1
|
Karaoglan M, Grace AA. A potential candidate for prevention of PTSD: Prazosin prevents learned helplessness behavior in adult male rats. Psychiatry Res 2025; 343:116283. [PMID: 39602854 DOI: 10.1016/j.psychres.2024.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 10/25/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Post-Traumatic Stress Disorder (PTSD) is a debilitating psychiatric disorder that arises following exposure to an extreme stress. PTSD is characterized by five primary trauma-related symptom clusters, including symptoms of negative mood and hyperresponsivity to the traumatic event. Regrettably, the current therapy options are not highly effective. Therefore, prevention of PTSD is crucial and potentially applicable. Prazosin is an anti-adrenergic medication that is used to reduce nightmares in patient with PTSD, and can also mitigate the noradrenergic dysfunction caused by trauma. Here we show that administration of prazosin prior to the trauma prevented learned helplessness behavior in adult male rats. We show that the animals that were exposed to three days of inescapable foot shocks preceded by prazosin injections have fewer prazosin-treated animals showing learned helplessness compared to saline-treated animals. Nevertheless, there was no significant difference in anxiety-related behavior as measured in the elevated plus maze. Furthermore, the results of in vivo electrophysiological recordings of the ventral tegmental area shows that the prazosin group has a trend of increased number of active dopaminergic cells per track; this is significant when limited to central region of the ventral tegmental area. Our results demonstrate that prazosin has a potential for prevention of PTSD.
Collapse
Affiliation(s)
- Mehmet Karaoglan
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Heesbeen EJ, Bijlsma EY, Verdouw PM, van Lissa C, Hooijmans C, Groenink L. The effect of SSRIs on fear learning: a systematic review and meta-analysis. Psychopharmacology (Berl) 2023; 240:2335-2359. [PMID: 36847831 PMCID: PMC10593621 DOI: 10.1007/s00213-023-06333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023]
Abstract
RATIONALE Selective serotonin reuptake inhibitors (SSRIs) are considered first-line medication for anxiety-like disorders such as panic disorder, generalized anxiety disorder, and post-traumatic stress disorder. Fear learning plays an important role in the development and treatment of these disorders. Yet, the effect of SSRIs on fear learning are not well known. OBJECTIVE We aimed to systematically review the effect of six clinically effective SSRIs on acquisition, expression, and extinction of cued and contextual conditioned fear. METHODS We searched the Medline and Embase databases, which yielded 128 articles that met the inclusion criteria and reported on 9 human and 275 animal experiments. RESULTS Meta-analysis showed that SSRIs significantly reduced contextual fear expression and facilitated extinction learning to cue. Bayesian-regularized meta-regression further suggested that chronic treatment exerts a stronger anxiolytic effect on cued fear expression than acute treatment. Type of SSRI, species, disease-induction model, and type of anxiety test used did not seem to moderate the effect of SSRIs. The number of studies was relatively small, the level of heterogeneity was high, and publication bias has likely occurred which may have resulted in an overestimation of the overall effect sizes. CONCLUSIONS This review suggests that the efficacy of SSRIs may be related to their effects on contextual fear expression and extinction to cue, rather than fear acquisition. However, these effects of SSRIs may be due to a more general inhibition of fear-related emotions. Therefore, additional meta-analyses on the effects of SSRIs on unconditioned fear responses may provide further insight into the actions of SSRIs.
Collapse
Affiliation(s)
- Elise J Heesbeen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Elisabeth Y Bijlsma
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - P Monika Verdouw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Caspar van Lissa
- Department of Methodology, Tilburg University, Tilburg, Netherlands
| | - Carlijn Hooijmans
- Department of Anaesthesiology, Pain and Palliative Care, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lucianne Groenink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
3
|
Armario A. The forced swim test: Historical, conceptual and methodological considerations and its relationship with individual behavioral traits. Neurosci Biobehav Rev 2021; 128:74-86. [PMID: 34118295 DOI: 10.1016/j.neubiorev.2021.06.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/13/2021] [Accepted: 06/06/2021] [Indexed: 01/14/2023]
Abstract
The forced swim test (FST), developed by Porsolt and collaborators in 1977 to evaluate antidepressant (AD) treatments in rodents, has become extensively used for this purpose and to evaluate depression-like states. Despite its popularity, studies have raised important concerns regarding its theoretical and predictive validity. In my view and that of others, the FST mainly evaluates coping strategies in an inescapable situation. Although it is reasonable to assume that ADs act favoring active coping whereas negative affective states would favor passive coping, this does not mean that only ADs should enhance active coping or that a depression state has developed, respectively. Given its simplicity, proper interpretation of the FST behavior is critically dependent on how FST behavior relates to other behavioral traits. Unfortunately, this issue has been poorly discussed previously. Then, the present review, using a historical perspective, offers information needed to better understand the meaning and limitations of the FST, discusses critical methodological aspects and analyzes the relationship of FST behavior with classical behavioral traits in rodents.
Collapse
Affiliation(s)
- Antonio Armario
- Institut de Neurociències, Animal Physiology Unit (Department of Cellular Biology, Physiology and Immunology), Faculty of Biosciences, Universitat Autònoma de Barcelona, CIBERSAM, Campus Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.
| |
Collapse
|
4
|
Huzian O, Baka J, Csakvari E, Dobos N, Leranth C, Siklos L, Duman RS, Farkas T, Hajszan T. Stress Resilience is Associated with Hippocampal Synaptoprotection in the Female Rat Learned Helplessness Paradigm. Neuroscience 2021; 459:85-103. [PMID: 33524494 DOI: 10.1016/j.neuroscience.2021.01.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 12/28/2022]
Abstract
The synaptogenic hypothesis of major depressive disorder implies that preventing the onset of depressive-like behavior also prevents the loss of hippocampal spine synapses. By applying the psychoactive drugs, diazepam and fluoxetine, we investigated whether blocking the development of helpless behavior by promoting stress resilience in the rat learned helplessness paradigm is associated with a synaptoprotective action in the hippocampus. Adult ovariectomized and intact female Sprague-Dawley rats (n = 297) were treated with either diazepam, fluoxetine, or vehicle, exposed to inescapable footshocks or sham stress, and tested in an active escape task to assess helpless behavior. Escape-evoked corticosterone secretion, as well as remodeling of hippocampal spine synapses at a timepoint representing the onset of escape testing were also analyzed. In ovariectomized females, treatment with diazepam prior to stress exposure prevented helpless behavior, blocked the loss of hippocampal spine synapses, and muted the corticosterone surge evoked by escape testing. Although fluoxetine stimulated escape performance and hippocampal synaptogenesis under non-stressed conditions, almost all responses to fluoxetine were abolished following exposure to inescapable stress. Only a much higher dose of fluoxetine was capable of partly reproducing the strong protective actions of diazepam. Importantly, these protective actions were retained in the presence of ovarian hormones. Our findings indicate that stress resilience is associated with the preservation of spine synapses in the hippocampus, raising the possibility that, besides synaptogenesis, hippocampal synaptoprotection is also implicated in antidepressant therapy.
Collapse
Affiliation(s)
- Orsolya Huzian
- Institute of Biophysics, Biological Research Center, Temesvari Krt 62, 6726 Szeged, Hungary
| | - Judith Baka
- Institute of Biophysics, Biological Research Center, Temesvari Krt 62, 6726 Szeged, Hungary
| | - Eszter Csakvari
- Institute of Biophysics, Biological Research Center, Temesvari Krt 62, 6726 Szeged, Hungary
| | - Nikoletta Dobos
- Institute of Biophysics, Biological Research Center, Temesvari Krt 62, 6726 Szeged, Hungary
| | - Csaba Leranth
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, United States; Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, United States
| | - Laszlo Siklos
- Institute of Biophysics, Biological Research Center, Temesvari Krt 62, 6726 Szeged, Hungary
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06508, United States; Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Tamas Farkas
- Department of Physiology, Anatomy, and Neuroscience, University of Szeged Faculty of Science and Informatics, Kozep Fasor 52, 6726 Szeged, Hungary
| | - Tibor Hajszan
- Institute of Biophysics, Biological Research Center, Temesvari Krt 62, 6726 Szeged, Hungary; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, United States.
| |
Collapse
|
5
|
A missing link between depression models: Forced swimming test, helplessness and passive coping in genetically heterogeneous NIH-HS rats. Behav Processes 2020; 177:104142. [DOI: 10.1016/j.beproc.2020.104142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/28/2020] [Accepted: 05/17/2020] [Indexed: 01/11/2023]
|
6
|
Blockade of NOP receptor modulates anxiety-related behaviors in mice exposed to inescapable stress. Psychopharmacology (Berl) 2020; 237:1633-1642. [PMID: 32095915 DOI: 10.1007/s00213-020-05487-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 02/14/2020] [Indexed: 02/03/2023]
Abstract
RATIONALE Depression and anxiety frequently co-occur, and this has important clinical implications. Previous studies showed that activation of the nociceptin/orphanin FQ receptor (NOP) elicits anxiolytic effects, while its blockade promotes consistent antidepressant actions. NOP antagonists are effective in reversing footshock-induced depressive-like behaviors, but their effects on stress-induced anxiety are still unclear. OBJECTIVE This study aimed to investigate the effects of the NOP antagonist SB-612111 on footshock stress-induced anxiety behaviors. METHODS Male Swiss mice were exposed to inescapable electric footshock stress, and behavioral phenotype was screened based on the ability to escape from footshock (i.e., helpless or non-helpless). Animals were then treated with diazepam (1 mg/kg) and SB-612111 (0.1-10 mg/kg), and their behavior was assessed in the elevated plus-maze (EPM) and open field test. RESULTS When compared with non-stressed mice, helpless, but not non-helpless, animals displayed significant reductions in the time spent in and entries into open arms in the EPM. Diazepam significantly increased open arms exploration in helpless, non-helpless, and non-stressed mice. However, treatment with the NOP antagonist SB-612111 was inactive in naive mice, while it reversed anxiogenic-related behaviors in helpless mice and increased anxiety states in non-helpless mice. No effects on locomotion were observed. CONCLUSION Helpless mice displayed increased anxiety compared to non-stressed and non-helpless animals, thus supporting use of this approach as an animal model to investigate anxiety/depression comorbidity. Additionally, SB-612111 modulated anxiety-like behaviors in male mice depending on individual stress susceptibility. Ultimately, NOP antagonists could be useful for treating anxiety in depressed patients.
Collapse
|
7
|
5-HT2C receptor blockade reverses SSRI-associated basal ganglia dysfunction and potentiates therapeutic efficacy. Mol Psychiatry 2020; 25:3304-3321. [PMID: 30120415 PMCID: PMC6378140 DOI: 10.1038/s41380-018-0227-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 07/13/2018] [Accepted: 07/24/2018] [Indexed: 11/09/2022]
Abstract
Serotonin (5-HT) selective reuptake inhibitors (SSRIs) are widely used in the treatment of depression and anxiety disorders, but responsiveness is uncertain and side effects often lead to discontinuation. Side effect profiles suggest that SSRIs reduce dopaminergic (DAergic) activity, but specific mechanistic insight is missing. Here we show in mice that SSRIs impair motor function by acting on 5-HT2C receptors in the substantia nigra pars reticulata (SNr), which in turn inhibits nigra pars compacta (SNc) DAergic neurons. SSRI-induced motor deficits can be reversed by systemic or SNr-localized 5-HT2C receptor antagonism. SSRIs induce SNr hyperactivity and SNc hypoactivity that can also be reversed by systemic 5-HT2C receptor antagonism. Optogenetic inhibition of SNc DAergic neurons mimics the motor deficits due to chronic SSRI treatment, whereas local SNr 5-HT2C receptor antagonism or optogenetic activation of SNc DAergic neurons reverse SSRI-induced motor deficits. Lastly, we find that 5-HT2C receptor antagonism potentiates the antidepressant and anxiolytic effects of SSRIs. Together our findings demonstrate opposing roles for 5-HT2C receptors in the effects of SSRIs on motor function and affective behavior, highlighting the potential benefits of 5-HT2C receptor antagonists for both reduction of motor side effects of SSRIs and augmentation of therapeutic antidepressant and anxiolytic effects.
Collapse
|
8
|
Residual avoidance: A new, consistent and repeatable readout of chronic stress-induced conflict anxiety reversible by antidepressant treatment. Neuropharmacology 2019; 153:98-110. [DOI: 10.1016/j.neuropharm.2019.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/12/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023]
|
9
|
Li M, Chou SY. Modeling postpartum depression in rats: theoretic and methodological issues. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2017; 37:229-36. [PMID: 27469254 DOI: 10.13918/j.issn.2095-8137.2016.4.229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The postpartum period is when a host of changes occur at molecular, cellular, physiological and behavioral levels to prepare female humans for the challenge of maternity. Alteration or prevention of these normal adaptions is thought to contribute to disruptions of emotion regulation, motivation and cognitive abilities that underlie postpartum mental disorders, such as postpartum depression. Despite the high incidence of this disorder, and the detrimental consequences for both mother and child, its etiology and related neurobiological mechanisms remain poorly understood, partially due to the lack of appropriate animal models. In recent decades, there have been a number of attempts to model postpartum depression disorder in rats. In the present review, we first describe clinical symptoms of postpartum depression and discuss known risk factors, including both genetic and environmental factors. Thereafter, we discuss various rat models that have been developed to capture various aspects of this disorder and knowledge gained from such attempts. In doing so, we focus on the theories behind each attempt and the methods used to achieve their goals. Finally, we point out several understudied areas in this field and make suggestions for future directions.
Collapse
Affiliation(s)
- Ming Li
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588-0308 USA.
| | - Shinn-Yi Chou
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588-0308 USA
| |
Collapse
|
10
|
Baka J, Csakvari E, Huzian O, Dobos N, Siklos L, Leranth C, MacLusky NJ, Duman RS, Hajszan T. Stress induces equivalent remodeling of hippocampal spine synapses in a simulated postpartum environment and in a female rat model of major depression. Neuroscience 2017; 343:384-397. [PMID: 28012870 PMCID: PMC5421158 DOI: 10.1016/j.neuroscience.2016.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 12/11/2016] [Accepted: 12/13/2016] [Indexed: 12/24/2022]
Abstract
Stress and withdrawal of female reproductive hormones are known risk factors of postpartum depression. Although both of these factors are capable of powerfully modulating neuronal plasticity, there is no direct electron microscopic evidence of hippocampal spine synapse remodeling in postpartum depression. To address this issue, hormonal conditions of pregnancy and postpartum period were simulated in ovariectomized adult female Sprague-Dawley rats (n=76). The number of hippocampal spine synapses and the depressive behavior of rats in an active escape task were investigated in untreated control, hormone-withdrawn 'postpartum', simulated proestrus, and hormone-treated 'postpartum' animals. After 'postpartum' withdrawal of gonadal steroids, inescapable stress caused a loss of hippocampal spine synapses, which was related to poor escape performance in hormone-withdrawn 'postpartum' females. These responses were equivalent with the changes observed in untreated controls that is an established animal model of major depression. Maintaining proestrus levels of ovarian hormones during 'postpartum' stress exposure did not affect synaptic and behavioral responses to inescapable stress in simulated proestrus animals. By contrast, maintaining pregnancy levels of estradiol and progesterone during 'postpartum' stress exposure completely prevented the stress-induced loss of hippocampal spine synapses, which was associated with improved escape performance in hormone-treated 'postpartum' females. This protective effect appears to be mediated by a muted stress response as measured by serum corticosterone concentrations. In line with our emerging 'synaptogenic hypothesis' of depression, the loss of hippocampal spine synapses may be a novel perspective both in the pathomechanism and in the clinical management of postpartum affective illness.
Collapse
Affiliation(s)
- Judith Baka
- Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Temesvari Krt 62, 6726 Szeged, Hungary
| | - Eszter Csakvari
- Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Temesvari Krt 62, 6726 Szeged, Hungary
| | - Orsolya Huzian
- Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Temesvari Krt 62, 6726 Szeged, Hungary
| | - Nikoletta Dobos
- Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Temesvari Krt 62, 6726 Szeged, Hungary
| | - Laszlo Siklos
- Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Temesvari Krt 62, 6726 Szeged, Hungary
| | - Csaba Leranth
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, United States; Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, United States
| | - Neil J MacLusky
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road E, Guelph, Ontario N1G 2W1, Canada
| | - Ronald S Duman
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, United States; Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06508, United States
| | - Tibor Hajszan
- Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Temesvari Krt 62, 6726 Szeged, Hungary; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, United States.
| |
Collapse
|
11
|
Holanda VAD, Medeiros IU, Asth L, Guerrini R, Calo' G, Gavioli EC. Antidepressant activity of nociceptin/orphanin FQ receptor antagonists in the mouse learned helplessness. Psychopharmacology (Berl) 2016; 233:2525-32. [PMID: 27129865 DOI: 10.1007/s00213-016-4310-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/14/2016] [Indexed: 02/07/2023]
Abstract
RATIONALE Pharmacological and genetic evidence support antidepressant-like effects elicited by the blockade of the NOP receptor. The learned helplessness (LH) model employs uncontrollable and unpredictable electric footshocks as a stressor stimulus to induce a depressive-like phenotype that can be reversed by classical antidepressants. OBJECTIVES The present study aimed to evaluate the action of NOP receptor antagonists in helpless mice. METHODS Male Swiss mice were subjected to the three steps of the LH paradigm (i.e., (1) induction, (2) screening, and (3) test). Only helpless animals were subjected to the test session. During the test session, animals were placed in the electrified chamber and the latency to escape after the footshock and the frequency of escape failures were recorded. The effect of the following treatments administered before the test session were evaluated: nortriptyline (30 mg/kg, ip, 60 min), fluoxetine (30 mg/kg, ip, four consecutive days of treatment), and NOP antagonists SB-612111 (1-10 mg/kg, ip, 30 min) and UFP-101 (1-10 nmol, icv, 5 min). To rule out possible biases, the effects of treatments on controllable stressful and non stressful situations were assessed. RESULTS In helpless mice, nortriptyline, fluoxetine, UFP-101 (3-10 nmol), and SB-612111 (3-10 mg/kg) significantly reduced escape latencies and escape failures. No effects of drug treatments were observed in mice subjected to the controllable electric footshocks and non stressful situations. CONCLUSIONS Acute treatment with NOP antagonists reversed helplessness similarly to the classical antidepressants. These findings support the proposal that NOP receptor antagonists are worthy of development as innovative antidepressant drugs.
Collapse
Affiliation(s)
- Victor A D Holanda
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, Natal, Brazil, 59072-970
| | - Iris U Medeiros
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, Natal, Brazil, 59072-970
| | - Laila Asth
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, Natal, Brazil, 59072-970
| | - Remo Guerrini
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Girolamo Calo'
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Elaine C Gavioli
- Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, s/n, Campus Universitário, Lagoa Nova, Natal, Brazil, 59072-970.
| |
Collapse
|
12
|
Belujon P, Grace AA. Restoring mood balance in depression: ketamine reverses deficit in dopamine-dependent synaptic plasticity. Biol Psychiatry 2014; 76:927-36. [PMID: 24931705 PMCID: PMC4223010 DOI: 10.1016/j.biopsych.2014.04.014] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 04/01/2014] [Accepted: 04/18/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND One of the most novel and exciting findings in major depressive disorder research over the last decade is the discovery of the fast-acting and long-lasting antidepressant effects of ketamine. Indeed, the therapeutic effects of classic antidepressants, such as selective serotonin reuptake inhibitors, require a month or longer to be expressed, with about a third of major depressive disorder patients resistant to treatment. Clinical studies have shown that a low dose of ketamine exhibits fast-acting relatively sustained antidepressant action, even in treatment-resistant patients. However, the mechanisms of ketamine action at a systems level remain unclear. METHODS Wistar-Kyoto rats were exposed to inescapable, uncontrollable footshocks. To evaluate learned helplessness behavior, we used an active avoidance task in a shuttle box equipped with an electrical grid floor. After helplessness assessment, we performed in vivo electrophysiological recordings first from ventral tegmental area dopaminergic (DA) neurons and second from accumbens neurons responsive to fimbria stimulation. Ketamine was injected and tested on helpless behavior and electrophysiological recordings. RESULTS We show that ketamine is able to restore the integrity of a network by acting on the DA system and restoring synaptic dysfunction observed in stress-induced depression. We show that part of the antidepressant effect of ketamine is via the DA system. Indeed, injection of ketamine restores a decreased dopamine neuron population activity, as well as synaptic plasticity (long-term potentiation) in the hippocampus-accumbens pathway, via, in part, activation of D1 receptors. CONCLUSIONS This work provides a unique systems perspective on the mechanisms of ketamine on a disrupted limbic system.
Collapse
Affiliation(s)
- Pauline Belujon
- Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania..
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
13
|
Moskal JR, Burch R, Burgdorf JS, Kroes RA, Stanton PK, Disterhoft JF, Leander JD. GLYX-13, an NMDA receptor glycine site functional partial agonist enhances cognition and produces antidepressant effects without the psychotomimetic side effects of NMDA receptor antagonists. Expert Opin Investig Drugs 2013; 23:243-54. [PMID: 24251380 DOI: 10.1517/13543784.2014.852536] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The N-methyl-d-aspartate receptor-ionophore complex plays a key role in learning and memory and has efficacy in animals and humans with affective disorders. GLYX-13 is an N-methyl-d-aspartate receptor (NMDAR) glycine-site functional partial agonist and cognitive enhancer that also shows rapid antidepressant activity without psychotomimetic side effects. AREAS COVERED The authors review the mechanism of action of GLYX-13 that was investigated in preclinical studies and evaluated in clinical studies. Specifically, the authors review its pharmacology, pharmacokinetics, and drug safety that were demonstrated in clinical studies. EXPERT OPINION NMDAR full antagonists can produce rapid antidepressant effects in treatment-resistant subjects; however, they are often accompanied by psychotomimetic effects that make chronic use outside of a clinical trial inpatient setting problematic. GLYX-13 appears to exert its antidepressant effects in the frontal cortex via NMDAR-triggered synaptic plasticity. Understanding the mechanistic underpinning of GLYX-13's antidepressant action should provide both novel insights into the role of the glutamatergic system in depression and identify new targets for therapeutic development.
Collapse
Affiliation(s)
- Joseph R Moskal
- Northwestern University, McCormick School of Engineering and Applied Science, Falk Center for Molecular Therapeutics, Department of Biomedical Engineering , 1801 Maple Avenue, Suite 4300, Evanston IL 60201 , USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier CA, Licznerski P, Lepack A, Majik MS, Jeong LS, Banasr M, Son H, Duman RS. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med 2012; 18:1413-7. [PMID: 22885997 PMCID: PMC3491115 DOI: 10.1038/nm.2886] [Citation(s) in RCA: 592] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 06/23/2012] [Indexed: 01/01/2023]
Abstract
Previous imaging and postmortem studies have reported a lower brain volume and a smaller size and density of neurons in the dorsolateral prefrontal cortex (dlPFC) of subjects with major depressive disorder (MDD). These findings suggest that synapse number and function are decreased in the dlPFC of patients with MDD. However, there has been no direct evidence reported for synapse loss in MDD, and the gene expression alterations underlying these effects have not been identified. Here we use microarray gene profiling and electron microscopic stereology to reveal lower expression of synaptic-function–related genes (CALM2, SYN1, RAB3A, RAB4B and TUBB4) in the dlPFC of subjects with MDD and a corresponding lower number of synapses. We also identify a transcriptional repressor, GATA1, expression of which is higher in MDD and that, when expressed in PFC neurons, is sufficient to decrease the expression of synapse-related genes, cause loss of dendritic spines and dendrites, and produce depressive behavior in rat models of depression.
Collapse
Affiliation(s)
- Hyo Jung Kang
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bougarel L, Guitton J, Zimmer L, Vaugeois JM, El Yacoubi M. Behaviour of a genetic mouse model of depression in the learned helplessness paradigm. Psychopharmacology (Berl) 2011; 215:595-605. [PMID: 21340472 DOI: 10.1007/s00213-011-2218-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 02/03/2011] [Indexed: 12/12/2022]
Abstract
RATIONALE H/Rouen (displaying a helpless phenotype in the tail suspension test) mice exhibiting features of depressive disorders and NH/Rouen (displaying non-helpless phenotype) mice were previously created through behavioural screening and selective breeding. Learned helplessness (LH), in which footshock stress induces a coping deficit, models some aspects of depression in rodents, but so far, fewer LH studies have been performed in mice than in rats. OBJECTIVES To study H/Rouen and NH/Rouen in the LH paradigm. RESULTS When CD1 mice were submitted to footshock with various training durations and shock intensities, the most suitable parameters to induce a behavioural deficit were 0.3 mA and four training sessions. A significantly longer latency to escape shocks was found in male H/Rouen mice compared to male NH/Rouen mice. On the other hand, once shocked, NH/Rouen mice showed more severe coping deficits than H/Rouen mice. In addition, a sub-chronic treatment with fluoxetine lacked efficacy in NH/Rouen mice, whereas it improved performances in H/Rouen mice. We also found that a shock reminder at day 8, subsequent to inescapable shocks, maintained helplessness for 20 days. Finally, female H/Rouen mice responded to chronic fluoxetine administration after 10 days of treatment, while a 20-day treatment was necessary to improve the behavioural deficit in H/Rouen male mice. CONCLUSION H/Rouen and NH/Rouen lines displayed different despair-related behaviour in the LH paradigm. Fluoxetine had beneficial effects after sub-chronic or chronic but not acute treatment of H/Rouen mice, thus providing a pharmacological validation of the protocols.
Collapse
Affiliation(s)
- Laure Bougarel
- Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292/INSERM U1028 Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Faculté de Pharmacie, Université Lyon 1, Lyon, France
| | | | | | | | | |
Collapse
|
16
|
Carr GV, Lucki I. The role of serotonin receptor subtypes in treating depression: a review of animal studies. Psychopharmacology (Berl) 2011; 213:265-87. [PMID: 21107537 PMCID: PMC3374933 DOI: 10.1007/s00213-010-2097-z] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 11/04/2010] [Indexed: 01/22/2023]
Abstract
RATIONALE Serotonin reuptake inhibitors (SSRIs) are effective in treating depression. Given the existence of different families and subtypes of 5-HT receptors, multiple 5-HT receptors may be involved in the antidepressant-like behavioral effects of SSRIs. OBJECTIVE Behavioral pharmacology studies investigating the role of 5-HT receptor subtypes in producing or blocking the effects of SSRIs were reviewed. RESULTS Few animal behavior tests were available to support the original development of SSRIs. Since their development, a number of behavioral tests and models of depression have been developed that are sensitive to the effects of SSRIs, as well as to other types of antidepressant treatments. The rationale for the development and use of these tests is reviewed. Behavioral effects similar to those of SSRIs (antidepressant-like) have been produced by agonists at 5-HT(1A), 5-HT(1B), 5-HT(2C), 5-HT(4), and 5-HT(6) receptors. Also, antagonists at 5-HT(2A), 5-HT(2C), 5-HT(3), 5-HT(6), and 5-HT(7) receptors have been reported to produce antidepressant-like responses. Although it seems paradoxical that both agonists and antagonists at particular 5-HT receptors can produce antidepressant-like effects, they probably involve diverse neurochemical mechanisms. The behavioral effects of SSRIs and other antidepressants may also be augmented when 5-HT receptor agonists or antagonists are given in combination. CONCLUSIONS The involvement of 5-HT receptors in the antidepressant-like effects of SSRIs is complex and involves the orchestration of stimulation and blockade at different 5-HT receptor subtypes. Individual 5-HT receptors provide opportunities for the development of a newer generation of antidepressants that may be more beneficial and effective than SSRIs.
Collapse
|
17
|
Okamoto H, Voleti B, Banasr M, Sarhan M, Duric V, Girgenti MJ, Dileone RJ, Newton SS, Duman RS. Wnt2 expression and signaling is increased by different classes of antidepressant treatments. Biol Psychiatry 2010; 68:521-7. [PMID: 20570247 PMCID: PMC2929274 DOI: 10.1016/j.biopsych.2010.04.023] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/09/2010] [Accepted: 04/15/2010] [Indexed: 12/19/2022]
Abstract
BACKGROUND Despite recent interest in glycogen synthase kinase-3beta (GSK-3beta) as a target for the treatment of mood disorders, there has been very little work related to these illnesses on the upstream signaling molecules that regulate this kinase as well as downstream targets. METHODS With a focused microarray approach we examined the influence of different classes of antidepressants on Wnt signaling that controls GSK-3beta activity as well as the transcription factors that contribute to the actions of GSK-3beta. RESULTS The results demonstrate that Wnt2 is a common target of different classes of antidepressants and also show differential regulation of Wnt-GSK-3beta signaling genes. Increased expression and function of Wnt2 was confirmed by secondary measures. Moreover, with a viral vector approach we demonstrate that increased expression of Wnt2 in the hippocampus is sufficient to produce antidepressant-like behavioral actions in well-established models of depression and treatment response. CONCLUSIONS These findings demonstrate that Wnt2 expression and signaling is a common target of antidepressants and that increased Wnt2 is sufficient to produce antidepressant effects.
Collapse
Affiliation(s)
- Hideki Okamoto
- Connecticut Mental Health Center, Yale University School of Medicine, New Haven, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Greenwood BN, Strong PV, Fleshner M. Lesions of the basolateral amygdala reverse the long-lasting interference with shuttle box escape produced by uncontrollable stress. Behav Brain Res 2010; 211:71-6. [PMID: 20226213 PMCID: PMC2862138 DOI: 10.1016/j.bbr.2010.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 10/19/2022]
Abstract
Exposure to an uncontrollable, but not a controllable, stressor produces a constellation of behaviors called learned helplessness. In rodents, uncontrollable stress interferes with the ability to learn to escape from escapable shocks delivered in a shuttle box. The stress-induced shuttle box escape deficit is a common screening tool for potential antidepressant strategies. Inconsistencies in the literature exist regarding the time-course of, and mechanisms underlying, stress-induced escape deficits. When no common cues are shared between the stressor and testing environment, the escape deficit is short lived and independent of conditioned freezing. In contrast, when stress and testing occur in the same or similar environments, the escape deficit is very long lasting. The current studies address the hypothesis that the long-lived escape deficit produced by uncontrollable stress is dependent upon conditioned fear and the basolateral amygdala (BLA). Rats received bilateral excitotoxic lesions of the BLA 2 weeks following uncontrollable foot shocks. One week after surgery, rats were tested for conditioned freezing and escape behavior in the same shuttle boxes in which prior foot shocks were delivered. Stressed rats with sham lesions displayed robust conditioned freezing and failed to escape during shuttle box testing. Lesions of the BLA eliminated conditioned freezing and completely restored stressed rats' ability to perform the escape contingency. These data indicate that the long-lived stress-induced escape deficit produced under conditions in which the stressor and testing environments share common cues is dependent upon conditioned freezing elicited by the BLA. Results have important implications for the mechanisms underlying learned helplessness phenomena.
Collapse
Affiliation(s)
- Benjamin N. Greenwood
- Department of Integrative Physiology and the Center for Neuroscience, University of Colorado-Boulder
| | - Paul V. Strong
- Department of Integrative Physiology and the Center for Neuroscience, University of Colorado-Boulder
| | - Monika Fleshner
- Department of Integrative Physiology and the Center for Neuroscience, University of Colorado-Boulder
| |
Collapse
|
19
|
Dynorphin, stress, and depression. Brain Res 2009; 1314:56-73. [PMID: 19782055 DOI: 10.1016/j.brainres.2009.09.074] [Citation(s) in RCA: 363] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/14/2009] [Accepted: 09/17/2009] [Indexed: 12/29/2022]
Abstract
Stress is most often associated with aversive states. It rapidly induces the release of hormones and neuropeptides including dynorphin, which activates kappa opioid receptors (KORs) in the central and peripheral nervous systems. In animal models, many aversive effects of stress are mimicked or exacerbated by stimulation of KORs in limbic brain regions. Although KOR signaling during acute stress may increase physical ability (by producing analgesia) and motivation to escape a threat (by producing aversion), prolonged KOR signaling in response to chronic or uncontrollable stress can lead to persistent expression of behavioral signs that are characteristic of human depressive disorders (i.e., "prodepressive-like" signs). Accumulating evidence suggests that KORs contribute to the progressive amplification (sensitization) of stress-induced behaviors that occurs with repeated exposure to stress. Many of the aversive effects of stress are blocked by KOR antagonists, suggesting that these agents may have potential as therapeutics for stress-related conditions such as depression and anxiety disorders. This review summarizes current data on how KOR systems contribute to the acute (rapid), delayed, and cumulative molecular and behavioral effects of stress. We focus on behavioral paradigms that provide insight on interactions between stress and KOR function within each of these temporal categories. Using a simplified model, we consider the time course and mechanism of KOR-mediated effects in stress and suggest future directions that may be useful in determining whether KOR antagonists exert their therapeutic effects by preventing the development of stress-induced behaviors, the expression of stress-induced behaviors, or both.
Collapse
|
20
|
Beaugé LA, DiPolo R. Sidedness of the ATP-Na+-K+ interactions with the Na+ pump in squid axons. Methods Mol Biol 1979; 829:125-44. [PMID: 222318 DOI: 10.1007/978-1-61779-458-2_7] [Citation(s) in RCA: 176] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Using dialysed squid axons we have been able to control internal and external ionic compositions under conditions in which most of the Na+ efflux goes through the Na+ pump. We found that (i) internal K+ had a strong inhibitory effect on Na+ efflux; this effect was antagonized by ATP, with low affinity, and by internal Na+, (ii) a reduction in ATP levels from 3 mM to 50 microM greatly increased the apparent affinity for external K+, but reduced its effectiveness compared with other monovalent cations, as an activator of Na+ efflux, and (iii) the relative effectiveness of different K+ congeners as external activator of the Na+ efflux, though affected by the ATP concentration, was not affected by the Na+/K+ ratio inside the cells. These results are consistent with the idea that the same conformation of the (Na+ + K+)-ATPase can be reached by interaction with external K+ after phosphorylation and with internal K+ before rephosphorylation. They also stress a nonphosphorylating regulatory role of ATP.
Collapse
|