1
|
Lan T, Yu D, Zhao Q, Qu C, Wu Q. Ethnomedicine, phytochemistry, pharmacology, pharmacokinetics, and clinical application of Salvia miltiorrhiza Bunge (Lamiaceae): A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2025:120032. [PMID: 40419206 DOI: 10.1016/j.jep.2025.120032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/06/2025] [Accepted: 05/22/2025] [Indexed: 05/28/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza Bunge (Lamiaceae), known as Danshen in China, is a widely utilized traditional Chinese medicine (TCM). Danshen is classified within the heart and liver meridians and renowned for its ability to activate collaterals and blood vessels, facilitate the removal of blood stasis without compromising vital Qi. It plays a pivotal role in promoting blood circulation and alleviating blood stasis. Clinically, it is commonly used to treat uterine bleeding, irregular menstruation, blood stasis, and abdominal pain, among other symptoms. AIM OF THE STUDY This paper reviews the traditional use, botany, phytochemistry, pharmacology, toxicity, pharmacokinetics and clinical application of Danshen from 1981 to 2024. The goal is to offer valuable reference materials that can inform and guide future research related to Danshen. MATERIALS AND METHODS A literature search was performed on Danshen based on classic books about Chinese herbal medicine and different electronic databases including Web of Science, PubMed, Elsevier, ScienceDirect, Google Scholar, SciFinder, TPL, and CNKI. RESULTS Traditional uses of Danshen have been documented in China for centuries. A large number of studies have shown that Danshen is rich in chemical components. To date, more than 318 chemical compounds have been isolated and identified, including diterpenoid quinones, phenolic acids, triterpenes, essential oils, neolignans, alkaloids, flavonoids, saccharides, and others. Crude extracts and pure compounds isolated from Danshen exhibit a wide range of pharmacological effects, including anti-atherosclerotic, anti-arrhythmic, anti-thrombotic, anti-hypertensive, anti-myocardial ischemia-reperfusion injury, endothelial dysfunction protection, sedative and analgesic, neuroprotective, anti-depressive, anti-hepatic fibrosis, anti-pulmonary fibrosis, anti-renal fibrosis, anti-inflammatory, anti-oxidative, anti-tumor, anti-diabetic effects. The results of pharmacokinetic studies showed that the presence of various compounds within the extract of Danshen can significantly influence the pharmacokinetic characteristics of individual constituents through several mechanisms. These mechanisms may include enhanced bioavailability, reduced potential for toxicity, and alterations in the distribution of metabolites. CONCLUSIONS Danshen has been demonstrated to be a valuable medicinal resource in TCM. This paper provides a comprehensive review of the ethnopharmacology, chemical composition, pharmacological effects, toxicology, pharmacokinetics and clinical applications of Danshen, aiming to serve as a thorough reference for its further development and utilization. Additionally, further research in pharmacokinetics and toxicology is essential to enhance our understanding of its clinical applications and quality control.
Collapse
Affiliation(s)
- Tingting Lan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Daixin Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qingrong Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheng Qu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Qinan Wu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Feng YY, Liu JF, Xue Y, Liu D, Wu XZ. Network Pharmacology Based Elucidation of Molecular Mechanisms of Laoke Formula for Treatment of Advanced Non-Small Cell Lung Cancer. Chin J Integr Med 2024; 30:984-992. [PMID: 38941043 DOI: 10.1007/s11655-024-3717-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 06/29/2024]
Abstract
OBJECTIVE To explore the specific pharmacological molecular mechanisms of Laoke Formula (LK) on treating advanced non-small cell lung cancer (NSCLC) based on clinical application, network pharmacology and experimental validation. METHODS Kaplan-Meier method and Cox regression analysis were used to evaluate the survival benefit of Chinese medicine (CM) treatment in 296 patients with NSCLC in Tianjin Medical University Cancer Institute and Hospital from January 2011 to December 2015. The compounds of LK were screened using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, and the corresponding targets were performed from Swiss Target Prediction. NSCLC-related targets were obtained from Therapeutic Target Database and Comparative Toxicogenomics Database. Key compounds and targets were identified from the compound-target-disease network and protein-protein interaction (PPI) network analysis, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis were used to predict the potential signaling pathways involved in the treatment of advanced NSCLC with LK. The binding affinities between key ingredients and targets were further verified using molecular docking. Finally, A549 cell proliferation and migration assay were used to evaluate the antitumor activity of LK. Western blot was used to further verify the expression of key target proteins related to the predicted pathways. RESULTS Kaplan-Meier survival analysis showed that the overall survival of the CM group was longer than that of the non-CM group (36 months vs. 26 months), and COX regression analysis showed that LK treatment was an independent favorable prognostic factor (P=0.027). Next, 97 components and 86 potential targets were included in the network pharmacology, KEGG and GO analyses, and the results indicated that LK was associated with proliferation and apoptosis. Moreover, molecular docking revealed a good binding affinity between the key ingredients and targets. In vitro, A549 cell proliferation and migration assay showed that the biological inhibition effect was more obvious with the increase of LK concentration (P<0.05). And decreased expressions of nuclear factor κB1 (NF-κB1), epidermal growth factor receptor (EGFR) and AKT serine/threonine kinase 1 (AKT1) and increased expression of p53 (P<0.05) indicated the inhibitory effect of LK on NSCLC by Western blot. CONCLUSION LK inhibits NSCLC by inhibiting EGFR/phosphoinositide 3-kinase (PI3K)/AKT signaling pathway, NFκB signaling pathway and inducing apoptosis, which provides evidence for the therapeutic mechanism of LK to increase overall survival in NSCLC patients.
Collapse
Affiliation(s)
- Yu-Yu Feng
- Department of Nursing, Tangshan Vocational and Technical College, Tangshan, Hebei Province, 063000, China
| | - Jin-Feng Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yang Xue
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, 300020, China
| | - Dan Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin, 300060, China
| | - Xiong-Zhi Wu
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China.
| |
Collapse
|
3
|
Yin F, Zhou Y, Xie D, Liang Y, Luo X. Evaluating the adverse effects and mechanisms of nanomaterial exposure on longevity of C. elegans: A literature meta-analysis and bioinformatics analysis of multi-transcriptome data. ENVIRONMENTAL RESEARCH 2024; 247:118106. [PMID: 38224941 DOI: 10.1016/j.envres.2024.118106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Exposure to large-size particulate air pollution (PM2.5 or PM10) has been reported to increase risks of aging-related diseases and human death, indicating the potential pro-aging effects of airborne nanomaterials with ultra-fine particle size (which have been widely applied in various fields). However, this hypothesis remains inconclusive. Here, a meta-analysis of 99 published literatures collected from electronic databases (PubMed, EMBASE and Cochrane Library; from inception to June 2023) was performed to confirm the effects of nanomaterial exposure on aging-related indicators and molecular mechanisms in model animal C. elegans. The pooled analysis by Stata software showed that compared with the control, nanomaterial exposure significantly shortened the mean lifespan [standardized mean difference (SMD) = -2.30], reduced the survival rate (SMD = -4.57) and increased the death risk (hazard ratio = 1.36) accompanied by upregulation of ced-3, ced-4 and cep-1, while downregulation of ctl-2, ape-1, aak-2 and pmk-1. Furthermore, multi-transcriptome data associated with nanomaterial exposure were retrieved from Gene Expression Omnibus (GSE32521, GSE41486, GSE24847, GSE59470, GSE70509, GSE14932, GSE93187, GSE114881, and GSE122728) and bioinformatics analyses showed that pseudogene prg-2, mRNAs of abu, car-1, gipc-1, gsp-3, kat-1, pod-2, acdh-8, hsp-60 and egrh-2 were downregulated, while R04A9.7 was upregulated after exposure to at least two types of nanomaterials. Resveratrol (abu, hsp-60, pod-2, egrh-2, acdh-8, gsp-3, car-1, kat-1, gipc-1), naringenin (kat-1, egrh-2), coumestrol (egrh-2) or swainsonine/niacin/ferulic acid (R04A9.7) exerted therapeutic effects by reversing the expression levels of target genes. In conclusion, our study demonstrates the necessity to use phytomedicines that target hub genes to delay aging for populations with nanomaterial exposure.
Collapse
Affiliation(s)
- Fei Yin
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Yang Zhou
- School of Textile Science and Engineering/National Engineering Laboratory for Advanced Yarn and Clean Production, Wuhan Textile University, Wuhan, 430200, China.
| | - Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Yunxia Liang
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China.
| | - Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China.
| |
Collapse
|
4
|
Softah A, Alotaibi MR, Alhoshani AR, Saleh T, Alhazzani K, Almutairi MM, AlRowis R, Alshehri S, Albekairy NA, Harada H, Boyd R, Chakraborty E, Gewirtz DA, As Sobeai HM. The Combination of Radiation with PARP Inhibition Enhances Senescence and Sensitivity to the Senolytic, Navitoclax, in Triple Negative Breast Tumor Cells. Biomedicines 2023; 11:3066. [PMID: 38002066 PMCID: PMC10669784 DOI: 10.3390/biomedicines11113066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Despite significant advances in the treatment of triple-negative breast cancer, this disease continues to pose a clinical challenge, with many patients ultimately suffering from relapse. Tumor cells that recover after entering into a state of senescence after chemotherapy or radiation have been shown to develop a more aggressive phenotype, and to contribute to disease recurrence. By combining the PARP inhibitor (PARPi), talazoparib, with radiation, senescence was enhanced in 4T1 and MDA-MB-231 triple-negative breast cancer cell lines (based on SA-β-gal upregulation, increased expression of CDKN1A and the senescence-associated secretory phenotype (SASP) marker, IL6). Subsequent treatment of the radiation- and talazoparib-induced senescent 4T1 and MDA-MB231 cells with navitoclax (ABT-263) resulted in significant apoptotic cell death. In immunocompetent tumor-bearing mice, navitoclax exerted a modest growth inhibitory effect when used alone, but dramatically interfered with the recovery of 4T1-derived tumors induced into senescence with ionizing radiation and talazoparib. These findings support the potential utility of a senolytic strategy in combination with the radiotherapy/PARPi combination to mitigate the risk of disease recurrence in triple-negative breast cancer.
Collapse
Affiliation(s)
- Abrar Softah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.); (M.R.A.); (A.R.A.); (K.A.); (M.M.A.); (S.A.); (N.A.A.)
| | - Moureq R. Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.); (M.R.A.); (A.R.A.); (K.A.); (M.M.A.); (S.A.); (N.A.A.)
| | - Ali R. Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.); (M.R.A.); (A.R.A.); (K.A.); (M.M.A.); (S.A.); (N.A.A.)
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan;
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.); (M.R.A.); (A.R.A.); (K.A.); (M.M.A.); (S.A.); (N.A.A.)
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.); (M.R.A.); (A.R.A.); (K.A.); (M.M.A.); (S.A.); (N.A.A.)
| | - Raed AlRowis
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Samiyah Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.); (M.R.A.); (A.R.A.); (K.A.); (M.M.A.); (S.A.); (N.A.A.)
| | - Norah A. Albekairy
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.); (M.R.A.); (A.R.A.); (K.A.); (M.M.A.); (S.A.); (N.A.A.)
| | - Hisashi Harada
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA;
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Rowan Boyd
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (R.B.); (E.C.)
| | - Eesha Chakraborty
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (R.B.); (E.C.)
| | - David A. Gewirtz
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA;
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (R.B.); (E.C.)
| | - Homood M. As Sobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.); (M.R.A.); (A.R.A.); (K.A.); (M.M.A.); (S.A.); (N.A.A.)
| |
Collapse
|
5
|
Zhang P, Liu W, Wang Y. The mechanisms of tanshinone in the treatment of tumors. Front Pharmacol 2023; 14:1282203. [PMID: 37964867 PMCID: PMC10642231 DOI: 10.3389/fphar.2023.1282203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Tanshinone is a lipophilic compound that is present in traditional Chinese medicine and is derived from the roots of Salvia miltiorrhiza (Danshen). It has been proven to be highly effective in combating tumors in various parts of the body, including liver carcinoma, gastric cancer, ovarian cancer, cervix carcinoma, breast cancer, colon cancer, and prostate cancer. Tanshinone can efficiently prevent the reproduction of cancerous cells, induce cell death, and inhibit the spread of cancerous cells, which are mainly involved in the PI3K/Akt signaling pathway, NF-κB pathway, Bcl-2 family, Caspase cascades, MicroRNA, MAPK signaling pathway, p21, STAT3 pathway, miR30b-P53-PTPN11/SHP2 axis, β-catenin, and Skp2. However, the properties and mechanisms of tanshinone's anti-tumor effects remain unclear currently. Thus, this study aims to review the research progress on tumor prevention and mechanisms of tanshinone to gain new perspectives for further development and clinical application of tanshinone.
Collapse
Affiliation(s)
- Pengyu Zhang
- The Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wendi Liu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Wang
- Department of Histology and Embryology, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Cao Y, Tang H, Wang G, Li P, Song Z, Li W, Sun X, Zhong X, Yu Q, Zhu S, Zhu L. Targeting survivin with Tanshinone IIA inhibits tumor growth and overcomes chemoresistance in colorectal cancer. Cell Death Discov 2023; 9:351. [PMID: 37749082 PMCID: PMC10520088 DOI: 10.1038/s41420-023-01622-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/27/2023] Open
Abstract
The inhibitor of apoptosis protein survivin has a critical regulatory role in carcinogenesis and treatment tolerance in colorectal cancer (CRC). However, the targeted drugs for survivin protein are extremely limited. In the present research, we discovered that Tanshinone IIA (Tan IIA) played a dual regulatory role in inhibiting tumorigenesis and reversing 5-Fu tolerance via modulating the expression and phosphorylation of survivin in CRC cells. Mechanistically, Tan IIA suppressed the Akt/WEE1/CDK1 signaling pathway, which led to the downregulation of survivin Thr34 phosphorylation and destruction of the interaction between USP1 and survivin to promote survivin ubiquitination and degradation. Furthermore, Tan IIA significantly facilitated chemoresistant CRC cells to 5-Fu sensitivity. These results revealed that Tan IIA possessed a strong antitumor activity against CRC cells and could act as an up-and-coming agent for treating CRC and overcoming chemotherapy resistance.
Collapse
Affiliation(s)
- Yaoquan Cao
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Haibo Tang
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Guohui Wang
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Pengzhou Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhi Song
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Weizheng Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xulong Sun
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xiaoxiao Zhong
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Qianqian Yu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Shaihong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Liyong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|