1
|
Qi P, Qi B, Gu C, Huo S, Dang X, Liu Y, Zhao B. Construction of an immune-related prognostic model and potential drugs screening for esophageal cancer based on bioinformatics analyses and network pharmacology. Immun Inflamm Dis 2024; 12:e1266. [PMID: 38804848 PMCID: PMC11131936 DOI: 10.1002/iid3.1266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Esophageal cancer (ESCA) is a highly invasive malignant tumor with poor prognosis. This study aimed to discover a generalized and high-sensitivity immune prognostic signature that could stratify ESCA patients and predict their overall survival, and to discover potential therapeutic drugs by the connectivity map. METHODS The key gene modules significantly related to clinical traits (survival time and state) of ESCA patients were selected by weighted gene coexpression network analysis (WCGNA), then the univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses were used to construct a 15-immune-related gene prognostic signature. RESULTS The immune-related risk model was related to clinical and pathologic factors and remained an effective independent prognostic factor. Enrichment analyses revealed that the differentially expressed genes (DEGs) of the high- and low-risk groups were associated with tumor cell proliferation and immune mechanisms. Based on the gathered data, a small molecule drug named perphenazine (PPZ) was elected. The pharmacological analysis indicates that PPZ could help in adjuvant therapy of ESCA through regulation of metabolic process and cellular proliferation, enhancement of immunologic functions, and inhibition of inflammatory reactions. Furthermore, molecular docking was performed to explore and verify the PPZ-core target interactions. CONCLUSION We succeed in structuring the immune-related prognostic model, which could be used to distinguish and predict patients' survival outcome, and screening a small molecule drug named PPZ. Prospective studies also are needed to further validate its analytical accuracy for estimating prognoses and confirm the potential use of PPZ for treating ESCA.
Collapse
Affiliation(s)
- Pengju Qi
- Department of Thoracic SurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiHenanChina
- Esophageal Cancer Institute of Xinxiang Medical UniversityWeihuiHenanChina
- Life Science Research CenterThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiHenanChina
| | - Bo Qi
- Department of Thoracic SurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiHenanChina
- Esophageal Cancer Institute of Xinxiang Medical UniversityWeihuiHenanChina
| | - Chengwei Gu
- Department of Thoracic SurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiHenanChina
- Esophageal Cancer Institute of Xinxiang Medical UniversityWeihuiHenanChina
| | - Shuhua Huo
- Department of Thoracic SurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiHenanChina
- Esophageal Cancer Institute of Xinxiang Medical UniversityWeihuiHenanChina
| | - Xinchen Dang
- Department of Thoracic SurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiHenanChina
- Esophageal Cancer Institute of Xinxiang Medical UniversityWeihuiHenanChina
| | - Yuzhen Liu
- Department of Thoracic SurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiHenanChina
- Esophageal Cancer Institute of Xinxiang Medical UniversityWeihuiHenanChina
- Life Science Research CenterThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiHenanChina
| | - Baosheng Zhao
- Department of Thoracic SurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiHenanChina
- Esophageal Cancer Institute of Xinxiang Medical UniversityWeihuiHenanChina
| |
Collapse
|
2
|
Brown JS. Treatment of cancer with antipsychotic medications: Pushing the boundaries of schizophrenia and cancer. Neurosci Biobehav Rev 2022; 141:104809. [PMID: 35970416 DOI: 10.1016/j.neubiorev.2022.104809] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Abstract
Over a century ago, the phenothiazine dye, methylene blue, was discovered to have both antipsychotic and anti-cancer effects. In the 20th-century, the first phenothiazine antipsychotic, chlorpromazine, was found to inhibit cancer. During the years of elucidating the pharmacology of the phenothiazines, reserpine, an antipsychotic with a long historical background, was likewise discovered to have anti-cancer properties. Research on the effects of antipsychotics on cancer continued slowly until the 21st century when efforts to repurpose antipsychotics for cancer treatment accelerated. This review examines the history of these developments, and identifies which antipsychotics might treat cancer, and which cancers might be treated by antipsychotics. The review also describes the molecular mechanisms through which antipsychotics may inhibit cancer. Although the overlap of molecular pathways between schizophrenia and cancer have been known or suspected for many years, no comprehensive review of the subject has appeared in the psychiatric literature to assess the significance of these similarities. This review fills that gap and discusses what, if any, significance the similarities have regarding the etiology of schizophrenia.
Collapse
|
3
|
Otręba M, Stojko J, Kabała‑Dzik A, Rzepecka‑Stojko A. Perphenazine and prochlorperazine decrease glioblastoma U‑87 MG cell migration and invasion: Analysis of the ABCB1 and ABCG2 transporters, E‑cadherin, α‑tubulin and integrins (α3, α5, and β1) levels. Oncol Lett 2022; 23:182. [PMID: 35527777 PMCID: PMC9073583 DOI: 10.3892/ol.2022.13302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma multiforme is the most frequent type of malignant brain tumor, and is one of the most lethal and untreatable human tumors with a very poor survival rate. Therefore, novel and effective strategies of treatment are required. Integrins play a crucial role in the regulation of cellular adhesion and invasion. Integrins and α-tubulin are very important in cell migration, whereas E-cadherin plays a main role in tumor metastasis. Notably, drugs serve a crucial role in glioblastoma treatment; however, they have to penetrate the blood-brain barrier (BBB) to be effective. ABC transporters, including ATP binding cassette subfamily B member 1 (ABCB1) and ATP binding cassette subfamily G member 2 (ABCG2), are localized in the brain endothelial capillaries of the BBB, have a crucial role in the development of multidrug resistance and are modulated by phenothiazine derivatives. The impact of perphenazine and prochlorperazine on the motility of human Uppsala 87 malignant glioma (U87-MG) cells was evaluated using a wound-healing assay, cellular migration and invasion were assessed by Transwell assay, and the protein expression levels of ABCB1, ABCG2, E-cadherin, α-tubulin and integrins were determined by western blotting. The present study explored the effects of perphenazine and prochlorperazine on the levels of ABCB1, ABCG2, E-cadherin, α-tubulin and integrins (α3, α5, and β1), as well as on the migratory and invasive ability of U87-MG cells. The results suggested that perphenazine and prochlorperazine may modulate the expression levels of multidrug resistance proteins (they decreased ABCB1 and increased ABCG2 expression), E-cadherin, α-tubulin and integrins, and could impair the migration and invasion of U-87 MG cells. In conclusion, the decrease in migratory and invasive ability following treatment with phenothiazine derivatives due to the increase in ABCG2 and E-cadherin expression, and decrease in α-tubulin and integrins expression, may suggest that research on perphenazine and prochlorperazine in the treatment of glioblastoma is worth continuing.
Collapse
Affiliation(s)
- Michał Otręba
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41‑200 Sosnowiec, Poland
| | - Jerzy Stojko
- Department of Toxicology and Bioanalysis, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41‑200 Sosnowiec, Poland
| | - Agata Kabała‑Dzik
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41‑200 Sosnowiec, Poland
| | - Anna Rzepecka‑Stojko
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41‑200 Sosnowiec, Poland
| |
Collapse
|
4
|
Lin WZ, Liu YC, Lee MC, Tang CT, Wu GJ, Chang YT, Chu CM, Shiau CY. From GWAS to drug screening: repurposing antipsychotics for glioblastoma. J Transl Med 2022; 20:70. [PMID: 35120529 PMCID: PMC8815269 DOI: 10.1186/s12967-021-03209-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glioblastoma is currently an incurable cancer. Genome-wide association studies have demonstrated that 41 genetic variants are associated with glioblastoma and may provide an option for drug development. METHODS We investigated FDA-approved antipsychotics for their potential treatment of glioblastoma based on genome-wide association studies data using a 'pathway/gene-set analysis' approach. RESULTS The in-silico screening led to the discovery of 12 candidate drugs. DepMap portal revealed that 42 glioma cell lines show higher sensitivities to 12 candidate drugs than to Temozolomide, the current standard treatment for glioblastoma. CONCLUSION In particular, cell lines showed significantly higher sensitivities to Norcyclobenzaprine and Protriptyline which were predicted to bind targets to disrupt a certain molecular function such as DNA repair, response to hormones, or DNA-templated transcription, and may lead to an effect on survival-related pathways including cell cycle arrest, response to ER stress, glucose transport, and regulation of autophagy. However, it is recommended that their mechanism of action and efficacy are further determined.
Collapse
Affiliation(s)
- Wei-Zhi Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
| | - Yen-Chun Liu
- School of Medicine, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
| | - Meng-Chang Lee
- School of Public Health, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
| | - Chi-Tun Tang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Neurological Surgery, Tri-Service General Hospital, No. 325, Sec. 2, Chenggong Rd., Neihu District, Taipei, 11490 Taiwan
| | - Gwo-Jang Wu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, No. 325, Sec. 2, Chenggong Rd., Neihu District, Taipei, 11490 Taiwan
| | - Yu-Tien Chang
- School of Public Health, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
| | - Chi-Ming Chu
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
- School of Public Health, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
| | - Chia-Yang Shiau
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
- Fidelity Regulation Therapeutics Inc., 161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
| |
Collapse
|
5
|
Sad K, Parashar P, Tripathi P, Hungyo H, Sistla R, Soni R, Tandon V. Prochlorperazine enhances radiosensitivity of non-small cell lung carcinoma by stabilizing GDP-bound mutant KRAS conformation. Free Radic Biol Med 2021; 177:299-312. [PMID: 34742922 DOI: 10.1016/j.freeradbiomed.2021.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/21/2021] [Accepted: 11/01/2021] [Indexed: 12/25/2022]
Abstract
Lung cancer is considered as leading cancer with the highest mortality. The KRAS-oncogenic mutations are dominant in lung carcinoma leading to poor prognosis and radioresistance, which is a major impediment to radiotherapy. Thus, KRAS mutant inhibitors that synergistically sensitize tumours to radiation are urgently needed. In pursuance of the search for a novel radiosensitizer, high-throughput screening of FDA-approved drugs was performed at active site of K-Ras. Prochlorperazine (PCZ), an antipsychotic drug, showed good binding affinity with KRAS-mutant proteins. PCZ binds to the GTP-binding pocket of KRAS-mutant protein and inhibits its constitutive activation by stabilizing the GDP-bound conformation of K-Ras mutants by 9 kcal/mol compared to WT. PCZ alongwith radiation decreased the clonogenic survival of KRAS-mutant NSCLC but not KRAS-WT cells. The combination treatment activates p-ATM, p53, and p21 proteins, leading to cell cycle arrest. PCZ with increasing radiation caused a linear increase in γH2AX foci, suggesting enhanced DSBs-associated apoptosis in radioresistant A549 cells. Pharmacokinetics study showed Cmax = 526 ng/ml at 30min, 4.6h half-life in plasma, and highest accumulation in tumours. PCZ and 10Gy irradiation synergistically radiosensitize mice xenografts via downregulation of Ras/Raf/MEK/ERK pathway. Our efforts have led to the discovery of PCZ as a lead compound. In preclinical analyses, treatment with PCZ alone and in combination with radiation led to regression of KRAS-G12S tumours.
Collapse
Affiliation(s)
- Kirti Sad
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Palak Parashar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pragya Tripathi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Hungharla Hungyo
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ramesh Sistla
- Think Molecular Technologies Pvt. Ltd., Bengaluru, Karnataka, 560102, India
| | - Ravi Soni
- Institute of Nuclear Medicine & Allied Sciences, New Delhi, 110054, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
6
|
Otręba M, Sjölander JJ, Grøtli M, Sunnerhagen P. A Small Molecule Targeting Human MEK1/2 Enhances ERK and p38 Phosphorylation under Oxidative Stress or with Phenothiazines. Life (Basel) 2021; 11:297. [PMID: 33807495 PMCID: PMC8066054 DOI: 10.3390/life11040297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Small molecules are routinely used to inhibit protein kinases, but modulators capable of enhancing kinase activity are rare. We have previously shown that the small molecule INR119, designed as an inhibitor of MEK1/2, will enhance the activity of its fission yeast homologue, Wis1, under oxidative stress. To investigate the generality of these findings, we now study the effect of INR119 in human cells under similar conditions. Cells of the established breast cancer line MCF-7 were exposed to H2O2 or phenothiazines, alone or combined with INR119. In line with the previous results in fission yeast, the phosphorylation of the MAPKs ERK and p38 increased substantially more with the combination treatment than by H2O2 or phenothiazines, whereas INR119 alone did not affect phosphorylation. We also measured the mRNA levels of TP53 and BAX, known to be affected by ERK and p38 activity. Similarly, the combination of INR119 and phenothiazines increased both mRNAs to higher levels than for phenothiazines alone. In conclusion, the mechanism of action of INR119 on its target protein kinase may be conserved between yeast and humans.
Collapse
Affiliation(s)
- Michał Otręba
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jednosci 8, 41-200 Sosnowiec, Poland
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-405 30 Gothenburg, Sweden; (J.J.S.); (M.G.)
| | - Johanna Johansson Sjölander
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-405 30 Gothenburg, Sweden; (J.J.S.); (M.G.)
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-405 30 Gothenburg, Sweden; (J.J.S.); (M.G.)
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-405 30 Gothenburg, Sweden; (J.J.S.); (M.G.)
| |
Collapse
|
7
|
The role of UVA radiation in ketoprofen-mediated BRAF-mutant amelanotic melanoma cells death - A study at the cellular and molecular level. Toxicol In Vitro 2021; 72:105108. [PMID: 33545343 DOI: 10.1016/j.tiv.2021.105108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/08/2021] [Accepted: 02/01/2021] [Indexed: 12/27/2022]
Abstract
Malignant melanoma is the cause of 80% of deaths in skin cancer patients. Treatment of melanoma in the 4th stage of clinical advancement, in which inoperable metastasis occur, does not provide sufficient effects. Ketoprofen has phototoxic properties and it can be used as a new treatment option for skin cancers as a part of photochemotherapy. The present study was designed to investigate whether ketoprofen in combination with UVA induces cytotoxic, anti-proliferative and pro-apoptotic effects on melanoma cells. It was stated that co-treatment with 1.0 mM ketoprofen and UVA irradiation disturbed homeostasis of C32 melanoma cells by lowering its vitality (decrease of GSH level). Contrary to C32 cells, melanocytes showed low sensitivity to ketoprofen and UVA radiation, pointing selectivity in the mode of action towards melanoma cells. Co-treatment with ketoprofen and UVA irradiation has cytotoxic and anti-proliferative and pro-apoptotic effect on C32. The co-treatment triggered the DNA fragmentation and changed the cell cycle in C32 cells. In conclusion, it could be stated that local application of ketoprofen in combination with UVA irradiation may be used to support the treatment of melanoma and creates the possibility of reducing the risk of cancer recurrence and metastasis.
Collapse
|
8
|
Otręba M, Kośmider L. In vitro anticancer activity of fluphenazine, perphenazine and prochlorperazine. A review. J Appl Toxicol 2020; 41:82-94. [PMID: 32852120 DOI: 10.1002/jat.4046] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 01/06/2023]
Abstract
Drug repositioning is an approach that could accelerate the clinical use of compounds in different diseases. The goal is to take advantage of the fact that approved drugs have been tested on humans and detailed information is available on their pharmacology, toxicity and formulation. It can significantly reduce the costs and time needed to implement necessary therapies on the market. In recent years, phenothiazines are being tested for cancer, viral, bacterial, fungal and other diseases. Most research focuses on chlorpromazine as a model drug in this class, but other drugs such as fluphenazine, perphenazine and prochlorperazine have been proven to inhibit the viability of different cancer cell lines. In this study, we performed an extensive literature search to find and summarize all papers on the chosen phenothiazines and their potential in treating different types of cancerin vitro for further animal/clinical trials. Fluphenazine, perphenazine and prochlorperazine possess anticancer activity towards different types of human cancer. The antitumor activity is mainly mediated by an effect of the drugs on the cell cycle, proliferation or apoptosis. Possible molecular targets of phenothiazine derivatives are the drug's efflux pumps (ABCB1 and P-glycoprotein) and two parallel pathways (AKT and Wnt) regulated by the D2 receptor antagonists. The drugs have the potential to reduce the viability of human cancer cell lines, fragment the DNA, stimulate apoptosis, inhibit cell migration and invasiveness as well as impair the production of reactive oxygen species. In addition, due to the sedative and antiemetic properties antipsychotics can be used as an adjuvant for the treatment of chemotherapy side effects.
Collapse
Affiliation(s)
- Michał Otręba
- Department of Drug Technology, Medical University of Silesia, Katowice Faculty of Pharmaceutical Sciences in Sosnowiec, Sosnowiec, Poland
| | - Leon Kośmider
- Department of General and Inorganic Chemistry, Medical University of Silesia, Katowice Faculty of Pharmaceutical Sciences in Sosnowiec, Sosnowiec, Poland
| |
Collapse
|
9
|
Regulation of Wnt Signaling through Ubiquitination and Deubiquitination in Cancers. Int J Mol Sci 2020; 21:ijms21113904. [PMID: 32486158 PMCID: PMC7311976 DOI: 10.3390/ijms21113904] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
The Wnt signaling pathway plays important roles in embryonic development, homeostatic processes, cell differentiation, cell polarity, cell proliferation, and cell migration via the β-catenin binding of Wnt target genes. Dysregulation of Wnt signaling is associated with various diseases such as cancer, aging, Alzheimer’s disease, metabolic disease, and pigmentation disorders. Numerous studies entailing the Wnt signaling pathway have been conducted for various cancers. Diverse signaling factors mediate the up- or down-regulation of Wnt signaling through post-translational modifications (PTMs), and aberrant regulation is associated with several different malignancies in humans. Of the numerous PTMs involved, most Wnt signaling factors are regulated by ubiquitination and deubiquitination. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and usually induces proteasomal degradation of Wnt signaling factors such as β-catenin, Axin, GSK3, and Dvl. Conversely, deubiquitination induced by the deubiquitinating enzymes (DUBs) detaches the ubiquitins and modulates the stability of signaling factors. In this review, we discuss the effects of ubiquitination and deubiquitination on the Wnt signaling pathway, and the inhibitors of DUBs that can be applied for cancer therapeutic strategies.
Collapse
|