1
|
Aljorani RH, Al-Zubaidy AA, Abdali NT. Ripasudil, a Rho kinase inhibitor, attenuates testosterone-induced benign prostatic hyperplasia in rats: targeting inflammation, oxidative stress, and Rho kinase pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04215-7. [PMID: 40299019 DOI: 10.1007/s00210-025-04215-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
Benign prostatic hyperplasia (BPH) is the most common urological condition among elderly men. Because of modifiable metabolic risk factors, the prevalence of BPH is rising. This study aimed to investigate the therapeutic potential of ripasudil, a Rho kinase inhibitor, and also its combination with finasteride in attenuating testosterone-induced BPH in male Wistar rats. Rats were given testosterone propionate (3 mg/kg/day) for 4 weeks to develop BPH and were treated with ripasudil (3 mg/kg/day), finasteride (5 mg/k/day), or a combination of both concomitant the testosterone injection throughout the course of the study. The results revealed a significant increase in prostate index, a rise in prostate-specific antigen (PSA), and characteristic histopathological changes indicative of BPH post-testosterone administration. Additionally, testosterone induced elevation in inflammatory markers (interleukin-6 (IL-6), interleukin-1beta (IL-1β), tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta (TGF-β), and nuclear factor-κB (NF-κB)), oxidative stress (increase in malondialdehyde (MDA) and decrease in glutathione (GSH)), and elevation of Rho kinase1 (ROCK1). However, intervention with ripasudil or its combination with finasteride effectively mitigated these changes possibly via anti-inflammatory, antioxidative, and ROCK inhibition properties. These findings highlight the potential of ripasudil as adjunctive therapies for BPH, offering an approach for targeting inflammation, oxidative stress, and ROCK pathways. Further research is needed to clarify the underlying mechanisms driving these therapeutic effects and validate these findings in clinical settings.
Collapse
Affiliation(s)
- Randa Hisham Aljorani
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq.
| | - Adeeb Ahmed Al-Zubaidy
- Department of Pharmacology, College of Medicine, University of Warith Al-Anbiyaa, Karbalaa, Iraq
| | - Nibrass Taher Abdali
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
2
|
Wang Y, Tinsley B, Spolitu S, Zadroga JA, Agarwal H, Sarecha AK, Ozcan L. Geranylgeranyl isoprenoids and hepatic Rap1a regulate basal and statin-induced expression of PCSK9. J Lipid Res 2024; 65:100515. [PMID: 38309417 PMCID: PMC10910342 DOI: 10.1016/j.jlr.2024.100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
LDL-C lowering is the main goal of atherosclerotic cardiovascular disease prevention, and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition is now a validated therapeutic strategy that lowers serum LDL-C and reduces coronary events. Ironically, the most widely used medicine to lower cholesterol, statins, has been shown to increase circulating PCSK9 levels, which limits their efficacy. Here, we show that geranylgeranyl isoprenoids and hepatic Rap1a regulate both basal and statin-induced expression of PCSK9 and contribute to LDL-C homeostasis. Rap1a prenylation and activity is inhibited upon statin treatment, and statin-mediated PCSK9 induction is dependent on geranylgeranyl synthesis and hepatic Rap1a. Accordingly, treatment of mice with a small-molecule activator of Rap1a lowered PCSK9 protein and plasma cholesterol and inhibited statin-mediated PCSK9 induction in hepatocytes. The mechanism involves inhibition of the downstream RhoA-ROCK pathway and regulation of PCSK9 at the post-transcriptional level. These data further identify Rap1a as a novel regulator of PCSK9 protein and show that blocking Rap1a prenylation through lowering geranylgeranyl levels contributes to statin-mediated induction of PCSK9.
Collapse
Affiliation(s)
- Yating Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Brea Tinsley
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Stefano Spolitu
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - John A Zadroga
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Heena Agarwal
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Amesh K Sarecha
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Lale Ozcan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
3
|
Wang Y, Tinsley B, Spolitu S, Zadroga JA, Agarwal H, Sarecha AK, Ozcan L. Geranylgeranyl Isoprenoids and Hepatic Rap1a Regulate Basal and Statin-Induced Expression of PCSK9. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563509. [PMID: 37961667 PMCID: PMC10634727 DOI: 10.1101/2023.10.23.563509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Low-density lipoprotein cholesterol (LDL-C) lowering is the main goal of atherosclerotic cardiovascular disease prevention, and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition is now a validated therapeutic strategy that lowers serum LDL-C and reduces coronary events. Ironically, the most widely used medicine to lower cholesterol, statins, has been shown to increase circulating PCSK9 levels, which limits their efficacy. Here, we show that geranylgeranyl isoprenoids and hepatic Rap1a regulate both basal and statin induced expression of PCSK9 and contribute to LDL-C homeostasis. Rap1a prenylation and activity is inhibited upon statin treatment, and statin mediated PCSK9 induction is dependent on geranylgeranyl synthesis and hepatic Rap1a. Accordingly, treatment of mice with a small molecule activator of Rap1a lowered PCSK9 protein and plasma cholesterol and inhibited statin mediated PCSK9 induction in hepatocytes. The mechanism involves inhibition of the downstream RhoA-ROCK pathway and regulation of PCSK9 at the post transcriptional level. These data further identify Rap1a as a novel regulator of PCSK9 protein and show that blocking Rap1a prenylation through lowering geranylgeranyl levels contributes to statin-mediated induction of PCSK9.
Collapse
|
4
|
You Y, Zhu K, Wang J, Liang Q, Li W, Wang L, Guo B, Zhou J, Feng X, Shi J. ROCK inhibitor: Focus on recent updates. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
5
|
Fernández-Simón E, Suárez-Calvet X, Carrasco-Rozas A, Piñol-Jurado P, López-Fernández S, Pons G, Bech Serra JJ, de la Torre C, de Luna N, Gallardo E, Díaz-Manera J. RhoA/ROCK2 signalling is enhanced by PDGF-AA in fibro-adipogenic progenitor cells: implications for Duchenne muscular dystrophy. J Cachexia Sarcopenia Muscle 2022; 13:1373-1384. [PMID: 35132805 PMCID: PMC8977967 DOI: 10.1002/jcsm.12923] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The lack of dystrophin expression in Duchenne muscular dystrophy (DMD) induces muscle fibre and replacement by fibro-adipose tissue. Although the role of some growth factors in the process of fibrogenesis has been studied, pathways activated by PDGF-AA have not been described so far. Our aim was to study the molecular role of PDGF-AA in the fibrotic process of DMD. METHODS Skeletal muscle fibro-adipogenic progenitor cells (FAPs) from three DMD treated with PDGF-AA at 50 ng/mL were analysed by quantitative mass spectrometry-based proteomics. Western-blot, immunofluorescence, and G-LISA were used to confirm the mass spectrometry results. We evaluated the effects of PDGF-AA on the activation of RhoA pathway using two inhibitors, C3-exoenzyme and fasudil. Cell proliferation and migration were determined by BrdU and migration assay. Actin reorganization and collagen synthesis were measured by phalloidin staining and Sircol assay, respectively. In an in vivo proof of concept study, we treated dba/2J-mdx mice with fasudil for 6 weeks. Muscle strength was assessed with the grip strength. Immunofluorescence and flow cytometry analyses were used to study fibrotic and inflammatory markers in muscle tissue. RESULTS Mass spectrometry revealed that RhoA pathway proteins were up-regulated in treated compared with non-treated DMD FAPs (n = 3, mean age = 8 ± 1.15 years old). Validation of proteomic data showed that Arhgef2 expression was significantly increased in DMD muscles compared with healthy controls by a 7.7-fold increase (n = 2, mean age = 8 ± 1.14 years old). In vitro studies showed that RhoA/ROCK2 pathway was significantly activated by PDGF-AA (n = 3, 1.88-fold increase, P < 0.01) and both C3-exoenzyme and fasudil blocked that activation (n = 3, P < 0.05 and P < 0.001, respectively). The activation of RhoA pathway by PDGF-AA promoted a significant increase in proliferation and migration of FAPs (n = 3, P < 0.001), while C3-exoenzyme and fasudil inhibited FAPs proliferation at 72 h and migration at 48 and 72 h (n = 3, P < 0.001). In vivo studies showed that fasudil improved muscle function (n = 5 non-treated dba/2J-mdx and n = 6 treated dba/2J-mdx, 1.76-fold increase, P < 0.013), and histological studies demonstrated a 23% reduction of collagen-I expression area (n = 5 non-treated dba/2J-mdx and n = 6 treated dba/2J-mdx, P < 0.01). CONCLUSIONS Our results suggest that PDGF-AA promotes the activation of RhoA pathway in FAPs from DMD patients. This pathway could be involved in FAPs activation promoting its proliferation, migration, and actin reorganization, which represents the beginning of the fibrotic process. The inhibition of RhoA pathway could be considered as a potential therapeutic target for muscle fibrosis in patients with muscular dystrophies.
Collapse
Affiliation(s)
- Esther Fernández-Simón
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau and Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,John Walton Muscular Dystrophy Research Center, University of Newcastle, Newcastle upon Tyne, UK
| | - Xavier Suárez-Calvet
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau and Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Ana Carrasco-Rozas
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau and Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Patricia Piñol-Jurado
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau and Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,John Walton Muscular Dystrophy Research Center, University of Newcastle, Newcastle upon Tyne, UK
| | - Susana López-Fernández
- Plastic Surgery Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Gemma Pons
- Plastic Surgery Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | | | | | - Noemí de Luna
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau and Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Eduard Gallardo
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau and Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Jordi Díaz-Manera
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau and Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red en Enfermedades Raras (CIBERER), Madrid, Spain.,John Walton Muscular Dystrophy Research Center, University of Newcastle, Newcastle upon Tyne, UK
| |
Collapse
|
6
|
Wang J, Jiang W. The Effects of RKI-1447 in a Mouse Model of Nonalcoholic Fatty Liver Disease Induced by a High-Fat Diet and in HepG2 Human Hepatocellular Carcinoma Cells Treated with Oleic Acid. Med Sci Monit 2020; 26:e919220. [PMID: 32026851 PMCID: PMC7020744 DOI: 10.12659/msm.919220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background This study aimed to investigate the effects of RKI-1447, a selective inhibitor of Rho-associated ROCK kinases, in a mouse model of nonalcoholic fatty liver disease (NAFLD) induced by a high-fat diet, and in oleic acid-treated HepG2 human hepatocellular carcinoma cells in vitro. Material/Methods Four study groups of mice included: the control group; the high-fat diet (HFD) group; the HFD+RKI-1447 (2 mg/kg) group; and the HFD+RKI-1447 (8 mg/kg) group. Mice were fed a high-fat diet for 12 weeks. Mice in the HFD+RKI-1447 groups were fed a high-fat diet for 12 weeks and treated with RKI-1447 twice weekly for three weeks. The HepG2 human hepatocellular carcinoma cells were treated with or without RKI-1447 for 2 h and treated with oleic acid for 24 h. Results In the mouse model of NAFLD, RKI-1447 reduced insulin resistance and the levels of alanine aminotransferase (ALT), aspartate transaminase (AST), total cholesterol, triglyceride, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), and superoxide dismutase (SOD). RKI-1447 reduced the histological changes in the mouse model of NAFLD in mice fed a high-fat diet and significantly inhibited the generations of triglyceride, IL-6, and TNF-α. RKI-1447 reduced the levels of oxidative stress in HepG2 cells treated with oleic acid and significantly down-regulated the expression of RhoA, ROCK1, ROCK2, toll-like receptor 4 (TLR4), p-TBK1, and p-IRF3. RKI-1447 treatment also inhibited RhoA expression. Conclusions In a mouse model of NAFLD, RKI-1447 inhibited ROCK and modulated insulin resistance, oxidative stress, and inflammation through the ROCK/TLR4/TBK1/IRF3 pathway.
Collapse
Affiliation(s)
- Jinshan Wang
- Department of Transplantation, Tianjin First Central Hospital, Tianjin, China (mainland)
| | - Wentao Jiang
- Department of Transplantation, Tianjin First Central Hospital, Tianjin, China (mainland)
| |
Collapse
|
7
|
Merkus D, Tune JD. ROCK as a molecular bond connecting coronary microvascular and cardiac remodelling. Cardiovasc Res 2017; 113:1273-1275. [DOI: 10.1093/cvr/cvx139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
8
|
Lai AY, McLaurin J. Rho-associated protein kinases as therapeutic targets for both vascular and parenchymal pathologies in Alzheimer's disease. J Neurochem 2017; 144:659-668. [PMID: 28722749 DOI: 10.1111/jnc.14130] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/21/2017] [Accepted: 07/14/2017] [Indexed: 12/30/2022]
Abstract
The causes of late-onset Alzheimer's disease are unclear and likely multifactorial. Rho-associated protein kinases (ROCKs) are ubiquitously expressed signaling messengers that mediate a wide array of cellular processes. Interestingly, they play an important role in several vascular and brain pathologies implicated in Alzheimer's etiology, including hypertension, hypercholesterolemia, blood-brain barrier disruption, oxidative stress, deposition of vascular and parenchymal amyloid-beta peptides, tau hyperphosphorylation, and cognitive decline. The current review summarizes the functions of ROCKs with respect to the various risk factors and pathologies on both sides of the blood-brain barrier and present support for targeting ROCK signaling as a multifactorial and multi-effect approach for the prevention and amelioration of late-onset Alzheimer's disease. This article is part of the Special Issue "Vascular Dementia".
Collapse
Affiliation(s)
- Aaron Y Lai
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - JoAnne McLaurin
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|