1
|
Sarapultsev A, Komelkova M, Lookin O, Khatsko S, Gusev E, Trofimov A, Tokay T, Hu D. Rat Models in Post-Traumatic Stress Disorder Research: Strengths, Limitations, and Implications for Translational Studies. PATHOPHYSIOLOGY 2024; 31:709-760. [PMID: 39728686 DOI: 10.3390/pathophysiology31040051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Post-Traumatic Stress Disorder (PTSD) is a multifaceted psychiatric disorder triggered by traumatic events, leading to prolonged psychological distress and varied symptoms. Rat models have been extensively used to explore the biological, behavioral, and neurochemical underpinnings of PTSD. This review critically examines the strengths and limitations of commonly used rat models, such as single prolonged stress (SPS), stress-re-stress (S-R), and predator-based paradigms, in replicating human PTSD pathology. While these models provide valuable insights into neuroendocrine responses, genetic predispositions, and potential therapeutic targets, they face challenges in capturing the full complexity of PTSD, particularly in terms of ethological relevance and translational validity. We assess the degree to which these models mimic the neurobiological and behavioral aspects of human PTSD, highlighting areas where they succeed and where they fall short. This review also discusses future directions in refining these models to improve their utility for translational research, aiming to bridge the gap between preclinical findings and clinical applications.
Collapse
Affiliation(s)
- Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 106 Pervomaiskaya Street, 620049 Ekaterinburg, Russia
| | - Maria Komelkova
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 76 Lenin Prospekt, 454080 Chelyabinsk, Russia
| | - Oleg Lookin
- National Scientific Medical Center, Astana 010000, Kazakhstan
| | - Sergey Khatsko
- Anatomical and Physiological Experimental Laboratory, Department of Experimental Biology and Biotechnology, Institute of Natural Sciences and Mathematics, 48 Kuybysheva Str., 620026 Ekaterinburg, Russia
| | - Evgenii Gusev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 106 Pervomaiskaya Street, 620049 Ekaterinburg, Russia
| | - Alexander Trofimov
- Biology Department, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbai Batyr Ave., Astana 010000, Kazakhstan
| | - Tursonjan Tokay
- Biology Department, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbai Batyr Ave., Astana 010000, Kazakhstan
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Key Laboratory of Biological Targeted Therapy, China-Russia Medical Research Center for Stress Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
2
|
Zhang LL, Cheng P, Chu YQ, Zhou ZM, Hua R, Zhang YM. The microglial innate immune receptor TREM2 participates in fear memory formation through excessive prelimbic cortical synaptic pruning. Front Immunol 2024; 15:1412699. [PMID: 39544929 PMCID: PMC11560470 DOI: 10.3389/fimmu.2024.1412699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction Fear memory formation has been implicated in fear- and stress-related psychiatric disorders, including post-traumatic stress disorder (PTSD) and phobias. Synapse deficiency and microglial activation are common among patients with PTSD, and induced in animal models of fear conditioning. Increasing studies now focus on explaining the specific mechanisms between microglia and synapse deficiency. Though newly-identified microglia regulator triggering receptor expressed on myeloid cells 2 (TREM2) plays a role in microglial phagocytic activity, its role in fear-formation remains unknown. Methods We successfully constructed a fear- formation model by foot-shock. Four days after foot-shock, microglial capacity of synaptic pruning was investigated via western blotting, immunofluorescence and Golgi-Cox staining. Prelimbic chemical deletion or microglia inhibition was performed to detect the role of microglia in synaptic loss and neuron activity. Finally, Trem2 knockout mice or wild-type mice with Trem2 siRNA injection were exposed to foot-shock to identify the involvement of TREM2 in fear memory formation. Results The results herein indicate that the foot-shock protocol in male mice resulted in a fear formation model. Mechanistically, fear conditioning enhanced the microglial capacity for engulfing synapse materials, and led to glutamatergic neuron activation in the prelimbic cortex. Prelimbic chemical deletion or microglia inhibition improved fear memory formation. Further investigation demonstrated that TREM2 regulates microglial phagocytosis, enhancing synaptic pruning. Trem2 knockout mice showed remarkable reductions in prelimbic synaptic pruning and reduced neuron activation, with decreased fear memory formation. Discussion Our cumulative results suggest that prelimbic TREM2-mediated excessive microglial synaptic pruning is involved in the fear memory formation process, leading to development of abnormal stress-related behavior.
Collapse
Affiliation(s)
- Le-le Zhang
- National Medical Products Administration Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Peng Cheng
- National Medical Products Administration Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yuan-qing Chu
- National Medical Products Administration Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Zi-ming Zhou
- National Medical Products Administration Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Rong Hua
- Department of Emergency, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yong-mei Zhang
- National Medical Products Administration Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Kouba BR, Altê GA, Rodrigues ALS. Putative Pharmacological Depression and Anxiety-Related Targets of Calcitriol Explored by Network Pharmacology and Molecular Docking. Pharmaceuticals (Basel) 2024; 17:893. [PMID: 39065743 PMCID: PMC11280388 DOI: 10.3390/ph17070893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Depression and anxiety disorders, prevalent neuropsychiatric conditions that frequently coexist, limit psychosocial functioning and, consequently, the individual's quality of life. Since the pharmacological treatment of these disorders has several limitations, the search for effective and secure antidepressant and anxiolytic compounds is welcome. Vitamin D has been shown to exhibit neuroprotective, antidepressant, and anxiolytic properties. Therefore, this study aimed to explore new molecular targets of calcitriol, the active form of vitamin D, through integrated bioinformatic analysis. Calcitriol targets were predicted in SwissTargetPrediction server (2019 version). The disease targets were collected by the GeneCards database searching the keywords "depression" and "anxiety". Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the intersections of targets. Network analyses were carried out using GeneMania server (2023 version) and Cytoscape (V. 3.9.1.) software. Molecular docking predicted the main targets of the network and Ligplot predicted the main intermolecular interactions. Our study showed that calcitriol may interact with multiple targets. The main targets found are the vitamin D receptor (VDR), histamine H3 receptor (H3R), endocannabinoid receptors 1 and 2 (CB1 and CB2), nuclear receptor NR1H3, patched-1 (PTCH1) protein, opioid receptor NOP, and phosphodiesterase enzymes PDE3A and PDE5A. Considering the role of these targets in the pathophysiology of depression and anxiety, our findings suggest novel putative mechanisms of action of vitamin D as well as new promising molecular targets whose role in these disorders deserves further investigation.
Collapse
Affiliation(s)
| | | | - Ana Lúcia S. Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88037-000, SC, Brazil; (B.R.K.); (G.A.A.)
| |
Collapse
|
4
|
Liu Q, Ding X, Wang Y, Chu H, Guan Y, Li M, Sun K. Artemisinin reduces PTSD-like symptoms, improves synaptic plasticity, and inhibits apoptosis in rats subjected to single prolonged stress. Front Pharmacol 2024; 15:1303123. [PMID: 38379899 PMCID: PMC10876839 DOI: 10.3389/fphar.2024.1303123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Post-Traumatic Stress Disorder (PTSD) is a chronic mental disorder characterized by symptoms of panic and anxiety, depression, impaired cognitive functioning, and difficulty in social interactions. While the effect of the traditional Chinese medicine artemisinin (AR) on PTSD is unknown, its therapeutic benefits have been demonstrated by studies on models of multiple neurological disorders. This study aimed to extend such findings by investigating the effects of AR administration on a rat model of PTSD induced by a regimen of single prolonged stress (SPS). After rats were subjected to the SPS protocol, AR was administered and its impact on PTSD-like behaviors was evaluated. In the present study, rats were subjected to a multitude of behavioral tests to evaluate behaviors related to anxiety, memory function, and social interactions. The expression of hippocampal synaptic plasticity-related proteins was detected using Western blot and immunofluorescence. The ultrastructure of synapses was observed under transmission electron microscopy. The apoptosis of hippocampal neurons was examined with Western blot, TUNEL staining, and HE staining. The results showed that AR administration alleviated the PTSD-like phenotypes in SPS rats, including behavior indicative of anxiety, cognitive deficits, and diminished sociability. AR administration was further observed to improve synaptic plasticity and inhibit neuronal apoptosis in SPS rats. These findings suggest that administering AR after the onset of severe traumatic events may alleviate anxiety, cognitive deficits, and impaired social interaction, improve synaptic plasticity, and diminish neuronal apoptosis. Hence, the present study provides evidence for AR's potential as a multi-target agent in the treatment of PTSD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kuisheng Sun
- School of Laboratory Medicine, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|