1
|
Brodnik ZD, Double M, España RA, Jaskiw GE. L-Tyrosine availability affects basal and stimulated catecholamine indices in prefrontal cortex and striatum of the rat. Neuropharmacology 2017; 123:159-174. [PMID: 28571714 DOI: 10.1016/j.neuropharm.2017.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 12/15/2022]
Abstract
We previously found that L-tyrosine (L-TYR) but not D-TYR administered by reverse dialysis elevated catecholamine synthesis in vivo in medial prefrontal cortex (MPFC) and striatum of the rat (Brodnik et al., 2012). We now report L-TYR effects on extracellular levels of catecholamines and their metabolites. In MPFC, reverse dialysis of L-TYR elevated in vivo levels of dihydroxyphenylacetic acid (DOPAC) (L-TYR 250-1000 μM), homovanillic acid (HVA) (L-TYR 1000 μM) and 3-methoxy-4-hydroxyphenylglycol (MHPG) (L-TYR 500-1000 μM). In striatum L-TYR 250 μM elevated DOPAC. We also examined L-TYR effects on extracellular dopamine (DA) and norepinephrine (NE) levels during two 30 min pulses (P2 and P1) of K+ (37.5 mM) separated by t = 2.0 h. L-TYR significantly elevated the ratio P2/P1 for DA (L-TYR 125 μM) and NE (L-TYR 125-250 μM) in MPFC but lowered P2/P1 for DA (L-TYR 250 μM) in striatum. Finally, we measured DA levels in brain slices using ex-vivo voltammetry. Perfusion with L-TYR (12.5-50 μM) dose-dependently elevated stimulated DA levels in striatum. In all the above studies, D-TYR had no effect. We conclude that acute increases within the physiological range of L-TYR levels can increase catecholamine metabolism and efflux in MPFC and striatum. Chronically, such repeated increases in L-TYR availability could induce adaptive changes in catecholamine transmission while amplifying the metabolic cost of catecholamine synthesis and degradation. This has implications for neuropsychiatric conditions in which neurotoxicity and/or disordered L-TYR transport have been implicated.
Collapse
Affiliation(s)
- Zachary D Brodnik
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States
| | - Manda Double
- Medical Research Service, Louis Stokes Cleveland DVAMC, 10701 East Blvd., Cleveland, OH 44106, United States
| | - Rodrigo A España
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States
| | - George E Jaskiw
- Medical Research Service, Louis Stokes Cleveland DVAMC, 10701 East Blvd., Cleveland, OH 44106, United States; Dept. of Psychiatry, Case Western University Medical Center at W.O. Walker 10524 Euclid Ave, Cleveland, OH 44133, United States.
| |
Collapse
|
2
|
Shnitko TA, Taylor SC, Stringfield SJ, Zandy SL, Cofresí RU, Doherty JM, Lynch WB, Boettiger CA, Gonzales RA, Robinson DL. Acute phenylalanine/tyrosine depletion of phasic dopamine in the rat brain. Psychopharmacology (Berl) 2016; 233:2045-2054. [PMID: 26944052 PMCID: PMC4864125 DOI: 10.1007/s00213-016-4259-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/17/2016] [Indexed: 12/26/2022]
Abstract
RATIONALE Dopamine plays a critical role in striatal and cortical function, and depletion of the dopamine precursors phenylalanine and tyrosine is used in humans to temporarily reduce dopamine and probe the role of dopamine in behavior. This method has been shown to alter addiction-related behaviors and cognitive functioning presumably by reducing dopamine transmission, but it is unclear what specific aspects of dopamine transmission are altered. OBJECTIVES We performed this study to confirm that administration of an amino acid mixture omitting phenylalanine and tyrosine (Phe/Tyr[-]) reduces tyrosine tissue content in the prefrontal cortex (PFC) and nucleus accumbens (NAc), and to test the hypothesis that Phe/Tyr[-] administration reduces phasic dopamine release in the NAc. METHODS Rats were injected with a Phe/Tyr[-] amino acid mixture, a control amino acid mixture, or saline. High-performance liquid chromatography was used to determine the concentration of tyrosine, dopamine, or norepinephrine in tissue punches from the PFC and ventral striatum. In a separate group of rats, phasic dopamine release was measured with fast-scan cyclic voltammetry in the NAc core after injection with either the Phe/Tyr[-] mixture or the control amino acid solution. RESULTS Phe/Tyr[-] reduced tyrosine content in the PFC and NAc, but dopamine and norepinephrine tissue content were not reduced. Moreover, Phe/Tyr[-] decreased the frequency of dopamine transients, but not their amplitude, in freely moving rats. CONCLUSIONS These results indicate that depletion of tyrosine via Phe/Tyr[-] decreases phasic dopamine transmission, providing insight into the mechanism by which this method modifies dopamine-dependent behaviors in human imaging studies.
Collapse
Affiliation(s)
- Tatiana A. Shnitko
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Sarah C. Taylor
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Sierra J. Stringfield
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC, USA
| | - Shannon L. Zandy
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Roberto U. Cofresí
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - James M. Doherty
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - William B. Lynch
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Charlotte A. Boettiger
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC, USA,Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Rueben A. Gonzales
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Donita L. Robinson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC, USA,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Bongiovanni R, Leonard S, Jaskiw GE. A simplified method to quantify dysregulated tyrosine transport in schizophrenia. Schizophr Res 2013; 150:386-91. [PMID: 24051014 DOI: 10.1016/j.schres.2013.08.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Schizophrenia is associated with altered tyrosine transport across plasma membranes. This is typically demonstrated by measuring the uptake of radiolabeled tyrosine in cultured human fibroblasts. Our primary goal was to determine whether tyrosine uptake could be characterized using unlabeled tyrosine. A secondary goal was to assess the effect of antipsychotic drugs added during the incubation. METHOD Epithelium-derived fibroblast cultures were generated from patients with schizophrenia (n=6) and age-matched controls (n=6). Cells between cycles 8-12 were exposed to an amino acid free medium for 60min and then for 1min to media containing tyrosine (0.008-1.0mM). Amino acid levels were measured and Michaelis-Menten parameters determined. Uptake of tyrosine (0.5mM) was also measured in control cells after antipsychotic drugs were introduced during the depletion or uptake phases. RESULTS Tyrosine uptake was sodium-independent. The maximal transport velocity (Vmax) was significantly lower in patients with schizophrenia than in controls (p<0.01). The transporter affinity (Km) did not differ between the groups. Tyrosine uptake was differentially affected (p<0.001) by inclusion of 10(-4)M haloperidol, chlorpromazine or clozapine during different periods of incubation. CONCLUSION Dysregulated tyrosine kinetics in schizophrenia can be readily studied without the use of radiolabeled tracers. The data also indicate that tyrosine uptake may be subject to complex pharmacological effects.
Collapse
Affiliation(s)
- Rodolfo Bongiovanni
- Psychiatry Service, Louis Stokes Cleveland DVAMC, Cleveland, OH 44106, United States.
| | | | | |
Collapse
|
4
|
Presynaptic regulation of extracellular dopamine levels in the medial prefrontal cortex and striatum during tyrosine depletion. Psychopharmacology (Berl) 2013; 227:363-71. [PMID: 23371490 DOI: 10.1007/s00213-013-2977-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022]
Abstract
RATIONALE Available neurochemical probes that lower brain dopamine (DA) levels in man are limited by their tolerability and efficacy. For instance, the acute lowering of brain tyrosine is well tolerated, but only modestly lowers brain DA levels. Modification of tyrosine depletion to robustly lower DA levels would provide a superior research probe. OBJECTIVES The objective of this study was to determine whether the subthreshold stimulation of presynaptic DA receptors would potentiate tyrosine depletion-induced effects on extracellular DA levels in the medial prefrontal cortex (MPFC) and striatum of the rat. METHODS We administered quinpirole, a predominantly DA type 2 (D2R) receptor agonist, into the MPFC and striatum by reverse dialysis. A tyrosine- and phenylalanine-free neutral amino acid mixture [NAA(-)] IP was used to lower brain tyrosine levels. DA levels in the microdialysate were measured by HPLC with electrochemical detection. RESULTS Quinpirole dose-dependently lowered DA levels in MPFC as well as in the striatum. NAA(-) alone transiently lowered DA levels (80 % baseline) in the striatum, but had no effect in MPFC. The co-administration of NAA(-) and a subthreshold concentration of quinpirole (6.25 nM) lowered DA levels (50 % baseline) in both the MPFC and striatum. This effect was blocked by the mixed D2R/D3R antagonist haloperidol at IP doses that on their own did not affect DA levels (10.0 nmol/kg in the MPFC and 0.10 nmol/kg in the striatum). CONCLUSIONS Pharmacological stimulation of inhibitory D2R receptors during tyrosine depletion markedly lowers the extracellular DA levels in the MPFC and striatum. The data suggest that combining tyrosine depletion with a low dose of a DA agonist should robustly lower brain regional DA levels in man.
Collapse
|
5
|
Bongiovanni R, Kyser AN, Jaskiw GE. Tyrosine depletion lowers in vivo DOPA synthesis in ventral hippocampus. Eur J Pharmacol 2012; 696:70-6. [PMID: 23022716 DOI: 10.1016/j.ejphar.2012.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 09/05/2012] [Accepted: 09/17/2012] [Indexed: 10/27/2022]
Abstract
In vivo dopamine synthesis in the medial prefrontal cortex of the rat is sensitive to the availability of tyrosine. Whether other limbic cortical dopamine terminal regions are similarly tyrosine-dependent is not known. In this study we examined the effects of tyrosine depletion on dopamine synthesis and catecholamine levels in the ventral hippocampus. A tyrosine- and phenylalanine-free neutral amino acid mixture was used to lower brain tyrosine levels in rats undergoing in vivo microdialysis. In one group, NSD-1015 was included in perfusate to permit measurement of DOPA levels. In a second group, NSD-1015 was not included in perfusate so that catecholamine levels could be assayed. Tyrosine depletion significantly lowered DOPA levels in the NSD-1015 treated group and lowered DOPAC but not dopamine or noradrenaline levels in the group not exposed to NSD-1015. We conclude that while catecholamine synthesis in the ventral hippocampus declines when tyrosine availability is lowered, under basal conditions, compensatory mechanisms are able to maintain stable extracellular catecholamine levels.
Collapse
Affiliation(s)
- Rodolfo Bongiovanni
- Psychiatry Service, Louis Stokes Cleveland VA Medical Center, 10701 East Blvd., Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|
6
|
McFarlane HG, Steele J, Vinion K, Bongiovanni R, Double M, Jaskiw GE. Acute lithium administration selectively lowers tyrosine levels in serum and brain. Brain Res 2011; 1420:29-36. [PMID: 21962398 DOI: 10.1016/j.brainres.2011.08.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 08/22/2011] [Indexed: 12/18/2022]
Abstract
Lithium exerts anti-dopaminergic behavioral effects. We examined whether some of these might be mediated by changes in brain levels of tyrosine (TYR), the precursor to dopamine. Lithium chloride (LiCl(2)) 3.0mEq/kg IP acutely lowered serum TYR and the ratio of serum TYR to other large neutral amino acids (LNAAs); it also selectively lowered striatum TYR levels as measured in tissue or in vivo. While LiCl(2) 3.0mEq/kg IP also augmented haloperidol (0.19mg/kg SC)-induced catalepsy, this lithium effect was not attenuated by administration of TYR 100mg/kg IP. We conclude that lithium acutely and selectively lowers brain TYR by lowering serum levels of tyrosine relative to the LNAAs that compete with it for transport across the blood-brain barrier. However, the lowering of TYR does not appear to significantly contribute to the ability of lithium to potentiate haloperidol-mediated catalepsy.
Collapse
|
7
|
The involvement of GABA(A) receptor in the molecular mechanisms of combined selective serotonin reuptake inhibitor-antipsychotic treatment. Int J Neuropsychopharmacol 2011; 14:143-55. [PMID: 20181299 DOI: 10.1017/s1461145710000106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
There is evidence that combining selective serotonin reuptake inhibitor (SSRI) antidepressant and antipsychotic drugs may improve negative symptoms in schizophrenia and resistant symptoms in obsessive-compulsive and affective disorders. To examine the mechanism of action of this treatment we investigated the molecular modulation of γ-aminobutyric acid-A (GABA(A)) receptor components and biochemical pathways associated with GABA(A) receptor function following administration of the SSRI fluvoxamine (Flu) combined with the first-generation antipsychotic haloperidol (Hal) and compared it to the individual drugs and the atypical antipsychotic clozapine (Clz). We analysed prefrontal cortices of Sprague-Dawley rats injected intraperitoneally (i.p.) with the combination of Flu (10 mg/kg) and Hal (1 mg/kg), each drug alone, or Clz (10 mg/kg) after 30 min and 1 h. We found that haloperidol plus fluvoxamine (Hal-Flu) co-administration, and Clz, decreased the level of GABAAβ2/3 receptor subunit in the cytosolic fraction, and increased it in the membrane compartment in rat PFC. Flu or Hal alone did not produce changes in GABAAβ2/3 receptor protein expression. Additionally, Hal-Flu and Clz regulated molecular signalling pathways that modulate GABA(A) receptor function, including protein kinase C (PKC) and extracellular signal-regulated kinase-2 (ERK2). In primary cortical culture, short-term treatment (15 min) with Hal-Flu combination and Clz increased GABAAβ subunit phosphorylation levels. Pretreatment of the cells with PKC inhibitor abolished the effect of the combined treatment, or Clz on phosphorylation of GABA(A) receptor. Inhibition of ERK2 did not alter the effect of drugs on GABA(A) receptor phosphorylation levels. Our findings provide evidence that the combined treatment regulates GABA(A) receptor function and does so via a PKC-dependent pathway.
Collapse
|
8
|
The Constitutive Activity of 5-HT2C Receptors as an Additional Modality of Interaction of the Serotonergic System. 5-HT2C RECEPTORS IN THE PATHOPHYSIOLOGY OF CNS DISEASE 2011. [DOI: 10.1007/978-1-60761-941-3_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
9
|
Gamma-butyrolactone-induced dopamine accumulation in prefrontal cortex is affected by tyrosine availability. Eur J Pharmacol 2008; 589:106-9. [PMID: 18606405 DOI: 10.1016/j.ejphar.2008.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 05/21/2008] [Accepted: 06/02/2008] [Indexed: 11/23/2022]
Abstract
Gamma-butyrolactone (GBL) elevates striatal and prefrontal cortex dopamine levels; only the striatal dopamine levels are elevated by increased dopamine synthesis. If increased dopamine synthesis is necessary in order for dopamine levels to be affected by tyrosine availability, then GBL-induced prefrontal cortex dopamine levels should be tyrosine insensitive. Rats received either vehicle, tyrosine (50 or 200 mg/kg i.p.) or a tyrosine-depleting mixture prior to GBL 750 mg/kg i.p.. GBL-induced dopamine levels in prefrontal cortex were lowered by tyrosine depletion. GBL-induced striatal dopamine levels were not affected. Hence, increased dopamine synthesis may not be necessary in order for tyrosine availability to affect pharmacologically elevated prefrontal cortex dopamine levels.
Collapse
|
10
|
Jaskiw GE, Newbould E, Bongiovanni R. Tyrosine availability modulates potassium-induced striatal catecholamine efflux in vivo. Brain Res 2008; 1209:74-84. [DOI: 10.1016/j.brainres.2008.02.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/14/2008] [Accepted: 02/15/2008] [Indexed: 11/17/2022]
|
11
|
Bongiovanni R, Newbould E, Jaskiw GE. Tyrosine depletion lowers dopamine synthesis and desipramine-induced prefrontal cortex catecholamine levels. Brain Res 2007; 1190:39-48. [PMID: 18082673 DOI: 10.1016/j.brainres.2007.10.079] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 10/20/2007] [Accepted: 10/28/2007] [Indexed: 11/29/2022]
Abstract
The relationship between limited tyrosine availability, DA (dopamine) synthesis and DA levels in the medial prefrontal cortex (MPFC) of the rat was examined by in vivo microdialysis. We administered a tyrosine- and phenylalanine-free mixture of large neutral amino acids (LNAA-) IP to lower brain tyrosine, and the norepinephrine transporter inhibitor desipramine (DMI) 10 mg/kg IP to raise MPFC DA levels without affecting DA synthesis. For examination of DOPA levels, NSD-1015 20 microM was included in perfusate. Neither NSD-1015 nor DMI affected tyrosine levels. LNAA- lowered tyrosine levels by 45%, and lowered DOPA levels as well; this was not additionally affected by concurrent DMI 10 mg/kg IP. In parallel studies DMI markedly increased extracellular levels of DA (420% baseline) and norepinephrine (NE) (864% baseline). LNAA- had no effect on baseline levels of DA or NE but robustly lowered DMI-induced DA (176% baseline) as well as NE (237% baseline) levels. Even when DMI (20 microM) was administered in perfusate, LNAA- still lowered DMI-induced DA and NE levels. We conclude that while baseline mesocortical DA synthesis is indeed dependent on tyrosine availability, the MPFC maintains normal extracellular DA and NA levels in the face of moderately lower DA synthesis. During other than baseline conditions, however, tyrosine depletion can lower ECF DA and NE levels in MPFC. These data offer a potential mechanism linking dysregulation of tyrosine transport and cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Rodolfo Bongiovanni
- Psychiatry Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Brecksville, OH 44141, USA
| | | | | |
Collapse
|
12
|
Casey KF, Benkelfat C, Young SN, Leyton M. Lack of effect of acute dopamine precursor depletion in nicotine-dependent smokers. Eur Neuropsychopharmacol 2006; 16:512-20. [PMID: 16545549 DOI: 10.1016/j.euroneuro.2006.02.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 01/26/2006] [Accepted: 02/02/2006] [Indexed: 11/18/2022]
Abstract
RATIONALE Nicotine increases dopamine (DA) release but its role in nicotine dependence remains unclear. OBJECTIVE To assess the role of DA in nicotine craving and self-administration using acute phenylalanine/tyrosine depletion (APTD). METHODS Fifteen nicotine-dependent men ingested, a minimum of 3days apart, a nutritionally balanced amino acid (AA) mixture (BAL), a mixture deficient in the catecholamine precursors, phenylalanine and tyrosine, and APTD followed by the immediate DA precursor, L-DOPA. Beginning 3h after ingestion of the AA mixture, subjects smoked 4 cigarettes. Craving, mood, and other aspects of subjective state were assessed with self-report scales. Smoking puff topography was measured with a computerized flowmeter. RESULTS APTD did not change smoking puff topography, cigarette craving, or subjective effects of smoking. CONCLUSIONS The findings suggest that in nicotine-dependent smokers craving for cigarettes, subjective effects of nicotine, and the self-administration of freely available cigarettes are largely unrelated to acute changes in DA neurotransmission.
Collapse
Affiliation(s)
- Kevin F Casey
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, Quebec, Canada H3A 1A1
| | | | | | | |
Collapse
|
13
|
Bongiovanni R, Young D, Newbould E, Jaskiw GE. Increased striatal dopamine synthesis is associated with decreased tissue levels of tyrosine. Brain Res 2006; 1115:26-36. [PMID: 16934236 DOI: 10.1016/j.brainres.2006.07.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 07/20/2006] [Accepted: 07/24/2006] [Indexed: 10/24/2022]
Abstract
Tyrosine levels do not generally affect indices of dopamine (DA) synthesis or efflux under basal conditions, but can do so when DA synthesis is increased. One possibility is that a high rate of DA synthesis depletes the normally adequate pool of endogenous tyrosine. To study this, we administered drugs known to preferentially increase striatal DA synthesis and examined DOPA levels in striatal microdialysate during perfusion with NSD-1015. In additional groups, we also measured DA, tyrosine and large neutral amino acids in striatal microdialysate, as well as in tissue from striatum and medial prefrontal cortex (MPFC). gamma-butyrolactone (GBL) (750 mg/kg i.p.) increased DOPA levels in striatal microdialysate, increased tissue DA levels in the MPFC and striatum, but lowered tissue tyrosine levels only in striatum. In striatal microdialysate, GBL markedly lowered DA levels; tyrosine levels were only marginally lower. Haloperidol (HAL) (1.0 mg/kg s.c.)+/-amfonelic acid (AFA) (5 mg/kg i.p.) increased striatal DOPA accumulation, increased striatal DA efflux, lowered striatal tissue tyrosine levels, but did not affect microdialysate tyrosine levels. There were no consistent changes in levels of other large neutral amino acids. We conclude that increased tyrosine hydroxylation can significantly deplete the endogenous pool of tyrosine. Under such conditions, near normal extracellular tyrosine levels are maintained despite lower tissue levels. The data are consistent with a net transfer of tyrosine from non-DAergic cells to DA terminals in support of DA synthesis.
Collapse
Affiliation(s)
- Rodolfo Bongiovanni
- Psychiatry Service, Louis Stokes Department of Veterans Affairs Medical Center, Cleveland, OH 44141, USA
| | | | | | | |
Collapse
|
14
|
Jaskiw GE, Kirkbride B, Bongiovanni R. In rats chronically treated with clozapine, tyrosine depletion attenuates the clozapine-induced in vivo increase in prefrontal cortex dopamine and norepinephrine levels. Psychopharmacology (Berl) 2006; 185:416-22. [PMID: 16541248 DOI: 10.1007/s00213-005-0283-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 11/28/2005] [Indexed: 11/28/2022]
Abstract
We previously reported that depletion of brain tyrosine attenuated the acute clozapine (CLZ)-induced increase in medial prefrontal cortex (MPFC) dopamine (DA) levels. This effect was now examined after chronic CLZ treatment. Male rats received CLZ (10 mg kg(-1) day(-1)) in drinking water for 21 days. On day 18, a cannula was stereotaxically implanted over the MPFC. A microdialysis probe was inserted on day 20. On day 21 after a stable baseline was reached, rats received an acute injection of vehicle (VEH) or a tyrosine- and phenylalanine-free mixture of neutral amino acid [NAA(-)] (total 1 g kg(-1), i.p., two injections, 1 h apart) followed by CLZ (10 mg kg(-1), i.p.) or VEH. Basal tyrosine or norepinephrine (NE) levels were not different between the groups, but basal DA was higher in the group treated chronically with CLZ (p<0.05). Acute CLZ (10 mg kg(-1), i.p.) increased MPFC DA and NE levels to 370% and 510% of baseline, respectively, and similarly in rats chronically pretreated with CLZ or VEH. NAA(-) did not affect basal MPFC DA or NE levels but significantly attenuated acute CLZ-induced DA (220% of baseline) and NE (330% of baseline) levels (p<0.01) in rats pretreated chronically with CLZ or with VEH. These data demonstrate that even after chronic CLZ administration, the acute CLZ-induced increases in MPFC DA and NE levels depend on the availability of brain tyrosine. Judicious manipulation of brain tyrosine levels may provide a useful probe as well as a mechanism for enhancing psychotropic drug actions.
Collapse
Affiliation(s)
- George E Jaskiw
- Louis Stokes Department of Veterans Affairs Medical Center, Cleveland, OH, USA.
| | | | | |
Collapse
|
15
|
Bongiovanni R, Kirkbride B, Walmire P, Jaskiw GE. Tyrosine administration does not affect desipramine-induced dopamine levels as measured in vivo in prefrontal cortex. Brain Res 2005; 1054:203-6. [PMID: 16083866 DOI: 10.1016/j.brainres.2005.06.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 06/24/2005] [Accepted: 06/28/2005] [Indexed: 11/30/2022]
Abstract
Using in vivo microdialysis, we examined whether tyrosine administration would potentiate the desipramine (DMI)-induced elevation of medial prefrontal cortex (MPFC) dopamine (DA) levels. DMI (10 or 20 mg/kg IP) increased MPFC DA levels but not DOPA accumulation. Tyrosine (12.5-100 mug/ml) administered by reverse microdialysis did not affect DMI-induced MPFC DA levels. The data support our hypothesis that DA synthesis must be significantly increased in order for administered tyrosine to increase extracellular DA levels.
Collapse
Affiliation(s)
- Rodolfo Bongiovanni
- Louis Stokes Department of Veterans Affairs Medical Center, Case Western Reserve University, 10000 Brecksville Road, Brecksville, OH 44141, USA
| | | | | | | |
Collapse
|