1
|
Miao S, Yang L, Xu T, Liu Z, Zhang Y, Ding L, Ding W, Ao X, Wang J. A novel circPIK3C2A/miR‐31‐5p/TFRC axis drives ferroptosis and accelerates myocardial injury. MedComm (Beijing) 2024; 5:e571. [PMID: 38840772 PMCID: PMC11151151 DOI: 10.1002/mco2.571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/08/2024] [Accepted: 03/16/2024] [Indexed: 06/07/2024] Open
Abstract
Iron overload is common in cardiovascular disease, it is also the factor that drives ferroptosis. Noncoding RNAs play an important role in heart disease; however, their regulatory role in iron overload-mediated ferroptosis remains much unknown. In our study, the iron overload model in mice was constructed through a high-iron diet, and ammonium iron citrate treatment was used to mimic iron overload in vitro. We found iron overload induced ferroptosis in cardiomyocytes, which was dependent on the high expression of transferrin receptor (TFRC). MiR-31-5p was downregulated during iron overload; it inhibited cardiomyocyte ferroptosis by targeting TFRC. CircPIK3C2A, a highly expressed circRNA in the heart, was upregulated when iron was overloaded. CircPIK3C2A enhanced the expression of TFRC by sponging miR-31-5p and promoted ferroptosis during iron overload. Our results reveal a novel mechanistic insight into noncoding RNA-based ferroptosis and identify the circPIK3C2A/miR-31-5p/TFRC axis as a promising therapeutic target for myocardial damage.
Collapse
Affiliation(s)
- Shuo Miao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Lanting Yang
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Tao Xu
- Central LaboratoryQingdao Agricultural UniversityQingdaoChina
| | - Zhantao Liu
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Yixiao Zhang
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Lin Ding
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Wei Ding
- Department of Comprehensive Internal MedicineAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xiang Ao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Jianxun Wang
- School of Basic MedicineQingdao UniversityQingdaoChina
| |
Collapse
|
2
|
Chen Z, Yu F, Zhu B, Li Q, Yu Y, Zong F, Liu W, Zhang M, Wu S. Integrated analysis of competitive endogenous RNA networks in elder patients with non-small cell lung cancer. Medicine (Baltimore) 2023; 102:e33192. [PMID: 36897674 PMCID: PMC9997791 DOI: 10.1097/md.0000000000033192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Lung cancer is one of the most prevalent cancers and the leading cause of cancer-related deaths worldwide; non-small cell lung cancer (NSCLC) comprises approximately 80% of all lung cancer cases. This study aimed to construct a competing endogenous RNA (ceRNA) network and identify prognostic signatures in elderly patients with NSCLC. METHODS We extracted data from elderly patients with NSCLC from The Cancer Genome Atlas and identified differentially expressed (DE) messenger RNAs (mRNAs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to investigate the functions of DEmRNAs. The interactions between RNAs were predicted using starBase, TargetScan, miRTarBase, and miRanda. Cytoscape version 3.0 was used to construct and visualize the lncRNA-miRNA-mRNA ceRNA network. The association between the expression levels of DERNAs in the constructed ceRNA network and overall survival was determined using the survival package in R software. Furthermore, another Gene Expression Omnibus cohort was studied to externally validate the ceRNA network. RESULTS In total, 2865 DEmRNAs, 62 DEmiRNAs, and 131 DElncRNAs were identified. Dysregulated mRNAs are enriched in cancer-related processes and pathways. A ceRNA network was constructed using 38 miRNAs, 61 lncRNAs, and 164 mRNAs. Of these, 3 lncRNAs, 3 miRNAs, and 16 mRNAs were closely related to overall survival. The MIR99AHG-hsa-miR-31-5p-PRKCE axis has been identified as a potential ceRNA network involved in the development of NSCLC in elderly individuals. External validation of the MIR99AHG-hsa-miR-31-5p-PRKCE axis in the GSE19804 cohort showed that PRKCE was downregulated and that MIR99AHG was upregulated in the tumor tissues of elderly patients with NSCLC compared with normal lung tissues. CONCLUSIONS This study provides novel insights into the lncRNA-miRNA-mRNA ceRNA network and reveals potential biomarkers for the diagnosis and prognosis of elderly patients with NSCLC.
Collapse
Affiliation(s)
- Zi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fei Yu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Bei Zhu
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qin Li
- Yale Cancer Center, Yale School of Medicine, New Haven, CT
| | - Yue Yu
- Departments of Thoracic Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Feng Zong
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wen Liu
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Mingjiong Zhang
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shuangshuang Wu
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
3
|
Chen L, Pan L, Zhang Y, Chen Y, Su Y, Luo Y, Wu Z, Zheng W, Cai S, Liu X, Wu X. Qishen Yiqi dropping pills improve cardiomyocyte hypertrophy via the lncRNA TINCR/miR-193b-3p/RORA axis. J Thorac Dis 2022; 14:4372-4383. [PMID: 36524095 PMCID: PMC9745534 DOI: 10.21037/jtd-22-1322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/13/2022] [Indexed: 10/18/2023]
Abstract
BACKGROUND This study was designed to explore the therapeutic effect and mechanism of action of Qishen Yiqi dropping pills (QYDP) in chronic heart failure (CHF) via a long non-coding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA) axis. Here, the mechanism of action of the lncRNA terminal differentiation-induced non-coding RNA (TINCR), miR-193b-3p, and RAR-related orphan receptor A (RORA) mRNA was analyzed in an angiotensin (Ang) II-induced H9C2 cardiomyocyte hypertrophy model treated with QYDP. METHODS Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to analyze the gene expression changes of lncRNA, miRNA, and mRNA in H9C2 induced by QYDP on Ang II. The Gene Expression Omnibus (GEO) was used to analyze differentially expressed genes (DEGs) potentially affecting CHF progression. Cell Counting Kit-8 (CCK-8) was used to analyze the effect of QYDP on the proliferation of H9C2, RNA pull-down was used to analyze the binding of lncRNA and miRNA, and dual luciferase was used to analyze the targeting of miRNA and lncRNA or mRNA. RESULTS Ang II induced TINCR and RORA downregulation, miR-193b-3p upregulation, and hypertrophy in the H9C2 cardiomyocytes, which were alleviated by QYDP. In contrast, TINCR inhibition reversed the effects of QYDP by increasing miR-193b-3p expression and downregulating RORA expression. According to subsequent double luciferase and RNA pull-down experiments, TINCR adsorbed miR-193b-3p by acting as a competitive endogenous RNA sponge and miR-193b-3p directly targeted RORA. Lastly, we showed that the Ang-II-induced inhibition of TINCR and RORA expression and promotion of cardiac hypertrophy were both reversed by a TINCR overexpression plasmid (ov-TINCR), whereas the effects of ov-TINCR were suppressed by a miR-193b-3p mimic. CONCLUSIONS Administration of QYDP improves Ang II-induced H9C2 cardiomyocyte hypertrophy and increase cell proliferation rate through the TINCR/miR-193b-3p/RORA axis.
Collapse
Affiliation(s)
- Lei Chen
- Department of Cardiology, the Second Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Lihua Pan
- Department of Cardiology, the Second Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Yuansheng Zhang
- Department of Cardiology, the Second Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Yuewu Chen
- Department of Cardiology, the Second Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Yangshen Su
- Department of Cardiology, the Second Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Ying Luo
- Department of Cardiology, the Second Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Zengfan Wu
- Department of Cardiology, the Second Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Wanling Zheng
- Department of Cardiology, the Second Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Shikang Cai
- Department of Cardiology, the Second Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Xianxia Liu
- Department of Cardiology, the Second Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Xiaoyan Wu
- Department of Cardiology, the Second Affiliated Hospital of Hainan Medical College, Haikou, China
| |
Collapse
|
4
|
Moskalik A, Ratajska A, Majchrzak B, Jankowska-Steifer E, Bartkowiak K, Bartkowiak M, Niderla-Bielińska J. miR-31-5p-Modified RAW 264.7 Macrophages Affect Profibrotic Phenotype of Lymphatic Endothelial Cells In Vitro. Int J Mol Sci 2022; 23:13193. [PMID: 36361979 PMCID: PMC9657882 DOI: 10.3390/ijms232113193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/23/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Cardiac lymphatic vessel (LyV) remodeling as a contributor to heart failure has not been extensively evaluated in metabolic syndrome (MetS). Our studies have shown structural changes in cardiac LyV in MetS that contribute to the development of edema and lead to myocardial fibrosis. Tissue macrophages may affect LyV via secretion of various substances, including noncoding RNAs. The aim of the study was to evaluate the influence of macrophages modified by miR-31-5p, a molecule that regulates fibrosis and lymphangiogenesis, on lymphatic endothelial cells (LECs) in vitro. The experiments were carried out on the RAW 264.7 macrophage cell line and primary dermal lymphatic endothelial cells. RAW 264.7 macrophages were transfected with miR-31-5p and supernatant from this culture was used for LEC stimulation. mRNA expression levels for genes associated with lymphangiogenesis and fibrosis were measured with qRT-PCR. Selected results were confirmed with ELISA or Western blotting. miR-31-5p-modified RAW 264.7 macrophages secreted increased amounts of VEGF-C and TGF-β and a decreased amount of IGF-1. The supernatant from miR-31-5p-modified RAW 264.7 downregulated the mRNA expression for genes regulating endothelial-to-mesenchymal transition (EndoMT) and fibrosis in LECs. Our results suggest that macrophages under the influence of miR-31-5p show the potential to inhibit LEC-dependent fibrosis. However, more studies are needed to confirm this effect in vivo.
Collapse
Affiliation(s)
- Aneta Moskalik
- Postgraduate School of Molecular Medicine, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Anna Ratajska
- Department of Pathology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Barbara Majchrzak
- Department of Pathology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Ewa Jankowska-Steifer
- Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Krzysztof Bartkowiak
- Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Mateusz Bartkowiak
- Department of History of Medicine, Medical University of Warsaw, 00-581 Warsaw, Poland
| | - Justyna Niderla-Bielińska
- Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
5
|
Liu C, Wu W, Chang W, Wu R, Sun X, Wu H, Liu Z. miR‑31‑5p‑ DMD axis as a novel biomarker for predicting the development and prognosis of sporadic early‑onset colorectal cancer. Oncol Lett 2022; 23:157. [PMID: 35399328 PMCID: PMC8987937 DOI: 10.3892/ol.2022.13277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
The incidence of colorectal cancer (CRC) is increasing in young adults, but knowledge regarding the molecular features of sporadic early-onset colorectal cancer (SEOCRC) is limited. The objective of the present study was to investigate potential key tumorigenesis-associated genes and their regulatory microRNAs (miRNAs) in SEOCRC. Using miRNA and mRNA expression screening of SEOCRC and sporadic late-onset colorectal cancer (SLOCRC) by next generation sequencing (NGS) and bioinformatics, the SEOCRC-associated miRNAome and transcriptome were analyzed. In SEOCRC miRNA and mRNA expression profiles, the tumorigenesis-associated genes and their regulatory miRNAs were analyzed according to the miRTarBase database, and specific miRNA-mRNA pairs were selected as the candidate biomarkers in SEOCRC, which were further verified in another cohort of SEOCRC and SLOCRC patients' colon cancer and paracancerous tissues using reverse transcription-quantitative PCR and immunohistochemistry. Moreover, the clinical relevance of these paired signatures to clinicopathological features was determined in 80 patients with SEOCRC. The expression of dystrophin (DMD) was downregulated and that of miR-31-5p was upregulated in SEOCRC tissue compared with adjacent peritumoral tissue. While DMD and miR-31-5p were not differentially expressed in SLOCRC tissues compared with that in adjacent peritumoral tissues. The miR-31-5p-DMD axis was identified as the key regulatory axis specific to SEOCRC, and DMD expression was closely associated with TNM stage and lymph node metastasis. Importantly, Kaplan-Meier analysis revealed that patients with low DMD expression had significantly poorer overall survival, cancer specific survival and recurrence free survival compared with those with high expression of DMD. In conclusion, the miR-31-5p-DMD axis may serve as a novel biomarker in predicting the development of SEOCRC, and DMD can be used as a promising biomarker for the prognosis of SEOCRC.
Collapse
Affiliation(s)
- Changqin Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Wei Wu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Wenju Chang
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Ruijin Wu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Xiaomin Sun
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Huili Wu
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
6
|
Tu S, Wang XY, Zeng LX, Shen ZJ, Zhang ZH. LncRNA TINCR improves cardiac hypertrophy by regulating the miR-211-3p-VEGFB-SDF-1α-CXCR4 pathway. J Transl Med 2022; 102:253-262. [PMID: 34732848 DOI: 10.1038/s41374-021-00678-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/12/2021] [Accepted: 09/07/2021] [Indexed: 11/08/2022] Open
Abstract
Cardiac hypertrophy is a common cardiovascular disease that is found worldwide and is characterized by heart enlargement, eventually resulting in heart failure. Exploring the regulatory mechanism of cardiac hypertrophy is beneficial for understanding its pathogenesis and treatment. In our study, we have showed TINCR was downregulated and miR-211-3p was upregulated in TAC- or Ang II-induced models of cardiac hypertrophy. Dual luciferase and RIP assays revealed that TINCR served as a competitive endogenous RNA (ceRNA) for miR-211-3p. Then, we observed that knockdown of miR-211-3p alleviated TAC- or Ang II-induced cardiac hypertrophy both in vivo and in vitro. Mechanistically, we demonstrated that miR-211-3p directly targeted VEGFB and thus regulated the expression of SDF-1α and CXCR4. Rescue assays further confirmed that TINCR suppressed the progression of cardiac hypertrophy by competitively binding to miR-211-3p, thereby enhancing the expression of VEGFB and activating the VEGFB-SDF-1α- CXCR4 signal. Furthermore, overexpression of TINCR suppressed TAC-induced cardiac hypertrophy in vivo by targeting miR-211-3p-VEGFB-SDF-1α- CXCR4 signalling. In conclusion, our research suggests that LncRNA TINCR improves cardiac hypertrophy by targeting miR-211-3p, thus relieving its suppressive effects on the VEGFB-SDF-1α-CXCR4 signalling axis. TINCR and miR-211-3p might act as therapeutic targets for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Shan Tu
- Department of Cardiology, Xiangya Third Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | - Xiao-Yan Wang
- Department of Cardiology, Xiangya Third Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | - Li-Xiong Zeng
- Department of Cardiology, Xiangya Third Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | - Zhi-Jie Shen
- Department of Cardiology, Xiangya Third Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | - Zhi-Hui Zhang
- Department of Cardiology, Xiangya Third Hospital, Central South University, Changsha, 410013, Hunan Province, China.
| |
Collapse
|
7
|
Wang H, Lian X, Gao W, Gu J, Shi H, Ma Y, Li Y, Fan Y, Wang Q, Wang L. Long noncoding RNA H19 suppresses cardiac hypertrophy through the MicroRNA-145-3p/SMAD4 axis. Bioengineered 2022; 13:3826-3839. [PMID: 35139769 PMCID: PMC8973863 DOI: 10.1080/21655979.2021.2017564] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 02/08/2023] Open
Abstract
Sustained cardiac hypertrophy (CH) contributes to many heart diseases. Long noncoding RNAs (lncRNAs) collectively play critical roles in cardiovascular diseases (CVDs). However, the roles of lncRNA H19 in CH are still unclear. A CH model was constructed utilizing isoproterenol (ISO). We demonstrated H19 could participate in regulating ISO-induced CH development both in vivo and in vitro. The online databases DIANA and TargetScan were used to predict the targets of H19 and MicroRNA-145-3p (miR-145-3p), respectively. Luciferase reporter assay was used to verify the downstream targets. The results showed that H19 was decreased under ISO stimulation. The H19 overexpression resulted in significant decrease in mouse heart size and weight, left ventricular systolic dysfunction, left ventricular posterior wall thickness and cardiac hypertrophic growth, while promoted the increase of left ventricular ejection fraction and left ventricle fraction shortening. H19 also inhibited protein expression levels of CH markers, such as atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and MYH7. Luciferase assays results showed that miR-145-3p was a target of H19 and SMAD4 was a target of miR-145-3p. We found that H19 regulated SMAD4 by sponging miR-145-3p. Knockout of miR-145-3p or overexpression of SMAD4 facilitated H19-induced decreases in ANP, BNP, and MYH7. Collectively, our findings have indicated that the H19/miR-145-3p/SMAD4 axis should be a negative regulator involved in CH progression.
Collapse
Affiliation(s)
- Hao Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoqing Lian
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gao
- Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Gu
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haojie Shi
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Ma
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yafei Li
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Fan
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiming Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liansheng Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Wang X, Li Y, Li J, Li S, Wang F. Mechanism of METTL3-Mediated m6A Modification in Cardiomyocyte Pyroptosis and Myocardial Ischemia–Reperfusion Injury. Cardiovasc Drugs Ther 2022; 37:435-448. [PMID: 35066738 DOI: 10.1007/s10557-021-07300-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Myocardial ischemia/reperfusion (MI/R) injury is a complicated pathophysiological process associated with cardiomyocyte pyroptosis. Methyltransferase-like protein 3 (METTL3) catalyzes the formation of N6-methyl-adenosine (m6A) and participates in various biological processes. This study probed into the mechanism of METTL3 in cardiomyocyte pyroptosis in MI/R injury. METHODS A rat model of MI/R was established. Rat cardiomyocytes were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) treatment for the establishment of a cell model in vitro. METTL3 expression in myocardial tissues of MI/R rats and OGD/R-treated cardiomyocytes was determined using RT-qPCR and Western blot. The pathological changes of rat myocardial tissues were observed using hematoxylin and eosin staining. The positive expression of NLRP3 in myocardial tissues or cardiomyocytes was observed through immunohistochemistry or immunofluorescence. The activity of caspase-1 was measured using the colorimetric method. The expressions of GSDMD and cleaved caspase-1, as well as the levels of IL-1β and IL-18 in rat myocardial tissues or cardiomyocytes were determined. m6A modification level was quantified. The binding relationship between pri-miR-143-3p and DGCR8 and the enrichment of m6A on pri-miR-143-3p were detected. The binding relationship between miR-143-3p and protein kinase C epsilon (PRKCE) was verified. RESULTS METTL3 expression was elevated in MI/R rats and OGD/R cardiomyocytes. METTL3 silencing alleviated myocardial injury, reduced the number of NLRP3-positive cardiomyocytes, suppressed caspase-1 activity, decreased the protein levels of GSDMD-N and cleaved caspase-1, and decreased IL-1β and IL-18 levels. METTL3 increased the total m6A level in MI/R rats and injured cardiomyocytes, promoted DGCR8 binding to pri-miR-143-3p, and enhanced miR-143-3p expression. miR-143-3p suppressed PRKCE transcription, and miR-143-3p overexpression reversed the inhibitory effect of METTL3 silencing on cardiomyocyte pyroptosis. CONCLUSION METTL3 promoted DGCR8 binding to pri-miR-143-3p through m6A modification, thus enhancing miR-143-3p expression to inhibit PRKCE transcription and further aggravating cardiomyocyte pyroptosis and MI/R injury.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Cardiology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Yi Li
- Department of Cardiology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Fifth School of Clinical Medicine, Peking University, Beijing Hospital, Beijing, 100730, China
| | - Jiahan Li
- The First Mobile Corps of People's Armed Police, Beijing, 101100, China
| | - Shiguo Li
- Department of Structural Heart Disease Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Fang Wang
- Department of Cardiology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China.
| |
Collapse
|
9
|
Liu L, Wang C, Luo X, Wang Y, Li F. Leonurine Alleviates Hypoxia-Induced Myocardial Damage by Regulating miRNAs. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211007274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective miRNAs as pharmaco-targets have been investigated in multifarious diseases. Our study aimed to determine whether leonurine was a potential cardioprotective agent by targeting miRNAs in hypoxia-stimulated mice and H9c2 cardiomyocytes. Methods Cell proliferation and apoptosis were examined by CCK-8 and TUNEL assay in hypoxia-stimulated rat H9c2 cardiomyocytes. miRNAs expression levels in cardiomyocytes in response to hypoxia stimulation were detected by RT-qPCR. Mice with myocardial injury were induced by chronic intermittent hypoxia stimulation. Results Leonurine alleviated hypoxia-induced cardiac hypertrophy in mice. Moreover, up-regulation of miR-31 and down-regulation of miR-210 in hypoxia-stimulated mice were reversed by leonurine administration. Leonurine exhibited cardioprotective activity in an vitro cell model of hypoxia-stimulated rat H9c2 cardiomyocytes, reflecting that the compound improved hypoxia-induced growth inhibition and apoptosis of cardiomyocytes. TUNEL assay revealed that transfection of miR-31 inhibitors or miR-210 mimics abrogated hypoxia-induced cardiomyocyte apoptosis. In contrast to that, miR-31 mimics or miR-210 inhibitors counteracted the anti-apoptotic effect of leonurine on hypoxia-treated rat H9c2 cardiomyocytes. Conclusion Our findings suggest that miR-31 and miR-210 as the upstream regulators of leonurine are involved in hypoxia-induced cardiomyocyte apoptosis. Leonurine can target miRNAs to protect against hypoxia-induced myocardial damage. miRNAs as potential drug targets may provide prospective therapeutic strategies for the treatment of myocardial damage.
Collapse
Affiliation(s)
- Liping Liu
- Department of Pediatric Cardiovasology, Children’s Medical Center, the Second Xiangya Hospital, Central South University & Institute of Pediatrics, Central South University, Changsha, China
| | - Cheng Wang
- Department of Pediatric Cardiovasology, Children’s Medical Center, the Second Xiangya Hospital, Central South University & Institute of Pediatrics, Central South University, Changsha, China
| | - Xuemei Luo
- Department of Pediatric Cardiovasology, Children’s Medical Center, the Second Xiangya Hospital, Central South University & Institute of Pediatrics, Central South University, Changsha, China
| | - Yuwen Wang
- Department of Pediatric Cardiovasology, Children’s Medical Center, the Second Xiangya Hospital, Central South University & Institute of Pediatrics, Central South University, Changsha, China
| | - Fang Li
- Department of Pediatric Cardiovasology, Children’s Medical Center, the Second Xiangya Hospital, Central South University & Institute of Pediatrics, Central South University, Changsha, China
| |
Collapse
|
10
|
Chen H, Liu J, Wang B, Li Y. Protective effect of lncRNA CRNDE on myocardial cell apoptosis in heart failure by regulating HMGB1 cytoplasm translocation through PARP-1. Arch Pharm Res 2020; 43:1325-1334. [PMID: 33249529 DOI: 10.1007/s12272-020-01290-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/16/2020] [Indexed: 01/05/2023]
Abstract
Long non-coding RNAs (lncRNAs) are bound up with the regulation of various diseases. Here, we probed into the effect of lncRNA colorectal neoplasia differentially expressed (CRNDE) on heart failure (HF). The pathological alterations and cell apoptosis of heart tissues were observed by hematoxylin-eosin and TUNEL staining. The viability or apoptosis of mouse myocardial cells HL-1 was tested by XTT or flow cytometry. The interaction between lncRNA CRNDE and poly-ADP-ribose polymerase 1 (PARP-1) was verified by RNA immunoprecipitation and RNA pull-down. The stability of the PARP-1 protein and the acetylation level of high mobility group box-1 (HMGB1) were determined by cycloheximide-chase and immunoprecipitation, respectively. LncRNA CRNDE expression was decreased in HF mice tissues and doxorubicin (Dox)-treated HL-1 cells, whereas PARP-1 and HMGB1 were increased. The overexpression of lncRNA CRNDE restrained HL-1 cell apoptosis induced by Dox. Moreover, the interaction between CRNDE and PARP-1 was corroborated, CRNDE negatively regulated PARP-1 expression, and the overexpression of CRNDE reduced PARP-1 protein stability. In HL-1 cells, PARP-1 positively regulated the acetylation level and cytoplasm translocation of HMGB1. CRNDE restrained Dox-induced apoptosis in mouse myocardial cells via the PARP-1/HMGB1 pathway.
Collapse
Affiliation(s)
- Hui Chen
- Department of Cardiology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, Hebei Province, China
| | - Jinming Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, Hebei Province, China
| | - Bin Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, Hebei Province, China
| | - Yongjun Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, Hebei Province, China.
| |
Collapse
|