1
|
Niederreiter M, Klein J, Schmitz SBM, Werner J, Mayer B. Anti-Cancer Properties of Two Intravenously Administrable Curcumin Formulations as Evaluated in the 3D Patient-Derived Cancer Spheroid Model. Int J Mol Sci 2024; 25:8543. [PMID: 39126111 PMCID: PMC11313667 DOI: 10.3390/ijms25158543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Curcumin (Cur) is a heavily used complementary derived drug from cancer patients. Spheroid samples derived from 82 patients were prepared and treated after 48 h with two Cur formulations (CurA, CurB) in mono- and combination therapy. After 72 h, cell viability and morphology were assessed. The Cur formulations had significant inhibitory effects of -8.47% (p < 0.001), CurA of -10.01% (-50.14-23.11%, p = 0.001) and CurB of -6.30% (-33.50-19.30%, p = 0.006), compared to their solvent controls Polyethylene-glycol, β-Cyclodextrin (CurA) and Kolliphor-ELP, Citrate (CurB). Cur formulations were more effective in prostate cancer (-19.54%) and less effective in gynecological non-breast cancers (0.30%). CurA showed better responses in samples of patients <40 (-13.81%) and >70 years of age (-17.74%). CurB had stronger effects in metastasized and heavily pretreated tumors. Combinations of Cur formulations and standard therapies were superior in 20/47 samples (42.55%) and inferior in 7/47 (14.89%). CurB stimulated chemo-doublets more strongly than monotherapies (-0.53% vs. -6.51%, p = 0.022) and more effectively than CurA (-6.51% vs. 3.33%, p = 0.005). Combinations of Cur formulations with Artesunate, Resveratrol and vitamin C were superior in 35/70 (50.00%) and inferior in 16/70 (22.86%) of samples. Cur formulations were significantly enhanced by combination with Artesunate (p = 0.020). Cur formulations showed a high variance in their anti-cancer effects, suggesting a need for individual testing before administration.
Collapse
Affiliation(s)
- Marlene Niederreiter
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University Munich, Marchioninistraße 15, 81377 Munich, Germany; (M.N.); (J.K.); (S.B.M.S.); (J.W.)
| | - Julia Klein
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University Munich, Marchioninistraße 15, 81377 Munich, Germany; (M.N.); (J.K.); (S.B.M.S.); (J.W.)
| | - Sebastian B. M. Schmitz
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University Munich, Marchioninistraße 15, 81377 Munich, Germany; (M.N.); (J.K.); (S.B.M.S.); (J.W.)
| | - Jens Werner
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University Munich, Marchioninistraße 15, 81377 Munich, Germany; (M.N.); (J.K.); (S.B.M.S.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
| | - Barbara Mayer
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University Munich, Marchioninistraße 15, 81377 Munich, Germany; (M.N.); (J.K.); (S.B.M.S.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
- SpheroTec GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany
| |
Collapse
|
2
|
Jiménez DJ, Javed A, Rubio-Tomás T, Seye-Loum N, Barceló C. Clinical and Preclinical Targeting of Oncogenic Pathways in PDAC: Targeted Therapeutic Approaches for the Deadliest Cancer. Int J Mol Sci 2024; 25:2860. [PMID: 38474109 DOI: 10.3390/ijms25052860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death worldwide. It is commonly diagnosed in advanced stages and therapeutic interventions are typically constrained to systemic chemotherapy, which yields only modest clinical outcomes. In this review, we examine recent developments in targeted therapy tailored to address distinct molecular pathway alteration required for PDAC. Our review delineates the principal signaling pathways and molecular mechanisms implicated in the initiation and progression of PDAC. Subsequently, we provide an overview of prevailing guidelines, ongoing investigations, and prospective research trajectories related to targeted therapeutic interventions, drawing insights from randomized clinical trials and other pertinent studies. This review focus on a comprehensive examination of preclinical and clinical data substantiating the efficacy of these therapeutic modalities, emphasizing the potential of combinatorial regimens and novel therapies to enhance the quality of life for individuals afflicted with PDAC. Lastly, the review delves into the contemporary application and ongoing research endeavors concerning targeted therapy for PDAC. This synthesis serves to bridge the molecular elucidation of PDAC with its clinical implications, the evolution of innovative therapeutic strategies, and the changing landscape of treatment approaches.
Collapse
Affiliation(s)
- Diego J Jiménez
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Aadil Javed
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Teresa Rubio-Tomás
- School of Medicine, University of Crete, 70013 Herakleion, Crete, Greece
| | - Ndioba Seye-Loum
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Carles Barceló
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| |
Collapse
|
3
|
Li J, Hua Q. Regorafenib inhibits growth, survival and angiogenesis in nasopharyngeal carcinoma and is synergistic with Mcl-1 inhibitor. J Pharm Pharmacol 2023; 75:1177-1185. [PMID: 37133348 DOI: 10.1093/jpp/rgad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/15/2023] [Indexed: 05/04/2023]
Abstract
OBJECTIVES Regorafenib is an oral multi-kinase inhibitor approved for various metastatic/advanced cancers, and has been investigated in clinical trials in many other tumour entities. The purpose of this study was to evaluate the therapeutic potential of regorafenib for nasopharyngeal carcinoma (NPC). METHODS Cellular proliferation, survival, apoptosis and colony formation assays were performed and combination index was determined. NPC xenograft tumour models were established. In vitro and In vivo angiogenesis assays were performed. KEY FINDINGS Regorafenib is effective against a panel of NPC cell lines regardless of cellular origin and genetic profiling while sparing normal nasal epithelial cells. The predominant inhibitory effects of regorafenib in NPC are anchorage-dependent and anchorage-independent growth rather than survival. Apart from tumour cells, regorafenib potently inhibits angiogenesis. Mechanistically, regorafenib inhibits multiple oncogenic pathways including Raf/Erk/Mek and PI3K/Akt/mTOR. Regorafenib decreases Bcl-2 but not Mcl-1 level in NPC cells. The in vitro observations are evident in in vivo NPC xenograft mouse model. The combination of Mcl-1 inhibitor with regorafenib is synergistic in inhibiting NPC growth without causing systemic toxicity in mice. CONCLUSIONS Our findings also support further clinical investigation of regorafenib and Mcl-1 inhibitor for NPC treatment.
Collapse
Affiliation(s)
- Jiangping Li
- Department of Otolaryngology & Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
- Department of Otolaryngology & Head and Neck Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, People's Republic of China
| | - Qingquan Hua
- Department of Otolaryngology & Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| |
Collapse
|
4
|
Niederreiter M, Klein J, Arndt K, Werner J, Mayer B. Anti-Cancer Effects of Artesunate in Human 3D Tumor Models of Different Complexity. Int J Mol Sci 2023; 24:ijms24097844. [PMID: 37175551 PMCID: PMC10178545 DOI: 10.3390/ijms24097844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The anti-malaria drug Artesunate (ART) shows strong anti-cancer effects in vitro; however, it shows only marginal treatment results in clinical cancer studies. In this study, ART was tested in preclinical 3D cancer models of increasing complexity using clinically relevant peak plasma concentrations to obtain further information for translation into clinical use. ART reduced cell viability in HCT-116 and HT-29 derived cancer spheroids (p < 0.001). HCT-116 spheroids responded dose-dependently, while HT-29 spheroids were affected more strongly by ART than by cytostatics (p < 0.001). HCT-116 spheroids were chemo-sensitized by ART (p < 0.001). In patient-derived cancer spheroids (PDCS), ART led to inhibition of cell viability in 84.62% of the 39 samples tested, with a mean inhibitory effect of 13.87%. Viability reduction of ART was 2-fold weaker than cytostatic monotherapies (p = 0.028). Meanwhile, tumor-stimulation of up to 16.30% was observed in six (15.38%) PDCS-models. In 15 PDCS samples, ART modulated chemotherapies in combined testing, eight of which showed chemo-stimulation (maximum of 36.90%) and seven chemo-inhibition (up to 16.95%). These results demonstrate that ART's anti-cancer efficacy depends on the complexity of the tumor model used. This emphasizes that cancer treatment with ART should be evaluated before treatment of the individual patient to ensure its benefits and prevent unwanted effects.
Collapse
Affiliation(s)
- Marlene Niederreiter
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Julia Klein
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Kerstin Arndt
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
| | - Barbara Mayer
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
- SpheroTec GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany
| |
Collapse
|
5
|
Hoffmann OI, Regenauer M, Czogalla B, Brambs C, Burges A, Mayer B. Interpatient Heterogeneity in Drug Response and Protein Biomarker Expression of Recurrent Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14092279. [PMID: 35565408 PMCID: PMC9103312 DOI: 10.3390/cancers14092279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022] Open
Abstract
Recurrent ovarian-cancer patients face low 5-year survival rates despite chemotherapy. A variety of guideline-recommended second-line therapies are available, but they frequently result in trial-and-error treatment. Alterations and adjustments are common in the treatment of recurrent ovarian cancer. The drug response of 30 lesions obtained from 22 relapsed ovarian cancer patients to different chemotherapeutic and molecular agents was analyzed with the patient-derived ovarian-cancer spheroid model. The profile of druggable biomarkers was immunohistochemically assessed. The second-line combination therapy of carboplatin with gemcitabine was significantly superior to the combination of carboplatin with PEGylated liposomal doxorubicin (p < 0.0001) or paclitaxel (p = 0.0007). Except for treosulfan, all nonplatinum treatments tested showed a lesser effect on tumor spheroids compared to that of platinum-based therapies. Treosulfan showed the highest efficacy of all nonplatinum agents, with significant advantage over vinorelbine (p < 0.0001) and topotecan (p < 0.0001), the next best agents. The comparative testing of a variety of treatment options in the ovarian-cancer spheroid model resulted in the identification of more effective regimens for 30% of patients compared to guideline-recommended therapies. Recurrent cancers obtained from different patients revealed profound interpatient heterogeneity in the expression pattern of druggable protein biomarkers. In contrast, different lesions obtained from the same patient revealed a similar drug response and biomarker expression profile. Biological heterogeneity observed in recurrent ovarian cancers might explain the strong differences in the clinical drug response of these patients. Preclinical drug testing and biomarker profiling in the ovarian-cancer spheroid model might help in optimizing treatment management for individual patients.
Collapse
Affiliation(s)
| | - Manuel Regenauer
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany;
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany; (B.C.); (A.B.)
| | - Christine Brambs
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University Munich, Ismaninger Straße 22, 81675 Munich, Germany;
| | - Alexander Burges
- Department of Obstetrics and Gynecology, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany; (B.C.); (A.B.)
| | - Barbara Mayer
- SpheroTec GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany;
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany;
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
- Correspondence: ; Tel.: +49-89-4400-76438
| |
Collapse
|
6
|
Nam S, Lee S, Park S, Lee J, Park A, Kim YH, Park T. PATHOME-Drug: a subpathway-based polypharmacology drug-repositioning method. Bioinformatics 2022; 38:444-452. [PMID: 34515762 DOI: 10.1093/bioinformatics/btab566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/10/2021] [Accepted: 09/09/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Drug repositioning reveals novel indications for existing drugs and in particular, diseases with no available drugs. Diverse computational drug repositioning methods have been proposed by measuring either drug-treated gene expression signatures or the proximity of drug targets and disease proteins found in prior networks. However, these methods do not explain which signaling subparts allow potential drugs to be selected, and do not consider polypharmacology, i.e. multiple targets of a known drug, in specific subparts. RESULTS Here, to address the limitations, we developed a subpathway-based polypharmacology drug repositioning method, PATHOME-Drug, based on drug-associated transcriptomes. Specifically, this tool locates subparts of signaling cascading related to phenotype changes (e.g. disease status changes), and identifies existing approved drugs such that their multiple targets are enriched in the subparts. We show that our method demonstrated better performance for detecting signaling context and specific drugs/compounds, compared to WebGestalt and clusterProfiler, for both real biological and simulated datasets. We believe that our tool can successfully address the current shortage of targeted therapy agents. AVAILABILITY AND IMPLEMENTATION The web-service is available at http://statgen.snu.ac.kr/software/pathome. The source codes and data are available at https://github.com/labnams/pathome-drug. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Seungyoon Nam
- Department of Genome Medicine and Science, College of Medicine, Gachon University, 21565 Incheon, Korea.,Department of Life Sciences, Gachon University, 13120 Seongnam, Korea.,Gachon Institute of Genomic Medicine and Science, Gachon University Gil Medical Center, 21565 Incheon, Korea.,Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, 21999 Incheon, Korea
| | - Sungyoung Lee
- Department of Genomic Medicine, Seoul National University Hospital, 03080 Seoul, Korea.,Center for Precision Medicine, Seoul National University Hospital, 03080 Seoul, Korea
| | - Sungjin Park
- Department of Genome Medicine and Science, College of Medicine, Gachon University, 21565 Incheon, Korea.,Gachon Institute of Genomic Medicine and Science, Gachon University Gil Medical Center, 21565 Incheon, Korea
| | - Jinhyuk Lee
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, 34141 Daejeon, Korea.,Department of Bioinformatics, University of Sciences and Technology, 34113 Daejeon, Korea
| | - Aron Park
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, 21999 Incheon, Korea
| | - Yon Hui Kim
- Department of Biomedical Science, Hanyang University, 04763 Seoul, Korea
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, 08826 Seoul, Korea.,Department of Statistics, Seoul National University, 08826 Seoul, Korea
| |
Collapse
|
7
|
Zhou HM, Zhang JG, Zhang X, Li Q. Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. Signal Transduct Target Ther 2021; 6:62. [PMID: 33589595 PMCID: PMC7884707 DOI: 10.1038/s41392-020-00430-1] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/26/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) show a self-renewal capacity and differentiation potential that contribute to tumor progression and therapy resistance. However, the underlying processes are still unclear. Elucidation of the key hallmarks and resistance mechanisms of CSCs may help improve patient outcomes and reduce relapse by altering therapeutic regimens. Here, we reviewed the identification of CSCs, the intrinsic and extrinsic mechanisms of therapy resistance in CSCs, the signaling pathways of CSCs that mediate treatment failure, and potential CSC-targeting agents in various tumors from the clinical perspective. Targeting the mechanisms and pathways described here might contribute to further drug discovery and therapy.
Collapse
Affiliation(s)
- He-Ming Zhou
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Ji-Gang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Xue Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China.
| |
Collapse
|
8
|
Bozzarelli S, Rimassa L, Giordano L, Sala S, Tronconi MC, Pressiani T, Smiroldo V, Prete MG, Spaggiari P, Personeni N, Santoro A. Regorafenib in patients with refractory metastatic pancreatic cancer: a Phase II study (RESOUND). Future Oncol 2019; 15:4009-4017. [DOI: 10.2217/fon-2019-0480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Regorafenib may be active in different cancer types. This Phase II trial included patients with various refractory cancer types treated with regorafenib. Here, we report the results of the pancreatic adenocarcinoma cohort. Methods: The primary end point was progression-free survival (PFS) rate at 8 weeks; further investigation of regorafenib would be warranted with a PFS rate ≥50%. Results: A total of 20 patients were enrolled. The best response was stable disease in four patients (20%). The 8-week PFS rate was 25% with a median PFS of 1.7 months (95% CI: 1.5–2.0). A total of 13 patients (65%) experienced grade 3–4 treatment-related adverse events. Conclusion: The study did not meet its primary end point. Further investigation of regorafenib monotherapy in this setting is not recommended. Clinical Trial Registration: NCT02307500
Collapse
Affiliation(s)
- Silvia Bozzarelli
- Medical Oncology & Hematology Unit, Humanitas Cancer Center, Humanitas Clinical & Research Center, IRCCS, Rozzano, Milan, 20089, Italy
| | - Lorenza Rimassa
- Medical Oncology & Hematology Unit, Humanitas Cancer Center, Humanitas Clinical & Research Center, IRCCS, Rozzano, Milan, 20089, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, 20090, Italy
| | - Laura Giordano
- Biostatistics Unit, Humanitas Cancer Center, Humanitas Clinical & Research Center, IRCCS, Rozzano, Milan, 20089, Italy
| | - Simona Sala
- Medical Oncology & Hematology Unit, Humanitas Cancer Center, Humanitas Clinical & Research Center, IRCCS, Rozzano, Milan, 20089, Italy
| | - Maria Chiara Tronconi
- Medical Oncology & Hematology Unit, Humanitas Cancer Center, Humanitas Clinical & Research Center, IRCCS, Rozzano, Milan, 20089, Italy
| | - Tiziana Pressiani
- Medical Oncology & Hematology Unit, Humanitas Cancer Center, Humanitas Clinical & Research Center, IRCCS, Rozzano, Milan, 20089, Italy
| | - Valeria Smiroldo
- Medical Oncology & Hematology Unit, Humanitas Cancer Center, Humanitas Clinical & Research Center, IRCCS, Rozzano, Milan, 20089, Italy
| | - Maria G Prete
- Medical Oncology & Hematology Unit, Humanitas Cancer Center, Humanitas Clinical & Research Center, IRCCS, Rozzano, Milan, 20089, Italy
| | - Paola Spaggiari
- Anatomic Pathology Unit, Humanitas Clinical & Research Center, IRCCS, Rozzano, Milan, 20089, Italy
| | - Nicola Personeni
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, 20090, Italy
| | - Armando Santoro
- Medical Oncology & Hematology Unit, Humanitas Cancer Center, Humanitas Clinical & Research Center, IRCCS, Rozzano, Milan, 20089, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, 20090, Italy
| |
Collapse
|
9
|
Wang H, Zhong W, Zhao J, Zhang H, Zhang Q, Liang Y, Chen S, Liu H, Zong S, Tian Y, Zhou H, Sun T, Liu Y, Yang C. Oleanolic Acid Inhibits Epithelial-Mesenchymal Transition of Hepatocellular Carcinoma by Promoting iNOS Dimerization. Mol Cancer Ther 2019; 18:62-74. [PMID: 30297361 DOI: 10.1158/1535-7163.mct-18-0448] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/01/2018] [Accepted: 10/03/2018] [Indexed: 11/16/2022]
Abstract
Oleanolic acid exhibits extensive pharmacologic activities and takes significant antitumor effects. Its pharmacologic mechanism, however, still remained to be further clarified. In this study, we demonstrated that oleanolic acid attenuated the migration and invasion abilities, resulting in the suppression of the epithelial-mesenchymal transition (EMT) process in liver cancer cells, and inhibited the tumor growth of the peritoneal lymphocytes-bearing mice. We further proved that inducible nitric oxide synthase (iNOS) may be the potential target of oleanolic acid. We confirmed that oleanolic acid could promote the dimerization of iNOS, activating it, and subsequently increasing the production of nitric oxide. Further experiments indicated that oleanolic acid promoted the nitration of specific proteins and consequently suppressed their EMT-related biological functions. Furthermore, it has been confirmed that oleanolic acid enhanced the antitumor effects of regorafenib in liver cancer treatment. These results deepened our understanding of the pharmacologic mechanism of the antitumor effect oleanolic acid, and the importance of nitric oxide synthetase as a therapeutic target for liver cancer treatment.
Collapse
Affiliation(s)
- Hongzhi Wang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Weilong Zhong
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Jianmin Zhao
- Department of Pathology, Hospital of Shun Yi District, Beijing, China
| | - Heng Zhang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Qiang Zhang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yuan Liang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shuang Chen
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Huijuan Liu
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shumin Zong
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yixuan Tian
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Honggang Zhou
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Tao Sun
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yanrong Liu
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
- Drug Safety Evaluation Center, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Cheng Yang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| |
Collapse
|