1
|
Niu P, Li D, Chen H, Zhu Y, Zhou J, Zhang J, Liu Y. Cardamonin suppresses mTORC1/SREBP1 through reducing Raptor and inhibits de novo lipogenesis in ovarian cancer. PLoS One 2025; 20:e0322733. [PMID: 40315213 PMCID: PMC12047825 DOI: 10.1371/journal.pone.0322733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/25/2025] [Indexed: 05/04/2025] Open
Abstract
Metabolic reprogramming is a hallmark of cancer and de novo lipogenesis (DNL) accelerates the progression of ovarian cancer. In this study, we investigated the effects of cardamonin, a natural compound potential to suppress various malignancies, on the lipid anabolism in ovarian cancer. Cell proliferation was assessed using CCK-8 and clone formation assay. Cell apoptosis was detected by flow cytometry with Annexin V-FITC/PI staining and mitochondrial membrane potential (MMP) was measured with JC-10 probe. Free fatty acids (FFA) was measured by fluorescence using acyl-CoA oxidation and carnitine palmitoyl transferase-1 (CPT-1) activity was analyzed by spectrophotometric assay using palmitoyl-CoA and DTNB (5,5'-dithio-bis-(2-nitrobenzoic acid)) reaction. mRNA expression was measured by Quantitative Real-Time PCR. Protein expression was analyzed through western blotting and immunofluorescence. Raptor was knocked down by shRNA and Raptor was overexpressed by lentiviral transfection. The antitumor effect of cardamonin was evaluated using a xenotransplantation tumor bearing mouse model. Cardamonin suppressed the cell proliferation, induced cell apoptosis and triggered mitochondrial damage in ovarian cancer cells. Cardamonin inhibited the protein expression of sterol regulatory element binding protein 1 (SREBP1) and its downstream lipogenic enzymes and decreased FFA content and CPT-1 activity. Additionally, cardamonin inhibited the activation of mechanistic target of rapamycin complex 1 (mTORC1) and expression of regulatory-associated protein of mTOR (Raptor). Raptor knockdown abolished the inhibitory effect of cardamonin on mTORC1 and SREBP1. Furthermore, cardamonin inhibited mTORC1 activation and lipogenic proteins expression induced by Raptor overexpression. Cardamonin reduced the tumor growth and fatty acid synthase of the tumors, as evidenced by decreased expression of Ki-67 and FASN. It suggests that cardamonin suppresses mTORC1/SREBP1 through reducing the protein level of Raptor and inhibits DNL of ovarian cancer.
Collapse
Affiliation(s)
- Peiguang Niu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Women and Children’s Critical Diseases Research [Fujian Maternity and Child Health Hospital (Fujian Women and Children’s Hospital)], Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Danyun Li
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Huajiao Chen
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Yanting Zhu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Women and Children’s Critical Diseases Research [Fujian Maternity and Child Health Hospital (Fujian Women and Children’s Hospital)], Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Jintuo Zhou
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Jinhua Zhang
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Ying Liu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Liu Y, Zhu Y, Chen H, Zhou J, Niu P, Shi D. Raptor mediates the selective inhibitory effect of cardamonin on RRAGC-mutant B cell lymphoma. BMC Complement Med Ther 2023; 23:336. [PMID: 37749558 PMCID: PMC10521446 DOI: 10.1186/s12906-023-04166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND mTORC1 (mechanistic target of rapamycin complex 1) is associated with lymphoma progression. Oncogenic RRAGC (Rag guanosine triphosphatase C) mutations identified in patients with follicular lymphoma facilitate the interaction between Raptor (regulatory protein associated with mTOR) and Rag GTPase. It promotes the activation of mTORC1 and accelerates lymphomagenesis. Cardamonin inhibits mTORC1 by decreasing the protein level of Raptor. In the present study, we investigated the inhibitory effect and possible mechanism of action of cardamonin in RRAGC-mutant lymphoma. This could provide a precise targeted therapy for lymphoma with RRAGC mutations. METHODS Cell viability was measured using a cell counting kit-8 (CCK-8) assay. Protein expression and phosphorylation levels were determined using western blotting. The interactions of mTOR and Raptor with RagC were determined by co-immunoprecipitation. Cells overexpressing RagC wild-type (RagCWT) and RagC Thr90Asn (RagCT90N) were generated by lentiviral infection. Raptor knockdown was performed by lentivirus-mediated shRNA transduction. The in vivo anti-tumour effect of cardamonin was assessed in a xenograft model. RESULTS Cardamonin disrupted mTOR complex interactions by decreasing Raptor protein levels. RagCT90N overexpression via lentiviral infection increased cell proliferation and mTORC1 activation. The viability and tumour growth rate of RagCT90N-mutant cells were more sensitive to cardamonin treatment than those of normal and RagCWT cells. Cardamonin also exhibited a stronger inhibitory effect on the phosphorylation of mTOR and p70 S6 kinase 1 in RagCT90N-mutant cells. Raptor knockdown abolishes the inhibitory effects of cardamonin on mTOR. An in vivo xenograft model demonstrated that the RagCT90N-mutant showed significantly higher sensitivity to cardamonin treatment. CONCLUSIONS Cardamonin exerts selective therapeutic effects on RagCT90N-mutant cells. Cardamonin can serve as a drug for individualised therapy for follicular lymphoma with RRAGC mutations.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pharmacy, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Yanting Zhu
- Department of Pharmacy, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Huajiao Chen
- Department of Pharmacy, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Jintuo Zhou
- Department of Pharmacy, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Peiguang Niu
- Department of Pharmacy, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, 350001, Fujian, China.
| | - Daohua Shi
- Department of Pharmacy, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
3
|
Ma S, Hu Y, Chen J, Wang X, Zhang C, Liu Q, Cai G, Wang H, Zheng J, Wang Q, Zhong L, Yang B, Zhou S, Liu Y, Han F, Wang J, Wang J. Marine fungus-derived alkaloid inhibits the growth and metastasis of gastric cancer via targeting mTORC1 signaling pathway. Chem Biol Interact 2023; 382:110618. [PMID: 37394161 DOI: 10.1016/j.cbi.2023.110618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
Gastric cancer (GC) is a highly aggressive and deadly disease worldwide. Given the limitations of current treatments, it is crucial to discover more effective antitumor drugs. Here, we demonstrated that arthpyrone M (Art-M), a novel 4-hydroxy-2-pyridone alkaloid derived from the marine fungus Arthrinium arundinis, inhibited the proliferation, invasion and migration of GC both in vivo and in vitro. The underlying mechanism of Art-M in GC cells was explored by RNA-sequencing analysis, qRT-PCR and immunoblotting, which demonstrated that Art-M significantly suppressed the mTORC1 pathway by decreasing phosphorylated mTOR and p70S6K. Moreover, Art-M feedback increased the activities of AKT and ERK. Co-immunoprecipitation and immunoblotting analysis revealed that Art-M induced dissociation of Raptor from mTOR and promoted Raptor degradation, leading to the inhibition of mTORC1 activity. Art-M was identified as a novel and potent mTORC1 antagonist. Furthermore, Art-M enhanced GC cell sensitivity to apatinib, and the combination of Art-M and apatinib showed better efficacy in the treatment of GC. Taken together, these results demonstrate that Art-M is a promising candidate drug for the treatment of GC by suppressing the mTORC1 pathway.
Collapse
Affiliation(s)
- Shuai Ma
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Yiwei Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/ Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jianjiao Chen
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Xiaojuan Wang
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, No.168, Litang Road, Changping District, Beijing, 102218, China
| | - Chenxi Zhang
- School of Pharmaceutical Sciences, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Qianqian Liu
- School of Pharmaceutical Sciences, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Guodi Cai
- School of Pharmaceutical Sciences, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Jianwei Zheng
- School of Pharmaceutical Sciences, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Qianqian Wang
- School of Pharmaceutical Sciences, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Lin Zhong
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Bin Yang
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Shengning Zhou
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/ Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Fanghai Han
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China.
| | - Junjian Wang
- School of Pharmaceutical Sciences, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China.
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/ Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
4
|
Zhu Y, Wang S, Niu P, Chen H, Zhou J, Jiang L, Li D, Shi D. Raptor couples mTORC1 and ERK1/2 inhibition by cardamonin with oxidative stress induction in ovarian cancer cells. PeerJ 2023; 11:e15498. [PMID: 37304865 PMCID: PMC10257395 DOI: 10.7717/peerj.15498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Background A balance on nutrient supply and redox homeostasis is required for cell survival, and increased antioxidant capacity of cancer cells may lead to chemotherapy failure. Objective To investigate the mechanism of anti-proliferation of cardamonin by inducing oxidative stress in ovarian cancer cells. Methods After 24 h of drug treatment, CCK8 kit and wound healing test were used to detect cell viability and migration ability, respectively, and the ROS levels were detected by flow cytometry. The differential protein expression after cardamonin administration was analyzed by proteomics, and the protein level was detected by Western blotting. Results Cardamonin inhibited the cell growth, which was related to ROS accumulation. Proteomic analysis suggested that MAPK pathway might be involved in cardamonin-induced oxidative stress. Western blotting showed that cardamonin decreased Raptor expression and the activity of mTORC1 and ERK1/2. Same results were observed in Raptor KO cells. Notably, in Raptor KO cells, the effect of cardamonin was weakened. Conclusion Raptor mediated the function of cardamonin on cellular redox homeostasis and cell proliferation through mTORC1 and ERK1/2 pathways.
Collapse
|
5
|
Wenzel CK, von Montfort C, Ebbert L, Klahm NP, Reichert AS, Stahl W, Brenneisen P. The natural chalcone cardamonin selectively induces apoptosis in human neuroblastoma cells. Toxicol In Vitro 2023:105625. [PMID: 37268255 DOI: 10.1016/j.tiv.2023.105625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/11/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Neuroblastoma is the most common extracranial malignant tumor in childhood. Approximately 60% of all patients are classified as high-risk and require intensive treatment including non-selective chemotherapeutic agents leading to severe side effects. Recently, phytochemicals like the natural chalcone cardamonin (CD) have gained attention in cancer research. For the first time, we investigated the selective anti-cancer effects of CD in SH-SY5Y human neuroblastoma cells compared to healthy (normal) fibroblasts (NHDF). Our study revealed selective and dose-dependent cytotoxicity of CD in SH-SY5Y. The natural chalcone CD specifically altered the mitochondrial membrane potential (ΔΨm), as an early marker of apoptosis, in human neuroblastoma cells. Caspase activity was also selectively induced and the amount of cleaved caspase substrates such as PARP was thus increased in human neuroblastoma cells. CD-mediated apoptotic cell death was rescued by pan caspase inhibitor Z-VAD-FMK. The natural chalcone CD selectively induced apoptosis, the programmed cell death, in SH-SY5Y human neuroblastoma cells whereas NHDF being a model for normal (healthy) cells were unaffected. Our data indicates a clinical potential of CD in the more selective and less harmful treatment of neuroblastoma.
Collapse
Affiliation(s)
- Chantal-Kristin Wenzel
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Claudia von Montfort
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lara Ebbert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niklas P Klahm
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Brenneisen
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Gao H, Xian G, Zhong G, Huang B, Liang S, Zeng Q, Liu Y. Alleviation of doxorubicin-induced cardiomyocyte death through miR-147-y-mediated mitophagy. Biochem Biophys Res Commun 2022; 609:176-182. [PMID: 35452958 DOI: 10.1016/j.bbrc.2022.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022]
Abstract
Doxorubicin (DOX) is a commonly used antitumor drug. However, it may cause severe cardiotoxicity, apoptosis being a major change. A recent report indicates that miR-147 expression is decreased in the myocardium of a myocardial infarction model, suggesting a potential role of this miRNA in DOX-induced cardiomyocyte toxicity. In this study, freshly isolated neonatal pig cardiomyocytes were used; following transfection of a miR-147-y mimic, the cell death induced by DOX was alleviated, represented by augmented mitophagy [indicated by a decrease in P62, and increases in LC3, PINK1, parkin mRNA, LC3Ⅱ/Ⅰ, beclin-1, PINK1, and parkin including p-parkin (Ser65) protein expression], prohibited cell apoptosis as determined by TUNEL staining, and the suppression of caspase-3 transcription and cleaved caspase-3 translation. In cells transfected with an miR-147-y inhibitor, DOX-induced mitophagy was decreased, while apoptosis was increased. Additionally, RAPTOR gene silencing in cardiomyocytes exposed to DOX increased the rate of mitophagy and decreased that of apoptosis as compared with the treatment with DOX alone. Moreover, RAPTOR overexpression downregulated the rate of mitophagy and increased that of apoptosis in cells exposed to DOX. RAPTOR was confirmed as the target gene of miR-147-y based on the results of luciferase reporter gene assays and the opposite effects of the miR-147-y mimic and miR-147-y inhibitor on RAPTOR expression. In summary, our study suggests that miR-147-y mediates DOX-induced cardiomyocyte mitophagy while suppresses apoptosis by targeting RAPTOR, thus playing a protective role in DOX-induced cardiomyocyte damage.
Collapse
Affiliation(s)
- Hongbin Gao
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, 510515, China; Guangdong Laboratory Animals Monitoring Institute (Guangdong Provincial Key Laboratory of Laboratory Animals), Guangzhou, 510663, China
| | - Gaopeng Xian
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China; Department of Cardiology (Guangdong Provincial Key Laboratory of Shock and Microcirculation), Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Guoheng Zhong
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China; Department of Cardiology (Guangdong Provincial Key Laboratory of Shock and Microcirculation), Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bihong Huang
- Guangdong Laboratory Animals Monitoring Institute (Guangdong Provincial Key Laboratory of Laboratory Animals), Guangzhou, 510663, China
| | - Shi Liang
- Guangdong Laboratory Animals Monitoring Institute (Guangdong Provincial Key Laboratory of Laboratory Animals), Guangzhou, 510663, China
| | - Qingchun Zeng
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China; Department of Cardiology (Guangdong Provincial Key Laboratory of Shock and Microcirculation), Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yungang Liu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|