure to DMSO produce immobility and avolition in non-dauer adults. The animals remain responsive to external stimuli; however, they fail to forage and will remain in place for >12 days or until they die. Their immobility can be prevented with drugs used to treat depression and schizophrenia and that reduce immobility in the forced swimming test. This includes amitriptyline, amoxapine, clozapine, and olanzapine, but not benzodiazepines and haloperidol. Recovery experiments confirm that immobility is induced and maintained by excessive signaling via serotonergic and muscarinic cholinergic pathways. The immobility response described here represents a potential protophenotype for avolition/anhedonia in man. This work may provide clues about why there is a significant increase in depression in patients with diabetes and suggest new therapeutic pathways for disorders featuring diminished motivation as a prominent symptom.
Collapse
Affiliation(s)
- Julie Dagenhardt
- Department of Pharmacology, Toxicology and Neuroscience, Los Angeles, USA
| | - Angeline Trinh
- Department of Psychiatry, LSU Health Sciences Center at Shreveport, Los Angeles, USA
| | - Halen Sumner
- Department of Centenary College, Shreveport, Los Angeles, USA
| | - Jeffrey Scott
- Department of Centenary College, Shreveport, Los Angeles, USA
| | - Eric Aamodt
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center at Shreveport, Los Angeles, USA
| | - Donard S. Dwyer
- Department of Pharmacology, Toxicology and Neuroscience, Los Angeles, USA
- Department of Psychiatry, LSU Health Sciences Center at Shreveport, Los Angeles, USA
| |
Collapse
|
6
|
Individual Differences in Behavioural Despair Predict Brain GSK-3beta Expression in Mice: The Power of a Modified Swim Test. Neural Plast 2016; 2016:5098591. [PMID: 27478647 PMCID: PMC4949347 DOI: 10.1155/2016/5098591] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/09/2016] [Accepted: 05/18/2016] [Indexed: 01/07/2023] Open
Abstract
While deficient brain plasticity is a well-established pathophysiologic feature of depression, little is known about disorder-associated enhanced cognitive processing. Here, we studied a novel mouse paradigm that potentially models augmented learning of adverse memories during development of a depressive-like state. We used a modification of the classic two-day protocol of a mouse Porsolt test with an additional session occurring on Day 5 following the initial exposure. Unexpectedly, floating behaviour and brain glycogen synthase kinase-3 beta (GSK-3beta) mRNA levels, a factor of synaptic plasticity as well as a marker of distress and depression, were increased during the additional swimming session that was prevented by imipramine. Observed increases of GSK-3beta mRNA in prefrontal cortex during delayed testing session correlated with individual parameters of behavioural despair that was not found in the classic Porsolt test. Repeated swim exposure was accompanied by a lower pGSK-3beta/GSK-3beta ratio. A replacement of the second or the final swim sessions with exposure to the context of testing resulted in increased GSK-3beta mRNA level similar to the effects of swimming, while exclusion of the second testing prevented these changes. Together, our findings implicate the activation of brain GSK-3beta expression in enhanced contextual conditioning of adverse memories, which is associated with an individual susceptibility to a depressive syndrome.
Collapse
|