1
|
Kargı-Gemici E, Şengelen A, Aksüt Y, Akyol O, Şengiz-Erhan S, Bay M, Önay-Uçar E, Selcan A, Demirgan S. Cerium oxide nanoparticles (nanoceria) pretreatment attenuates cell death in the hippocampus and cognitive dysfunction due to repeated isoflurane anesthesia in newborn rats. Neurotoxicology 2024; 105:82-93. [PMID: 39216603 DOI: 10.1016/j.neuro.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
General anesthetics exposure, particularly prolonged or repeated exposure, is a crucial cause of neurological injuries. Notably, isoflurane (ISO), used in pediatric anesthesia practice, is toxic to the developing brain. The relatively weak antioxidant system at early ages needs antioxidant support to protect the brain against anesthesia. Cerium oxide nanoparticles (CeO2-NPs, nanoceria) are nano-antioxidants and stand out due to their unique surface chemistry, high stability, and biocompatibility. Although CeO2-NPs have been shown to exhibit neuroprotective and cognitive function-facilitating effects, there are no reports on their protective effects against anesthesia-induced neurotoxicity and cognitive impairments. Herein, Wistar albino rat pups were exposed to ISO (1.5 %, 3-h) at postnatal day (P)7+P9+P11, and the protective properties of CeO2-NP pretreatment (0.5 mg/kg, intraperitoneal route) were investigated for the first time. The control group at P7+9+11 received 50 % O2 (3-h) instead of ISO. Exposure to nanoceria one-hour before ISO protected hippocampal neurons of the developing rat brain against apoptosis [determined by hematoxylin-eosin (HE) staining, immunohistochemistry (IHC) analysis with caspase-3, and immunoblotting with Bax/Bcl2, cleaved caspase-3 and PARP1] oxidative stress, and inflammation [determined by immunoblotting with 4-hydroxynonenal (4HNE), nuclear factor kappa-B (NF-κB), and tumor necrosis factor-alpha (TNF-α)]. CeO2-NP pretreatment also reduced ISO-induced learning (at P28-32) and memory (at P33) deficits evaluated by Morris Water Maze. However, memory deficits and thigmotactic behaviors were detected in the agent-control group; elimination of these harmful effects will be possible with dose studies, thus providing evidence supporting safer use. Overall, our findings support pretreatment with nanoceria application as a simple strategy that might be used for pediatric anesthesia practice to protect infants and children from ISO-induced cell death and learning and memory deficits.
Collapse
Affiliation(s)
- Ezgi Kargı-Gemici
- Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkiye.
| | - Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkiye.
| | - Yunus Aksüt
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkiye; Department of Molecular Biology and Genetics, Basic Medical Sciences, School of Medicine, Koç University, Istanbul, Turkiye.
| | - Onat Akyol
- Clinic of Anesthesiology and Reanimation, Istanbul Florence Nightingale Hospital, Istanbul, Turkiye.
| | - Selma Şengiz-Erhan
- Clinic of Pathology, University of Health Sciences, Prof. Dr. Cemil Taşçıoğlu City Hospital, Istanbul, Turkiye.
| | - Mehmet Bay
- Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkiye.
| | - Evren Önay-Uçar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkiye.
| | - Ayşin Selcan
- Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkiye.
| | - Serdar Demirgan
- Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkiye; Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkiye.
| |
Collapse
|
2
|
Shpetko YY, Filippenkov IB, Denisova AE, Stavchansky VV, Gubsky LV, Limborska SA, Dergunova LV. Isoflurane Anesthesia's Impact on Gene Expression Patterns of Rat Brains in an Ischemic Stroke Model. Genes (Basel) 2023; 14:1448. [PMID: 37510352 PMCID: PMC10379230 DOI: 10.3390/genes14071448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Ischemic stroke (IS) is one of the most severe brain diseases. Animal models with anesthesia are actively used to study stroke genomics and pathogenesis. However, the anesthesia-related gene expression patterns of ischemic rat brains remain poorly understood. In this study, we sought to elucidate the impact of isoflurane (ISO) anesthesia on the extent of ischemic brain damage and gene expression changes associated with stroke. METHODS We used the transient middle cerebral artery occlusion (tMCAO) model under long-term and short-term ISO anesthesia, magnetic resonance imaging (MRI), RNA sequencing, and bioinformatics. RESULTS We revealed that the volume of cerebral damage at 24 h after tMCAO was inversely proportional to the duration of ISO anesthesia. Then, we revealed hundreds of overlapping ischemia-related differentially expressed genes (DEGs) with a cutoff of >1.5; Padj < 0.05, and 694 and 1557 DEGs only under long-term and short-term anesthesia, respectively, using sham-operated controls. Concomitantly, unique DEGs identified under short-term anesthesia were mainly associated with neurosignaling systems, whereas unique DEGs identified under long-term anesthesia were predominantly related to the inflammatory response. CONCLUSIONS We were able to determine the effects of the duration of anesthesia using isoflurane on the transcriptomes in the brains of rats at 24 h after tMCAO. Thus, specific genome responses may be useful in developing potential approaches to reduce damaged areas after cerebral ischemia and neuroprotection.
Collapse
Affiliation(s)
- Yana Y Shpetko
- Laboratory of Human Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Ivan B Filippenkov
- Laboratory of Human Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Alina E Denisova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, Moscow 117997, Russia
| | - Vasily V Stavchansky
- Laboratory of Human Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Leonid V Gubsky
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, Moscow 117997, Russia
- Federal Center for the Brain and Neurotechnologies, Federal Biomedical Agency, Ostrovitianov Str. 1, Building 10, Moscow 117997, Russia
| | - Svetlana A Limborska
- Laboratory of Human Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Lyudmila V Dergunova
- Laboratory of Human Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| |
Collapse
|
3
|
Yılmaz H, Şengelen A, Demirgan S, Paşaoğlu HE, Çağatay M, Erman İE, Bay M, Güneyli HC, Önay-Uçar E. Acutely increased aquaporin-4 exhibits more potent protective effects in the cortex against single and repeated isoflurane-induced neurotoxicity in the developing rat brain. Toxicol Mech Methods 2022; 33:279-292. [PMID: 36127839 DOI: 10.1080/15376516.2022.2127389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Damage to hippocampus, cerebellum, and cortex associated with cognitive functions due to anesthetic-induced toxicity early in life may cause cognitive decline later. Aquaporin 4 (AQP4), a key protein in waste clearance pathway of brain, is involved in synaptic plasticity and neurocognition. We investigated the effects of single and repeated isoflurane (Iso) anesthesia on AQP4 levels and brain damage. Postnatal-day (P)7 Wistar albino rats were randomly assigned to Iso or Control (C) groups. For single-exposure, pups were exposed to 1.5% Iso in 30% oxygenated-air for 3-h at P7 (Iso1). For repeated-exposure, pups were exposed to Iso for 3 days, 3-h each day, at 1-day intervals (P7 + 9+11) starting at P7 (Iso3). C1 and C3 groups received only 30% oxygenated-air. Based on HE-staining and immunoblotting (Bax/Bcl-2, cleaved-caspase3 and PARP1) analyses, Iso exposures caused a higher degree of apoptosis in hippocampus. Anesthesia increased 4HNE, oxidative stress marker; the highest ROS accumulation was determined in cerebellum. Increased inflammation (TNF-α, NF-κB) was detected. Multiple Iso-exposures caused more significant damage than single exposure. Moreover, 4HNE and TNF-α contributed synergistically to Iso-induced neurotoxicity. After anesthesia, higher expression of AQP4 was detected in cortex than hippocampus and cerebellum. There was an inverse correlation between increased AQP4 levels and apoptosis/ROS/inflammation. Correlation analysis indicated that AQP4 had a more substantial protective profile against oxidative stress than apoptosis. Remarkably, acutely increased AQP4 against Iso exhibited a more potent neuroprotective effect in cortex, especially frontal cortex. These findings promote further research to understand better the mechanisms underlying anesthesia-induced toxicity in the developing brain.
Collapse
Affiliation(s)
- Habip Yılmaz
- Department of Public Hospital Services, Istanbul Health Directorate, Istanbul, Turkey
| | - Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey
| | - Serdar Demirgan
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey.,Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Hüsniye Esra Paşaoğlu
- Department of Pathology, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Melike Çağatay
- Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - İbrahim Emre Erman
- Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Mehmet Bay
- Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Hasan Cem Güneyli
- Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Evren Önay-Uçar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|