1
|
Cui L, Li S, Wang S, Wu X, Liu Y, Yu W, Wang Y, Tang Y, Xia M, Li B. Major depressive disorder: hypothesis, mechanism, prevention and treatment. Signal Transduct Target Ther 2024; 9:30. [PMID: 38331979 PMCID: PMC10853571 DOI: 10.1038/s41392-024-01738-y] [Citation(s) in RCA: 205] [Impact Index Per Article: 205.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024] Open
Abstract
Worldwide, the incidence of major depressive disorder (MDD) is increasing annually, resulting in greater economic and social burdens. Moreover, the pathological mechanisms of MDD and the mechanisms underlying the effects of pharmacological treatments for MDD are complex and unclear, and additional diagnostic and therapeutic strategies for MDD still are needed. The currently widely accepted theories of MDD pathogenesis include the neurotransmitter and receptor hypothesis, hypothalamic-pituitary-adrenal (HPA) axis hypothesis, cytokine hypothesis, neuroplasticity hypothesis and systemic influence hypothesis, but these hypothesis cannot completely explain the pathological mechanism of MDD. Even it is still hard to adopt only one hypothesis to completely reveal the pathogenesis of MDD, thus in recent years, great progress has been made in elucidating the roles of multiple organ interactions in the pathogenesis MDD and identifying novel therapeutic approaches and multitarget modulatory strategies, further revealing the disease features of MDD. Furthermore, some newly discovered potential pharmacological targets and newly studied antidepressants have attracted widespread attention, some reagents have even been approved for clinical treatment and some novel therapeutic methods such as phototherapy and acupuncture have been discovered to have effective improvement for the depressive symptoms. In this work, we comprehensively summarize the latest research on the pathogenesis and diagnosis of MDD, preventive approaches and therapeutic medicines, as well as the related clinical trials.
Collapse
Affiliation(s)
- Lulu Cui
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Shu Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Siman Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Xiafang Wu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yingyu Liu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Weiyang Yu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yijun Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China.
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China.
- China Medical University Centre of Forensic Investigation, Shenyang, China.
| |
Collapse
|
2
|
Li B, Zhang D, Verkhratsky A. Astrocytes in Post-traumatic Stress Disorder. Neurosci Bull 2022; 38:953-965. [PMID: 35349095 PMCID: PMC8960712 DOI: 10.1007/s12264-022-00845-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/07/2022] [Indexed: 01/15/2023] Open
Abstract
Although posttraumatic stress disorder (PTSD) is on the rise, traumatic events and their consequences are often hidden or minimized by patients for reasons linked to PTSD itself. Traumatic experiences can be broadly classified into mental stress (MS) and traumatic brain injury (TBI), but the cellular mechanisms of MS- or TBI-induced PTSD remain unknown. Recent evidence has shown that the morphological remodeling of astrocytes accompanies and arguably contributes to fearful memories and stress-related disorders. In this review, we summarize the roles of astrocytes in the pathogenesis of MS-PTSD and TBI-PTSD. Astrocytes synthesize and secrete neurotrophic, pro- and anti-inflammatory factors and regulate the microenvironment of the nervous tissue through metabolic pathways, ionostatic control, and homeostatic clearance of neurotransmitters. Stress or trauma-associated impairment of these vital astrocytic functions contribute to the pathophysiological evolution of PTSD and may present therapeutic targets.
Collapse
Affiliation(s)
- Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Dianjun Zhang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Alexei Verkhratsky
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania.
| |
Collapse
|
3
|
Astroglial Serotonin Receptors as the Central Target of Classic Antidepressants. ADVANCES IN NEUROBIOLOGY 2021; 26:317-347. [PMID: 34888840 DOI: 10.1007/978-3-030-77375-5_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Major depressive disorder (MDD) presents multiple clinical phenotypes and has complex underlying pathological mechanisms. Existing theories cannot completely explain the pathophysiological mechanism(s) of MDD, while the pharmacology of current antidepressants is far from being fully understood. Astrocytes, the homeostatic and defensive cells of the central nervous system, contribute to shaping behaviors, and regulating mood and emotions. A detailed introduction on the role of astrocytes in depressive disorders is thus required, to which this chapter is dedicated. We also focus on the interactions between classic antidepressants and serotonin receptors, overview the role of astrocytes in the pharmacological mechanisms of various antidepressants, and present astrocytes as targets for the treatment of bipolar disorder. We provide a foundation of knowledge on the role of astrocytes in depressive disorders and astroglial 5-HT2B receptors as targets for selective serotonin reuptake inhibitors in vivo and in vitro.
Collapse
|
4
|
Chen B, Zhang M, Ji M, Gong W, Chen B, Zorec R, Stenovec M, Verkhratsky A, Li B. The Association Between Antidepressant Effect of SSRIs and Astrocytes: Conceptual Overview and Meta-analysis of the Literature. Neurochem Res 2021; 46:2731-2745. [PMID: 33527219 DOI: 10.1007/s11064-020-03225-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022]
Abstract
Major depressive disorders (MDD) a worldwide psychiatric disease, is yet to be adequately controlled by therapies; while the mechanisms of action of antidepressants are yet to be fully characterised. In the last two decades, an increasing number of studies have demonstrated the role of astrocytes in the pathophysiology and therapy of MDD. Selective serotonin reuptake inhibitors (SSRIs) are the most widely used antidepressants. It is generally acknowledged that SSRIs increase serotonin levels in the central nervous system by inhibiting serotonin transporters, although the SSRIs action is not ideal. The SSRIs antidepressant effect develops with considerable delay; their efficacy is low and frequent relapses are common. Neither cellular nor molecular pharmacological mechanisms of SSRIs are fully characterised; in particular their action on astrocytes remain underappreciated. In this paper we overview potential therapeutic mechanisms of SSRIs associated with astroglia and report the results of meta-analysis of studies dedicated to MDD, SSRIs and astrocytes. In particular, we argue that fluoxetine, the representative SSRI, improves depressive-like behaviours in animals treated with chronic mild stress and reverses depression-associated decrease in astrocytic glial fibrillary acidic protein (GFAP) expression. In addition, fluoxetine upregulates astrocytic mRNA expression of 5-hydroxytriptamin/serotonin2B receptors (5-HT2BR). In summary, we infer that SSRIs exert their anti-depressant effect by regulating several molecular and signalling pathways in astrocytes.
Collapse
Affiliation(s)
- Beina Chen
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, No. 77, Puhe Street, Shenbei District, Shenyang, 110177, People's Republic of China
| | - Manman Zhang
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, No. 77, Puhe Street, Shenbei District, Shenyang, 110177, People's Republic of China
| | - Ming Ji
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, No. 77, Puhe Street, Shenbei District, Shenyang, 110177, People's Republic of China
| | - Wenliang Gong
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, No. 77, Puhe Street, Shenbei District, Shenyang, 110177, People's Republic of China
| | - Binjie Chen
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, No. 77, Puhe Street, Shenbei District, Shenyang, 110177, People's Republic of China
| | - Robert Zorec
- Celica BIOMEDICAL, Tehnološki park 24, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Matjaž Stenovec
- Celica BIOMEDICAL, Tehnološki park 24, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Baoman Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, No. 77, Puhe Street, Shenbei District, Shenyang, 110177, People's Republic of China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Xia M, Li Z, Li S, Liang S, Li X, Chen B, Zhang M, Dong C, Verkhratsky A, Guan D, Li B. Sleep Deprivation Selectively Down-Regulates Astrocytic 5-HT 2B Receptors and Triggers Depressive-Like Behaviors via Stimulating P2X 7 Receptors in Mice. Neurosci Bull 2020; 36:1259-1270. [PMID: 32506374 DOI: 10.1007/s12264-020-00524-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/11/2020] [Indexed: 10/24/2022] Open
Abstract
Chronic loss of sleep damages health and disturbs the quality of life. Long-lasting sleep deprivation (SD) as well as sleep abnormalities are substantial risk factors for major depressive disorder, although the underlying mechanisms are not clear. Here, we showed that chronic SD in mice promotes a gradual elevation of extracellular ATP, which activates astroglial P2X7 receptors (P2X7Rs). Activated P2X7Rs, in turn, selectively down-regulated the expression of 5-HT2B receptors (5-HT2BRs) in astrocytes. Stimulation of P2X7Rs induced by SD selectively suppressed the phosphorylation of AKT and FoxO3a in astrocytes, but not in neurons. The over-expression of FoxO3a in astrocytes inhibited the expression of 5-HT2BRs. Down-regulation of 5-HT2BsRs instigated by SD suppressed the activation of STAT3 and relieved the inhibition of Ca2+-dependent phospholipase A2. This latter cascade promoted the release of arachidonic acid and prostaglandin E2. The depression-like behaviors induced by SD were alleviated in P2X7R-KO mice. Our study reveals the mechanism underlying chronic SD-induced depression-like behaviors and suggests 5-HT2BRs as a key target for exploring therapeutic strategies aimed at the depression evoked by sleep disorders.
Collapse
Affiliation(s)
- Maosheng Xia
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.,Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, 110001, China
| | - Zexiong Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Shuai Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Shanshan Liang
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Xiaowei Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Beina Chen
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Manman Zhang
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Chengyi Dong
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, 110001, China
| | - Alexei Verkhratsky
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, 110122, China. .,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M139PL, UK.
| | - Dawei Guan
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
| | - Baoman Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, 110122, China. .,Department of Poison Analysis, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
6
|
Santerre-Anderson JL, Werner DF. Ethanol Stimulation of Microglia Release Increases ERK1/2-Dependent Neuronal cPLA 2 Activity in Immature Cultured Cortical Preparations. Neurochem Res 2020; 45:1592-1601. [PMID: 32274627 DOI: 10.1007/s11064-020-03024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
Ethanol consumption typically begins during adolescence and is associated with age-dependent responses and maladaptive neuronal consequences. Our previous work established the role of a putative signaling cascade involving cytoplasmic phospholipase A2 (cPLA2), arachidonic acid (AA) and novel protein kinase C isoforms in adolescent hypnotic sensitivity. The current study aimed to further delineate this pathway by ascertaining the cellular specificity as well as the upstream activators of cPLA2 using an immature cultured cortical preparation. A threefold increase in cPLA2 was detected within 2 min of 100 mM ethanol exposure as measured by phosphorylation of serine 505 (Ser505). Increases in cPLA2 activity were further observed to be primarily confined to neuronal cells. Increases in the number of neurons co-expressing cPLA2 Ser505 phosphorylation were prevented by preincubation with an ERK1/2 inhibitor, but not P38 MAPK inhibition. Finally, conditioned media studies were used to determine whether glial cells were involved in the ethanol-induced neuronal cPLA2 activity. Rapid increases in neuronal cPLA2 activity appears to be initiated through ethanol stimulated microglial, but not astrocytic releasable factors. Taken together, these data extend the proposed signaling cascade involved in developmental ethanol responding.
Collapse
Affiliation(s)
- J L Santerre-Anderson
- Department of Psychology, Binghamton University, Binghamton, NY, USA. .,Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, USA. .,Department of Psychology, King's College, Wilkes-Barre, PA, USA. .,Program in Neuroscience, King's College, Wilkes-Barre, PA, USA.
| | - D F Werner
- Department of Psychology, Binghamton University, Binghamton, NY, USA.,Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
7
|
Li Z, Lu Y, Liang S, Li S, Chen B, Zhang M, Xia M, Guan D, Verkhratsky A, Li B. Fluoxetine improves behavioural deficits induced by chronic alcohol treatment by alleviating RNA editing of 5-HT 2C receptors. Neurochem Int 2020; 134:104689. [PMID: 31968217 DOI: 10.1016/j.neuint.2020.104689] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/07/2020] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
The alcoholism and major depressive disorder are common comorbidity, with alcohol-induced depressive symptoms being eased by selective serotonin re-uptake inhibitors (SSRIs), although the mechanisms underlying pathology and therapy are poorly understood. Chronic alcohol consumption affects the activity of serotonin 2C receptors (5-HT2CR) by regulating adenosine deaminases acting on RNA (ADARs) in neurons. Astrogliopathic changes contribute to alcohol addiction, while decreased release of ATP from astrocytes can trigger depressive-like behaviours in mice. In this study, we discovered that chronic alcohol treatment increased editing of RNA of 5-HT2CR via up-regulating the expression of ADAR2, consequently reducing the release of ATP from astrocytes induced by 5-HT2CR agonist, MK212. Moreover, SSRI antidepressant fluoxetine decreased the expression of ADAR2 through the transactivation of EGFR/PI3K/AKT/cFos signalling pathway. The increased release of astroglial ATP by MK212 which was suppressed by chronic alcohol consumption, and reduction in ADAR2 activity eliminated the RNA editing of 5-HT2CR increased by alcohol in vitro and recovered the release of ATP from astrocytes induced by MK212. Meanwhile, fluoxetine improved the behavioural and motor symptoms induced by alcohol addiction and decreased the alcohol intake. Our study suggests that the astrocytic 5-HT2CR contribute to alcohol addiction; fluoxetine thus can be used to alleviate depression, treat alcohol addiction and improve motor coordination.
Collapse
Affiliation(s)
- Zexiong Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
| | - Yan Lu
- Key Laboratory of Health Ministry in Congenital Malformation, The Affiliated Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Shanshan Liang
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
| | - Shuai Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
| | - Beina Chen
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
| | - Manman Zhang
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, PR China
| | - Dawei Guan
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, PR China.
| | - Alexei Verkhratsky
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| | - Baoman Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China.
| |
Collapse
|
8
|
Ammonium induced dysfunction of 5-HT 2B receptor in astrocytes. Neurochem Int 2019; 129:104479. [PMID: 31145970 DOI: 10.1016/j.neuint.2019.104479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 11/24/2022]
Abstract
Previously we reported that gene expression of astrocytic 5-HT2B receptors was decreased in brains of depressed animals exposed to chronic mild stress (CMS) (Li et al., 2012) and of Parkinson's disease (Song et al., 2018). Depression is also one of the psychiatric symptoms in hyperammonemia, and astrocyte is a primary target of ammonium in brain in vivo. In the present study, we have used preparations of the brains of urease-treated mice and ammonium-treated astrocytes in culture to study gene expression and function of 5-HT2B receptors. The urease-treated mice showed depressive behaviour. Both mRNA and protein of 5-HT2B receptors were increased in the brains of urease-treated mice and in ammonium-treated cultured astrocytes. Further study revealed that mRNA and protein expression of adenosine deaminase acting on RNA 2 (ADAR2), an enzyme catalyze RNA deamination of adenosine to inosine was increased in the brains of urease-treated mice and in ammonium-treated cultured astrocytes. This increase in ADAR2 induced RNA editing of 5-HT2B receptors. Cultured astrocytes treated with ammonium lost 5-HT induced Ca2+ signalling and ERK1/2 phosphorylation, indicating dysfunction of 5-HT2B receptors. This is in agreement with our previous observation that edited 5-HT2B receptors no longer respond to 5-HT (Hertz et al., 2014). Ammonium effects are inhibited by ADAR2 siRNA in cultured astrocytes, suggesting that increased gene expression and editing and loss of function of 5-HT2B receptors are results of increased activity of ADAR2. In summary, we have demonstrated that functional malfunction of astrocytic 5-HT2B receptors occurs in animal models of major depression, Parkinson depression and hepatic encephalopathy albeit via different mechanisms. Understanding the role of astrocytic 5-HT2B receptors in different pathological contexts may instigate development of novel therapeutic strategies for treating disease-specific depressive behaviour.
Collapse
|
9
|
l-Dopa and Fluoxetine Upregulate Astroglial 5-HT2B Receptors and Ameliorate Depression in Parkinson’s Disease Mice. ACTA ACUST UNITED AC 2018. [DOI: 10.3390/neuroglia1010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here, we report the association between depressive behavior (anhedonia) and astroglial expression of 5-hydroxytryptamine receptor 2B (5-HT2B) in an animal model of Parkinson’s disease, induced by bilateral injection of 6-hydroxydopamine (6-OHDA) into the striatum. Expression of the 5-HT2B receptor at the mRNA and protein level was decreased in the brain tissue of 6-OHDA-treated animals with anhedonia. Expression of the 5-HT2B receptor was corrected by four weeks treatment with either l-3,4-dihydroxyphenylalanine (l-dopa) or fluoxetine. Simultaneously, treatment with l-dopa abolished 6-OHDA effects on both depressive behavior and motor activity. In contrast, fluoxetine corrected 6-OHDA-induced depression but did not affect 6-OHDA-induced motor deficiency. In addition, 6-OHDA downregulated gene expression of the 5-HT2B receptor in astrocytes in purified cell culture and this downregulation was corrected by both l-dopa and fluoxetine. Our findings suggest that 6-OHDA-induced depressive behavior may be related to the downregulation of gene expression of the 5-HT2B receptor but 6-OHDA-induced motor deficiency reflects, arguably, dopamine depletion. Previously, we demonstrated that fluoxetine regulates gene expression in astrocytes by 5-HT2B receptor-mediated transactivation of epidermal growth factor receptor (EGFR). However, the underlying mechanism of l-dopa action remains unclear. The present work indicates that the decrease of gene expression of the astroglial 5-HT2B receptor may contribute to development of depressive behavior in Parkinson’s disease.
Collapse
|
10
|
Kruk JS, Bermeo S, Skarratt KK, Fuller SJ, Duque G. The Effect of Antidepressants on Mesenchymal Stem Cell Differentiation. J Bone Metab 2018; 25:43-51. [PMID: 29564305 PMCID: PMC5854822 DOI: 10.11005/jbm.2018.25.1.43] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 11/25/2022] Open
Abstract
Background Use of antidepressant medications has been linked to detrimental impacts on bone mineral density and osteoporosis; however, the cellular basis behind these observations remains poorly understood. The effect does not appear to be homogeneous across the whole class of drugs and may be linked to affinity for the serotonin transporter system. In this study, we hypothesized that antidepressants have a class- and dose-dependent effect on mesenchymal stem cell (MSC) differentiation, which may affect bone metabolism. Methods Human MSCs (hMSCs) were committed to differentiate when either adipogenic or osteogenic media was added, supplemented with five increasing concentrations of amitriptyline (0.001–10 µM), venlafaxine (0.01–25 µM), or fluoxetine (0.001–10 µM). Alizarin red staining (mineralization), alkaline phosphatase (osteoblastogenesis), and oil red O (adipogenesis) assays were performed at timed intervals. In addition, cell viability was assessed using a MTT. Results We found that fluoxetine had a significant inhibitory effect on mineralization. Furthermore, adipogenic differentiation of hMSC was affected by the addition of amitriptyline, venlafaxine, and fluoxetine to the media. Finally, none of the tested medications significantly affected cell survival. Conclusions This study showed a divergent effect of three antidepressants on hMSC differentiation, which appears to be independent of class and dose. As fluoxetine and amitriptyline, but not venlafaxine, affected both osteoblastogenesis and adipogenesis, this inhibitory effect could be associated to the high affinity of fluoxetine to the serotonin transporter system.
Collapse
Affiliation(s)
- Jeffrey S Kruk
- Sydney Medical School Nepean, The University of Sydney, Penrith, Australia
| | - Sandra Bermeo
- Sydney Medical School Nepean, The University of Sydney, Penrith, Australia.,Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Kristen K Skarratt
- Sydney Medical School Nepean, The University of Sydney, Penrith, Australia
| | - Stephen J Fuller
- Sydney Medical School Nepean, The University of Sydney, Penrith, Australia
| | - Gustavo Duque
- Sydney Medical School Nepean, The University of Sydney, Penrith, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, Australia.,Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
11
|
Li X, Liang S, Li Z, Li S, Xia M, Verkhratsky A, Li B. Leptin Increases Expression of 5-HT 2B Receptors in Astrocytes Thus Enhancing Action of Fluoxetine on the Depressive Behavior Induced by Sleep Deprivation. Front Psychiatry 2018; 9:734. [PMID: 30666218 PMCID: PMC6330762 DOI: 10.3389/fpsyt.2018.00734] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/13/2018] [Indexed: 12/14/2022] Open
Abstract
The long-lasting loss of sleep is a generally acknowledged risk factor for the occurrence of major depressive disorder (MDD), whereas sleep abnormalities being a key clinic symptom of the MDD. In our previous work, we demonstrated that the sleep deprivation (SD) stimulates activation of nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) inflammasomes as well as the release of IL-1β and IL-18 from astrocytes. However, the underlying mechanism connecting SD and MDD still requires further study. Apart of the secretion of the pro-inflammatory cytokines, SD affects production of brain-derived neurotrophic factor (BDNF) while release of BDNF from astrocytes appears a key contributor to mood disorders. If and how the activation of NLRP3 inflammasome following SD affects the level of BDNF remains unknown. Antidepressant fluoxetine acts through astroglial 5-hydroxytryptamine receptor 2B (5-HT2B); these receptors are also related to the sleep-wake cycle. Contribution of leptin to MDD has been discovered recently, although the mechanistic links between leptin and the depressive-like behaviors has not been revealed. In this study, we discovered: (i) that activation of NLRP3 inflammasome was involved in the depressive-like behaviors induced by SD; (ii) decrease in BDNF following SD required the activation of NLRP3 inflammasomes; (iii) leptin augmented the anti-depressive action of fluoxetine through an increase in expression of astrocytic 5-HT2B receptors. We suggest that decrease in BDNF by the activated NLRP3 inflammasomes in astrocytes is the key pathological event of the depressive-like behaviors induced by SD, while the combined treatment with fluoxetine and leptin improves therapeutic outcome for the depression induced by SD.
Collapse
Affiliation(s)
- Xiaowei Li
- Laboratory Teaching Center, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Shanshan Liang
- Laboratory Teaching Center, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Zexiong Li
- Laboratory Teaching Center, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Shuai Li
- Laboratory Teaching Center, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China
| | - Alexei Verkhratsky
- Faculty of Life Science, The University of Manchester, Manchester, United Kingdom.,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Baoman Li
- Laboratory Teaching Center, School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
12
|
Li B, Jia S, Yue T, Yang L, Huang C, Verkhratsky A, Peng L. Biphasic Regulation of Caveolin-1 Gene Expression by Fluoxetine in Astrocytes: Opposite Effects of PI3K/AKT and MAPK/ERK Signaling Pathways on c-fos. Front Cell Neurosci 2017; 11:335. [PMID: 29163047 PMCID: PMC5671492 DOI: 10.3389/fncel.2017.00335] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/11/2017] [Indexed: 11/13/2022] Open
Abstract
Previously, we reported that fluoxetine acts on 5-HT2B receptor and induces epidermal growth factor receptor (EGFR) transactivation in astrocytes. Recently, we have found that chronic treatment with fluoxetine regulates Caveolin-1 (Cav-1)/PTEN/PI3K/AKT/glycogen synthase kinase 3β (GSK-3β) signaling pathway and glycogen content in primary cultures of astrocytes with bi-phasic concentration dependence. At low concentrations fluoxetine down-regulates Cav-1 gene expression, decreases membrane content of PTEN, increases PI3K activity and increases phosphorylation of GSK-3β and increases its activity; at high concentrations fluoxetine acts on PTEN/PI3K/AKT/GSK-3β in an inverse fashion. Here, we present the data indicating that acute treatment with fluoxetine at lower concentrations down-regulates c-Fos gene expression via PI3K/AKT signaling pathway; in contrast at higher concentrations fluoxetine up-regulates c-Fos gene expression via MAPK/extracellular-regulated kinase (ERK) signaling pathway. However, acute treatment with fluoxetine has no effect on Cav-1 protein content. Similarly, chronic effects of fluoxetine on Cav-1 gene expression are suppressed by inhibitor of PI3K at lower concentrations, but by inhibitor of MAPK at higher concentrations, indicating that the mechanism underlying bi-phasic regulation of Cav-1 gene expression by fluoxetine is opposing effects of PI3K/AKT and MAPK/ERK signal pathways on c-Fos gene expression. The effects of fluoxetine on Cav-1 gene expression at both lower and higher concentrations are abolished by AG1478, an inhibitor of EGFR, indicating the involvement of 5-HT2B receptor induced EGFR transactivation as we reported previously. However, PP1, an inhibitor of Src only abolished the effect by lower concentrations, suggesting the relevance of Src with PI3K/AKT signal pathway during activation of EGFR.
Collapse
Affiliation(s)
- Baoman Li
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Shu Jia
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Tingting Yue
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Li Yang
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Chen Huang
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Alexej Verkhratsky
- Faculty of Life Science, The University of Manchester, Manchester, United Kingdom.,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Liang Peng
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| |
Collapse
|
13
|
Sun L, Fang L, Lian B, Xia JJ, Zhou CJ, Wang L, Mao Q, Wang XF, Gong X, Liang ZH, Bai SJ, Liao L, Wu Y, Xie P. Biochemical effects of venlafaxine on astrocytes as revealed by 1H NMR-based metabolic profiling. MOLECULAR BIOSYSTEMS 2017; 13:338-349. [PMID: 28045162 DOI: 10.1039/c6mb00651e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As a serotonin–norepinephrine reuptake inhibitor [SNRI], venlafaxine is one of the most commonly prescribed clinical antidepressants, with a broad range of antidepressant effects.
Collapse
|
14
|
Harris JJ, Reynell C. How do antidepressants influence the BOLD signal in the developing brain? Dev Cogn Neurosci 2016; 25:45-57. [PMID: 28089656 PMCID: PMC6987820 DOI: 10.1016/j.dcn.2016.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 11/21/2022] Open
Abstract
Depression is a highly prevalent life-threatening disorder, with its first onset commonly occurring during adolescence. Adolescent depression is increasingly being treated with antidepressants, such as fluoxetine. The use of medication during this sensitive period of physiological and cognitive brain development produces neurobiological changes, some of which may outlast the course of treatment. In this review, we look at how antidepressant treatment in adolescence is likely to alter neurovascular coupling and brain energy use and how these changes, in turn, affect our ability to identify neuronal activity changes between participant groups. BOLD (blood oxygen level dependent) fMRI (functional magnetic resonance imaging), the method most commonly used to record brain activity in humans, is an indirect measure of neuronal activity. This means that between-group comparisons – adolescent versus adult, depressed versus healthy, medicated versus non-medicated – rely upon a stable relationship existing between neuronal activity and the BOLD response across these groups. We use data from animal studies to detail the ways in which fluoxetine may alter this relationship, and explore how these alterations may influence the interpretation of BOLD signal differences between groups that have been treated with fluoxetine and those that have not.
Collapse
Affiliation(s)
- Julia J Harris
- Life Sciences Department, Imperial College London, SW7 2AZ, UK; Francis Crick Institute, Midland Road, London, NW1 1AT, UK.
| | - Clare Reynell
- Département de Neurosciences, Université de Montréal, H3C 3J7, Canada.
| |
Collapse
|
15
|
Cobb JA, O'Neill K, Milner J, Mahajan GJ, Lawrence TJ, May WL, Miguel-Hidalgo J, Rajkowska G, Stockmeier CA. Density of GFAP-immunoreactive astrocytes is decreased in left hippocampi in major depressive disorder. Neuroscience 2015; 316:209-20. [PMID: 26742791 DOI: 10.1016/j.neuroscience.2015.12.044] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/14/2015] [Accepted: 12/23/2015] [Indexed: 12/15/2022]
Abstract
Neuroimaging and postmortem studies of subjects with major depressive disorder (MDD) reveal smaller hippocampal volume with lengthening duration of illness. Pathology in astrocytes may contribute significantly to this reduced volume and to the involvement of the hippocampus in MDD. Postmortem hippocampal tissues were collected from 17 subjects with MDD and 17 psychiatrically-normal control subjects. Sections from the body of the hippocampus were immunostained for glial fibrillary acidic protein (GFAP), a marker of intermediate filament protein expressed in astrocytes. The density of GFAP-immunoreactive astrocytes was measured in the hippocampus using 3-dimensional cell counting. Hippocampal subfields were also assessed for GFAP-immunoreactive area fraction. In CA1, there was a significant positive correlation between age and either density or area fraction in MDD. The density of astrocytes in the hilus, but not CA1 or CA2/3, was significantly decreased only in depressed subjects not taking an antidepressant drug, but not for depressed subjects taking an antidepressant drug. The area fraction of GFAP-immunoreactivity was significantly decreased in the dentate gyrus in women but not men with depression. In CA2/3, the area fraction of GFAP-immunoreactivity was inversely correlated with the duration of depression in suicide victims. Astrocyte contributions to neuronal function in the hilus may be compromised in depressed subjects not taking antidepressant medication. Due to the cross-sectional nature of the present study of postmortem brain tissue, it remains to be determined whether antidepressant drug treatment prevented a decrease in GFAP-immunoreactive astrocyte density or restored cell density to normal levels.
Collapse
Affiliation(s)
- J A Cobb
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - K O'Neill
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - J Milner
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - G J Mahajan
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - T J Lawrence
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - W L May
- School of Health Related Professions, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - J Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - G Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - C A Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
16
|
Daniele S, Zappelli E, Martini C. Trazodone regulates neurotrophic/growth factors, mitogen-activated protein kinases and lactate release in human primary astrocytes. J Neuroinflammation 2015; 12:225. [PMID: 26627476 PMCID: PMC4666178 DOI: 10.1186/s12974-015-0446-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 11/25/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In the central nervous system, glial cells provide metabolic and trophic support to neurons and respond to protracted stress and insults by up-regulating inflammatory processes. Reactive astrocytes and microglia are associated with the pathophysiology of neuronal injury, neurodegenerative diseases and major depression, in both animal models and human brains. Several studies have reported clear anti-inflammatory effects of anti-depressant treatment on astrocytes, especially in models of neurological disorders. Trazodone (TDZ) is a triazolopyridine derivative that is structurally unrelated to other major classes of antidepressants. Although the molecular mechanisms of TDZ in neurons have been investigated, it is unclear whether astrocytes are also a TDZ target. METHODS The effects of TDZ on human astrocytes were investigated in physiological conditions and following inflammatory insult with lipopolysaccharide (LPS) and tumour necrosis factor-α (TNF-α). Astrocytes were assessed for their responses to pro-inflammatory mediators and cytokines, and the receptors and signalling pathways involved in TDZ-mediated effects were evaluated. RESULTS TDZ had no effect on cell proliferation, but it decreased pro-inflammatory mediator release and modulated trophic and transcription factor mRNA expression. Following TDZ treatment, the AKT pathway was activated, whereas extracellular signal-regulated kinase and c-Jun NH2-terminal kinase were inhibited. Most importantly, a 72-h TDZ pre-treatment before inflammatory insult completely reversed the anti-proliferative effects induced by LPS-TNF-α. The expression or the activity of inflammatory mediators, including interleukin-6, c-Jun NH2-terminal kinase and nuclear factor κB, were also reduced. Furthermore, TDZ affected astrocyte metabolic support to neurons by counteracting the inflammation-mediated lactate decrease. Finally, TDZ protected neuronal-like cells against neurotoxicity mediated by activated astrocytes. These effects mainly involved an activation of 5-HT1A and an antagonism at 5-HT2A/C serotonin receptors. Fluoxetine, used in parallel, showed similar final effects nevertheless it activates different receptors/intracellular pathways. CONCLUSIONS Altogether, our results demonstrated that TDZ directly acts on astrocytes by regulating intracellular signalling pathways and increasing specific astrocyte-derived neurotrophic factor expression and lactate release. TDZ may contribute to neuronal support by normalizing trophic and metabolic support during neuroinflammation, which is associated with neurological diseases, including major depression.
Collapse
Affiliation(s)
- Simona Daniele
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, Pisa, 56126, PI, Italy.
| | - Elisa Zappelli
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, Pisa, 56126, PI, Italy.
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, Pisa, 56126, PI, Italy.
| |
Collapse
|
17
|
Zhang X, Song D, Gu L, Ren Y, Verkhratsky A, Peng L. Decrease of gene expression of astrocytic 5-HT2B receptors parallels development of depressive phenotype in a mouse model of Parkinson's disease. Front Cell Neurosci 2015; 9:388. [PMID: 26500493 PMCID: PMC4594497 DOI: 10.3389/fncel.2015.00388] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/17/2015] [Indexed: 12/12/2022] Open
Abstract
Astrocytes contribute to pathogenesis of neuropsychiatric disorders, including major depression. Stimulation of astroglial 5-HT2B receptors transactivates epidermal growth factor receptors (EGFRs) and regulates gene expression. Previously we reported that expression of 5-HT2B receptors in cortical astrocytes is down-regulated in animals, which developed anhedonia in response to chronic stress; moreover this down-regulation as well as anhedonia, are reversed by chronic treatment with fluoxetine. In this study we have investigated whether astrocytic 5-HT2B receptor is involved in anhedonia in C57BL/6 mice model of Parkinson' disease (PD) induced by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 7 days. The MPTP treatment induced anhendonia in 66.7% of animals. The appearance of depressive behavior was accompanied with motor deficiency and decrease of tyrosine hydroxylase (TH) expression. Expression of mRNA and protein of 5-HT2B receptor in animals that became anhedonic decreased to 77.3 and 79.3% of control groups, respectively; in animals that received MPTP but did not develop anhedonia the expression of 5-HT2B receptor did not change. Experiments with FACS-sorted isolated cells demonstrated that decrease in 5-HT2B receptor expression was confined to astrocytes, and did not occur in neurons. Fluoxetine corrected MPTP-induced decrease of 5-HT2B receptor expression and depressive behavior. Our findings indicate that regulation of gene expression of 5-HT2B receptors in astroglia may be associated with pathophysiological evolution of PD-induced depression.
Collapse
Affiliation(s)
- Xique Zhang
- Department of Neurology, The First Affiliated Hospital, China Medical University Shenyang, China
| | - Dan Song
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Li Gu
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Yan Ren
- Department of Neurology, The First Affiliated Hospital, China Medical University Shenyang, China
| | - Alexei Verkhratsky
- Faculty of Life Science, The University of Manchester Manchester, UK ; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science Bilbao, Spain ; University of Nizhny Novgorod Nizhny Novgorod, Russia
| | - Liang Peng
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| |
Collapse
|
18
|
Molecular and Functional Characterization of Bacopa monniera: A Retrospective Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:945217. [PMID: 26413131 PMCID: PMC4564644 DOI: 10.1155/2015/945217] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/24/2015] [Accepted: 04/09/2015] [Indexed: 12/21/2022]
Abstract
Over the last 50 years, laboratories around the world analyzed the pharmacological effect of Bacopa monniera extract in different dimensions, especially as a nerve tonic and memory enhancer. Studies in animal model evidenced that Bacopa treatment can attenuate dementia and enhances memory. Further, they demonstrate that Bacopa primarily either acts via antioxidant mechanism (i.e., neuroprotection) or alters different neurotransmitters (serotonin (5-hydroxytryptamine, 5-HT), dopamine (DA), acetylcholine (ACh), γ-aminobutyric acid (GABA)) to execute the pharmacological effect. Among them, 5-HT has been shown to fine tune the neural plasticity, which is a substrate for memory formation. This review focuses on the studies which trace the effect of Bacopa treatment on serotonergic system and 5-HT mediated key molecular changes that are associated with memory formation.
Collapse
|
19
|
Dong L, Li B, Verkhratsky A, Peng L. Cell type-specific in vivo expression of genes encoding signalling molecules in the brain in response to chronic mild stress and chronic treatment with fluoxetine. Psychopharmacology (Berl) 2015; 232:2827-35. [PMID: 25851944 DOI: 10.1007/s00213-015-3921-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 03/16/2015] [Indexed: 11/29/2022]
Abstract
RATIONALE Previously, we reported that chronic treatment with fluoxetine increased gene expression of 5-hydroxytryptamine receptor 2B (5-HT2BR), cytosolic phospholipase 2α (cPLA2α), glutamate receptor, ionotropic kainate 2 (GluK2) and adenosine deaminase acting on RNA 2 (ADAR2), in cultured astrocytes and astrocytes freshly isolated from transgenic mice tagged with an astrocyte-specific marker. In contrast, neurones isolated from transgenic mice tagged with a neurone-specific marker and exposed to fluoxetine showed an increase in gene expression of glutamate receptor, ionotropic kainate 4 (GluK4) and 5-hydroxytryptamine receptor 2C (5-HT2CR). In a mouse model of anhedonia, the downregulation of 5-HT2BR, cPLA2α, ADAR2 and GluK4 but not GluK2 and 5-HT2CR was detected. OBJECTIVE To investigate the effects of chronic mild stress (CMS) and/or fluoxetine treatment on gene expression of 5-HT2BR, 5-HT2CR, cPLA2α, ADAR2, GluK2 and GluK4 specifically in astrocytes and neurones. METHODS Transgenic mice tagged with either astrocyte- or neurone-specific markers were exposed to the CMS. Real-time PCR was applied to determine expression of messenger RNA (mRNA). RESULTS We found that (i) mRNAs of the 5-HT2BR and cPLA2α in astrocytes and GluK4 in neurones were significantly reduced in mice that became anhedonic; the mRNA levels were restored by fluoxetine treatment; (ii) ADAR2 in astrocytes was decreased by the CMS but showed no response to fluoxetine in anhedonic animals; (iii) neither GluK2 expression in astrocytes nor 5-HT2CR expression in neurones were affected in anhedonic animals, although expression of 5-HT2CR mRNA was upregulated by fluoxetine. CONCLUSIONS Our results indicate that the effects of chronic treatment with fluoxetine are not only dependent on the cell type studied but also on the development of anhedonia. This suggests that fluoxetine may affect major depression (MD) patients and healthy people in a different manner.
Collapse
Affiliation(s)
- Lu Dong
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, People's Republic of China
| | | | | | | |
Collapse
|
20
|
Kruk JS, Vasefi MS, Gondora N, Ahmed N, Heikkila JJ, Beazely MA. Fluoxetine-induced transactivation of the platelet-derived growth factor type β receptor reveals a novel heterologous desensitization process. Mol Cell Neurosci 2015; 65:45-51. [DOI: 10.1016/j.mcn.2015.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/12/2014] [Accepted: 02/06/2015] [Indexed: 10/24/2022] Open
|
21
|
Hertz L, Rothman DL, Li B, Peng L. Chronic SSRI stimulation of astrocytic 5-HT2B receptors change multiple gene expressions/editings and metabolism of glutamate, glucose and glycogen: a potential paradigm shift. Front Behav Neurosci 2015; 9:25. [PMID: 25750618 PMCID: PMC4335176 DOI: 10.3389/fnbeh.2015.00025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/23/2015] [Indexed: 11/13/2022] Open
Abstract
It is firmly believed that the mechanism of action of SSRIs in major depression is to inhibit the serotonin transporter, SERT, and increase extracellular concentration of serotonin. However, this undisputed observation does not prove that SERT inhibition is the mechanism, let alone the only mechanism, by which SSRI's exert their therapeutic effects. It has recently been demonstrated that 5-HT2B receptor stimulation is needed for the antidepressant effect of fluoxetine in vivo. The ability of all five currently used SSRIs to stimulate the 5-HT2B receptor equipotentially in cultured astrocytes has been known for several years, and increasing evidence has shown the importance of astrocytes and astrocyte-neuronal interactions for neuroplasticity and complex brain activity. This paper reviews acute and chronic effects of 5-HT2B receptor stimulation in cultured astrocytes and in astrocytes freshly isolated from brains of mice treated with fluoxetine for 14 days together with effects of anti-depressant therapy on turnover of glutamate and GABA and metabolism of glucose and glycogen. It is suggested that these events are causally related to the mechanism of action of SSRIs and of interest for development of newer antidepressant drugs.
Collapse
Affiliation(s)
- Leif Hertz
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Douglas L Rothman
- Magnetic Resonance Research Center, Diagnostic Radiology and Biomedical Engineering, Yale University New Haven, CT, USA
| | - Baoman Li
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Liang Peng
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| |
Collapse
|
22
|
Peng L, Gu L, Li B, Hertz L. Fluoxetine and all other SSRIs are 5-HT2B Agonists - Importance for their Therapeutic Effects. Curr Neuropharmacol 2014; 12:365-79. [PMID: 25342944 PMCID: PMC4207076 DOI: 10.2174/1570159x12666140828221720] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/24/2014] [Accepted: 06/30/2014] [Indexed: 11/22/2022] Open
Abstract
Fluoxetine and other serotonin-specific re-uptake inhibitors (SSRIs) are generally thought to owe their therapeutic potency to inhibition of the serotonin transporter (SERT). However, research in our laboratory showed that it affects, with relatively high affinity the 5-HT2B receptor in cultured astrocytes; this finding was confirmed by independent observations showing that fluoxetine loses its ability to elicit SSRI-like responses in behavioral assays in mice in which the 5-HT2B receptor was knocked-out genetically or inhibited pharmacologically. All clinically used SSRIs are approximately equipotent towards 5-HT2B receptors and exert their effect on cultured astrocytes at concentrations similar to those used clinically, a substantial difference from their effect on SERT. We have demonstrated up-regulation and editing of astrocytic genes for ADAR2, the kainate receptor GluK2, cPLA2 and the 5-HT2B receptor itself after chronic treatment of cultures, which do not express SERT and after treatment of mice (expressing SERT) for 2 weeks with fluoxetine, followed by isolation of astrocytic and neuronal cell fractionation. Affected genes were identical in both experimental paradigms. Fluoxetine treatment also altered Ca(2+) homeostatic cascades, in a specific way that differs from that seen after treatment with the anti-bipolar drugs carbamazepine, lithium, or valproic acid. All changes occurred after a lag period similar to what is seen for fluoxetine's clinical effects, and some of the genes were altered in the opposite direction by mild chronic inescapable stress, known to cause anhedonia, a component of major depression. In the anhedonic mice these changes were reversed by treatment with SSRIs.
Collapse
Affiliation(s)
- Liang Peng
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Li Gu
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Baoman Li
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| |
Collapse
|
23
|
Signal Transduction in Astrocytes during Chronic or Acute Treatment with Drugs (SSRIs, Antibipolar Drugs, GABA-ergic Drugs, and Benzodiazepines) Ameliorating Mood Disorders. JOURNAL OF SIGNAL TRANSDUCTION 2014; 2014:593934. [PMID: 24707399 PMCID: PMC3953578 DOI: 10.1155/2014/593934] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/16/2013] [Indexed: 01/29/2023]
Abstract
Chronic treatment with fluoxetine or other so-called serotonin-specific reuptake inhibitor antidepressants (SSRIs) or with a lithium salt “lithium”, carbamazepine, or valproic acid, the three classical antibipolar drugs, exerts a multitude of effects on astrocytes, which in turn modulate astrocyte-neuronal interactions and brain function. In the case of the SSRIs, they are to a large extent due to 5-HT2B-mediated upregulation and editing of genes. These alterations induce alteration in effects of cPLA2, GluK2, and the 5-HT2B receptor, probably including increases in both glucose metabolism and glycogen turnover, which in combination have therapeutic effect on major depression. The ability of increased levels of extracellular K+ to increase [Ca2+]i is increased as a sign of increased K+-induced excitability in astrocytes. Acute anxiolytic drug treatment with benzodiazepines or GABAA receptor stimulation has similar glycogenolysis-enhancing effects. The antibipolar drugs induce intracellular alkalinization in astrocytes with lithium acting on one acid extruder and carbamazepine and valproic acid on a different acid extruder. They inhibit K+-induced and transmitter-induced increase of astrocytic [Ca2+]i and thereby probably excitability. In several cases, they exert different changes in gene expression than SSRIs, determined both in cultured astrocytes and in freshly isolated astrocytes from drug-treated animals.
Collapse
|
24
|
Zhang R, Peng Z, Wang H, Xue F, Chen Y, Wang Y, Wang H, Tan Q. Gastrodin ameliorates depressive-like behaviors and up-regulates the expression of BDNF in the hippocampus and hippocampal-derived astrocyte of rats. Neurochem Res 2014; 39:172-179. [PMID: 24293261 DOI: 10.1007/s11064-013-1203-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/30/2013] [Accepted: 11/18/2013] [Indexed: 01/08/2023]
Abstract
Gastrodin (GAS), a main constituent of a Chinese herbal medicine Tian ma, has been shown to be effective in treating various mood disorders. The purpose of the present study was to assess the effects of GAS on alleviating depressive-like behaviors in a rat model of chronic unpredictable stress (CUS) and regulating the expression of BDNF in the hippocampus and hippocampal-derived astrocyte from Sprague-Dawley (SD) rats. Following CUS, rats were intraperitoneally administered gastrodin (50, 100, or 200 mg/kg daily) or vehicle for 2 weeks. Rats were then experienced sucrose preference test and forced swim test. The expressions of GFAP and BDNF in the hippocampus were evaluated. In addition, hippocampal astrocytes were isolated from neonatal SD rats and exposed to different concentrations of GAS (sham, 5, 10, 20, 50 and 100 μg/mL) for 48 and 72 h before the cell viability and the levels of pERK1/2 and BDNF were analyzed. Furthermore, the cell viability was also tested after exposure to serum-free condition that contain different concentrations of GAS for 48 and 72 h. GAS administration (100 and 200 mg/kg daily) reversed depressive-like behaviors in rats exposed to CUS paradigm and restored the expression of GFAP and BDNF in the hippocampus. Moreover, in vitro experiments revealed that GAS did not increase the cell viability of astrocytes but protected it from 72 h's serum-free damage at the dosage 20 μg/mL. Increased levels of ERK1/2 phosphorylation and BDNF protein were also observed after GAS (20 μg/mL) treatment for 72 h. These results indicate that gastrodin possesses antidepressant effect. The changes of the astrocyte activation and the level of BDNF may play a critical role in the pharmacological action of GAS.
Collapse
Affiliation(s)
- Ruiguo Zhang
- Department of Psychosomatic Medicine, Xijing Hospital, Fourth Military Medical University, 127 Changle Road, Xi'an, 710032, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Li B, Gu L, Hertz L, Peng L. Expression of Nucleoside Transporter in Freshly Isolated Neurons and Astrocytes from Mouse Brain. Neurochem Res 2013; 38:2351-8. [DOI: 10.1007/s11064-013-1146-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 08/13/2013] [Accepted: 08/30/2013] [Indexed: 12/19/2022]
|
26
|
Jin X, Liu P, Yang F, Zhang YH, Miao D. Rosmarinic acid ameliorates depressive-like behaviors in a rat model of CUS and Up-regulates BDNF levels in the hippocampus and hippocampal-derived astrocytes. Neurochem Res 2013; 38:1828-37. [PMID: 23756732 DOI: 10.1007/s11064-013-1088-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/22/2013] [Accepted: 05/25/2013] [Indexed: 12/11/2022]
Abstract
Rosmarinic acid (RA), a primary constituent of a Chinese herbal medicine, has been shown to have some therapeutic effects in an animal model of depression, but its underlying mechanisms are poorly understood. Sprague-Dawley rats were exposed to chronic unpredictable stress (CUS) for 21 days, and received RA for 14 days from the last week of CUS, then the behavioral changes, hippocampal pERK1/2 and BDNF levels were observed. Rats were further treated with U0126 (an ERK1/2 phosphorylation inhibitor) 30 min before RA treatment to assess the effects of RA and ERK1/2 signaling in depressive-like behavior and hippocampal BDNF levels. In addition, brains of newly born Sprague-Dawley rats were used to harvest and expand hippocampal astrocytes. Cells were exposed to different concentrations of RA (sham, 1, 5, 10, 20, and 40 μg/mL) or U0126 (2 μM as a final concentration) + RA (sham, 1, 5, 10, 20, and 40 μg/mL) for 48 h, and the pERK1/2 and BDNF levels were assessed by western and ELISA assays. RA administration (10 mg/kg daily) reversed depressive-like behaviors in rats exposed to a chronic unpredictable stress paradigm and restored pERK1/2 protein expression and hippocampal brain-derived neurotrophic factor (BDNF). Moreover, in vitro experiments revealed that 20 μg/mL RA increased pERK1/2 and BDNF levels in cultured astrocytes. Interestingly, the effects of RA were inhibited by U0126. RA might be a useful treatment for depression and the changes in ERK1/2 signaling and BDNF levels may play a critical role in the pharmacological action of RA.
Collapse
Affiliation(s)
- Xiang Jin
- Department of Psychology, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | |
Collapse
|
27
|
Czéh B, Di Benedetto B. Antidepressants act directly on astrocytes: evidences and functional consequences. Eur Neuropsychopharmacol 2013; 23:171-85. [PMID: 22609317 DOI: 10.1016/j.euroneuro.2012.04.017] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 04/27/2012] [Indexed: 11/24/2022]
Abstract
Post-mortem histopathological studies report on reduced glial cell numbers in various frontolimbic areas of depressed patients implying that glial loss together with abnormal functioning could contribute to the pathophysiology of mood disorders. Astrocytes are regarded as the most abundant cell type in the brain and known for their housekeeping functions, but as recent developments suggest, they are also dynamic regulators of synaptogenesis, synaptic strength and stability and they control adult hippocampal neurogenesis. The primary aim of this review was to summarize the abundant experimental evidences demonstrating that antidepressant therapies have profound effect on astrocytes. Antidepressants modify astroglial physiology, morphology and by affecting gliogenesis they probably even regulate glial cell numbers. Antidepressants affect intracellular signaling pathways and gene expression of astrocytes, as well as the expression of receptors and the release of various trophic factors. We also assess the potential functional consequences of these changes on glutamate and glucose homeostasis and on synaptic communication between the neurons. We propose here a hypothesis that antidepressant treatment not only affects neurons, but also activates astrocytes, triggering them to carry out specific functions that result in the reactivation of cortical plasticity and can lead to the readjustment of abnormal neuronal networks. We argue here that these astrocyte specific changes are likely to contribute to the therapeutic effectiveness of the currently available antidepressant treatments and the better understanding of these cellular and molecular processes could help us to identify novel targets for the development of antidepressant drugs.
Collapse
Affiliation(s)
- Boldizsár Czéh
- Max-Planck-Institute of Psychiatry, 80804 Munich, Germany.
| | | |
Collapse
|
28
|
Kaddurah-Daouk R, Bogdanov MB, Wikoff WR, Zhu H, Boyle SH, Churchill E, Wang Z, Rush AJ, Krishnan RR, Pickering E, Delnomdedieu M, Fiehn O. Pharmacometabolomic mapping of early biochemical changes induced by sertraline and placebo. Transl Psychiatry 2013; 3:e223. [PMID: 23340506 PMCID: PMC3566722 DOI: 10.1038/tp.2012.142] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, we characterized early biochemical changes associated with sertraline and placebo administration and changes associated with a reduction in depressive symptoms in patients with major depressive disorder (MDD). MDD patients received sertraline or placebo in a double-blind 4-week trial; baseline, 1 week, and 4 weeks serum samples were profiled using a gas chromatography time of flight mass spectrometry metabolomics platform. Intermediates of TCA and urea cycles, fatty acids and intermediates of lipid biosynthesis, amino acids, sugars and gut-derived metabolites were changed after 1 and 4 weeks of treatment. Some of the changes were common to the sertraline- and placebo-treated groups. Changes after 4 weeks of treatment in both groups were more extensive. Pathway analysis in the sertraline group suggested an effect of drug on ABC and solute transporters, fatty acid receptors and transporters, G signaling molecules and regulation of lipid metabolism. Correlation between biochemical changes and treatment outcomes in the sertraline group suggested a strong association with changes in levels of branched chain amino acids (BCAAs), lower BCAAs levels correlated with better treatment outcomes; pathway analysis in this group revealed that methionine and tyrosine correlated with BCAAs. Lower levels of lactic acid, higher levels of TCA/urea cycle intermediates, and 3-hydroxybutanoic acid correlated with better treatment outcomes in placebo group. Results of this study indicate that biochemical changes induced by drug continue to evolve over 4 weeks of treatment and that might explain partially delayed response. Response to drug and response to placebo share common pathways but some pathways are more affected by drug treatment. BCAAs seem to be implicated in mechanisms of recovery from a depressed state following sertraline treatment.
Collapse
Affiliation(s)
- R Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA,Duke University Medical Center, Box 3903, Durham, NC 27710, USA. E-mail: rima.kaddurahdaouk.duke.edu
| | - M B Bogdanov
- Department of Neurology and Neuroscience Weill Cornell Medical College, New York, NY, USA
| | - W R Wikoff
- UC Davis Genome Center, University of California, Davis, NC, USA
| | - H Zhu
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - S H Boyle
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - E Churchill
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Z Wang
- Department of Statistics and Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - A J Rush
- Duke-NUS Graduate Medical School, Singapore
| | - R R Krishnan
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA,Duke-NUS Graduate Medical School, Singapore
| | - E Pickering
- Pfizer Global R&D, Clinical Research Statistics, Groton, CT, USA
| | - M Delnomdedieu
- Pfizer Global R&D, Neuroscience Clinical Research, Groton, CT, USA
| | - O Fiehn
- UC Davis Genome Center, University of California, Davis, NC, USA,Metabolomics Research and Core Laboratories UC Davis Genome Center, Room 1314+1315, First Floor, 451 Health Sci Drive Davis, CA 95616, USA
| |
Collapse
|
29
|
Quesseveur G, Nguyen HT, Gardier AM, Guiard BP. 5-HT2 ligands in the treatment of anxiety and depression. Expert Opin Investig Drugs 2012; 21:1701-25. [PMID: 22917059 DOI: 10.1517/13543784.2012.719872] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION One third of depressed patients do not respond adequately to conventional antidepressants including the selective serotonin reuptake inhibitors (SSRIs). Therefore, multi-target drugs or augmentation strategies have been developed for the management of SSRIs-resistant patients. In this context, the 5-HT(2) receptor subtypes represent promising targets but their precise roles have yet to be determined. AREAS COVERED The aim of this review is to shed some light on the preclinical evidence supporting the use of 5-HT(2A) and/or 5-HT(2C) receptor antagonists such as antipsychotics, as potential effective adjuncts in SSRIs-resistant depression. This review synthesizes the current literature about the behavioral, electrophysiological and neurochemical effects of 5-HT(2) receptors ligands on the monoaminergic systems but also on adult hippocampal neurogenesis. EXPERT OPINION Although studies support the hypothesis that the inactivation of 5-HT(2A) and/or 5-HT(2C) receptors might be of interest to reinforce different facets of the therapeutic activity of SSRIs, this pharmacological strategy remains debatable notably because of the lack of chronic data in relevant animal models. Conversely, emerging evidence suggests that the activation of 5-HT(2B) receptor is required for antidepressant-like activity, opening the way to new therapeutic approaches. However, the potential risks related to the enhancement of monoaminergic neurotransmissions could represent a major concern.
Collapse
Affiliation(s)
- Gaël Quesseveur
- EA3544 University Paris-XI, Laboratoire de Neuropharmacologie, Fac. Pharmacie, F-92296, Châtenay-Malabry cedex, France
| | | | | | | |
Collapse
|
30
|
Preethi J, Singh HK, Charles PD, Rajan KE. Participation of microRNA 124-CREB pathway: a parallel memory enhancing mechanism of standardised extract of Bacopa monniera (BESEB CDRI-08). Neurochem Res 2012; 37:2167-77. [PMID: 22837048 DOI: 10.1007/s11064-012-0840-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/23/2012] [Accepted: 07/12/2012] [Indexed: 12/21/2022]
Abstract
Bacosides, the effective component of standardised leaf extract of Bacopa monniera (BESEB CDRI-08) has been reported to have memory enhancing effect. Our previous reports suggested that BESEB CDRI-08 (BME) improves memory in postnatal rats by enhancing serotonin [5-hydroxytryptamine (5-HT)] metabolism, its transportation and subsequently activates 5-HT(3A) receptor during hippocampus-dependent learning. In this study, we examine whether the up-regulated 5-HT(3A) receptor activity by BME modulate microRNA 124-CREB pathway to enhance synaptic plasticity. Wistar rat pups received single dose of vehicle solution (0.5 % gum acacia + 0.9 % saline)/BME (80 mg/kg)/mCPBG (10 mg/kg)/BME + mCPBG during the postnatal days (PND) 15-29. On PND 30, individuals were trained at brightness discrimination task and 24 h later, they were tested on the task. The BME treated group exhibited significantly lower percentage of errors during retention than acquisition. In addition, pre-miR-124 expression in hippocampus was significantly down-regulated in the BME and mCPBG + BME treated groups combined with a significant increase in the plasticity related genes, cAMP response element-binding protein, its phosphorylation and postsynaptic density protein 95. Our results suggest that this may be one of the mechanisms of bacosides present in BME for the memory enhancement.
Collapse
Affiliation(s)
- Jayakumar Preethi
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | | | | | | |
Collapse
|
31
|
Cell type-specific gene expression and editing responses to chronic fluoxetine treatment in the in vivo mouse brain and their relevance for stress-induced anhedonia. Neurochem Res 2012; 37:2480-95. [PMID: 22711334 DOI: 10.1007/s11064-012-0814-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/03/2012] [Accepted: 05/26/2012] [Indexed: 01/11/2023]
Abstract
Recently developed methods for fluorescence-activated cell sorting (FACS) of freshly-isolated brain cells from transgenic mice combining fluorescent signals with cell type-specific markers allow cell-type separation. Based upon previous observations in primary cultures of mouse astrocytes we treated transgenic mice tagged with a neuron-specific or an astrocyte-specific marker with fluoxetine, either acute (10 mg/kg for 2 h) or chronic (10 mg/kg daily for 2 weeks). Acute treatment upregulated cfos and fosB mRNA expression in astrocytes and neurons. Chronic effects on astrocytes replicated those demonstrated in cultures, i.e., upregulation of mRNA and/or protein expression of 5-HT(2B) receptors (5-HT(2B)R), and GluK2 receptors, and of cPLA(2a) and ADAR2, together with increased GluK2 and 5-HT(2B)R editing. Neurons showed increased GluK4 and 5-HT(2C) receptor expression. To further correlate these findings with major depression we compared the changes in gene expression with those in a mouse model of anhedonia. Three out of 4 genes up-regulated in astrocytes by fluoxetine were down-regulated, whereas the neuronally upregulated 5-HT(2C) receptor gene showed no change. References are made to recent review papers discussing potential relations between observed fluoxetine effects and clinical effects of SSRIs, emphasizing that all 5 clinically used SSRIs have identical and virtually equipotent effects on cultured astrocytes.
Collapse
|
32
|
Masson J, Emerit MB, Hamon M, Darmon M. Serotonergic signaling: multiple effectors and pleiotropic effects. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/wmts.50] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Fu H, Li B, Hertz L, Peng L. Contributions in astrocytes of SMIT1/2 and HMIT to myo-inositol uptake at different concentrations and pH. Neurochem Int 2012; 61:187-94. [PMID: 22564531 DOI: 10.1016/j.neuint.2012.04.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 12/21/2022]
Abstract
myo-Inositol is important for cell signaling both in cytoplasm and in intracellular organelles. It is required in the plasma membrane and cytoplasm for maintained synthesis of the second messengers, inositoltrisphosphate (IP(3)) and diacylglycerol (DAG) from phosphatidylinositol bisphosphate (PIP(2)), and in organelles as precursor for synthesis of complex signaling phospholipids and inositolphosphates from IP(3) and PIP(2). myo-Inositol must be taken up into the cell where its is used, because neither neurons nor astrocytes synthesize it. It is also an osmolyte, taken up in response to surrounding hyperosmolarity and released during hypo-osmolarity. There are three myo-inositol transporters, the Na(+)-dependent SMIT1 and SMIT2, and HMIT, which co-transports myo-inositol with H(+). Their relative expressions in astrocytes and neurons are unknown. Uptake kinetics for myo-inositol in astrocytes has repeatedly been determined, but always on the assumption of only one component, leaving kinetics for the individual transporters unknown. This paper demonstrates that astrocytes obtained directly from the brain express SMIT1 and HMIT, but little SMIT2, and that all three transporters are expressed in neurons. Cultured mouse astrocytes show a high-affinity/low-capacity myo-inositol uptake (V(max): 60.0 ± 3.0 pmol/min per mg protein; K(m): 16.7 ± 2.6 μM), mediated by SMIT1 and perhaps partly by SMIT2. It was determined in cells pre-treated with HMIT-siRNA and confirmed by specific inhibition of SMIT. However at physiologically relevant myo-inositol concentrations most uptake is by a lower-affinity/higher-capacity uptake, mediated by HMIT (V(max): 358 ± 60 pmol/min per mg protein; K(m): 143 ± 36 μM) and determined by subtraction of SMIT-mediated from total uptake. At high myo-inositol concentrations, its uptake is inhibited by incubation in medium with increased pH, and increased during intracellular acidification with NH(4)Cl. This is in agreement with literature data for HMIT alone. At low concentration, where SMIT1/2 activity gains importance, myo-inositol uptake is reduced by ammonia-induced intracellular acidification, consistent with the transporter's pH sensitivity reported in the literature.
Collapse
Affiliation(s)
- Hui Fu
- Department of Clinical Pharmacology, College of Basic Medical Sciences, China Medical University, Shenyang, PR China
| | | | | | | |
Collapse
|
34
|
Ubhi K, Inglis C, Mante M, Patrick C, Adame A, Spencer B, Rockenstein E, May V, Winkler J, Masliah E. Fluoxetine ameliorates behavioral and neuropathological deficits in a transgenic model mouse of α-synucleinopathy. Exp Neurol 2012; 234:405-16. [PMID: 22281106 PMCID: PMC3897235 DOI: 10.1016/j.expneurol.2012.01.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/18/2011] [Accepted: 01/05/2012] [Indexed: 12/22/2022]
Abstract
The term α-synucleinopathies refers to a group of age-related neurological disorders including Parkinson's disease (PD), Dementia with Lewy Bodies (DLB) and Multiple System Atrophy (MSA) that display an abnormal accumulation of alpha-synuclein (α-syn). In contrast to the neuronal α-syn accumulation observed in PD and DLB, MSA is characterized by a widespread oligodendrocytic α-syn accumulation. Transgenic mice expressing human α-syn under the oligodendrocyte-specific myelin basic protein promoter (MBP1-hαsyn tg mice) model many of the behavioral and neuropathological alterations observed in MSA. Fluoxetine, a selective serotonin reuptake inhibitor, has been shown to be protective in toxin-induced models of PD, however its effects in an in vivo transgenic model of α-synucleinopathy remain unclear. In this context, this study examined the effect of fluoxetine in the MBP1-hαsyn tg mice, a model of MSA. Fluoxetine administration ameliorated motor deficits in the MBP1-hαsyn tg mice, with a concomitant decrease in neurodegenerative pathology in the basal ganglia, neocortex and hippocampus. Fluoxetine administration also increased levels of the neurotrophic factors, GDNF (glial-derived neurotrophic factor) and BDNF (brain-derived neurotrophic factor) in the MBP1-hαsyn tg mice compared to vehicle-treated tg mice. This fluoxetine-induced increase in GDNF and BDNF protein levels was accompanied by activation of the ERK signaling pathway. The effects of fluoxetine administration on myelin and serotonin markers were also examined. Collectively these results indicate that fluoxetine may represent a novel therapeutic intervention for MSA and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Kiren Ubhi
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Chandra Inglis
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Michael Mante
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Christina Patrick
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Anthony Adame
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Brian Spencer
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Verena May
- Division of Molecular Neurology, University of Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Juergen Winkler
- Department of Neurosciences, University of California, San Diego, CA, USA
- Division of Molecular Neurology, University of Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, CA, USA
- Department of Pathology, University of California, San Diego, CA, USA
| |
Collapse
|
35
|
Li B, Zhang S, Zhang H, Hertz L, Peng L. Fluoxetine affects GluK2 editing, glutamate-evoked Ca(2+) influx and extracellular signal-regulated kinase phosphorylation in mouse astrocytes. J Psychiatry Neurosci 2011; 36:322-38. [PMID: 21320410 PMCID: PMC3163648 DOI: 10.1503/jpn.100094] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND We sought to study the effects of chronic exposure to fluoxetine - a selective serotonin reuptake inhibitor (SSRI) and specific 5-HT(2B) receptor agonist in astrocytes - on the expression of kainate receptors (GluK1-5) in cultured astrocytes and in intact brains in mice and on GluK2 editing by adenosine deaminase acting on RNA (ADAR), as well as the ensuing effects of fluoxetine on glutamate-mediated Ca(2+) influx and extracellular signal-regulated kinase (ERK)(1/2) phosphorylation in astrocytes. METHODS We performed reverse transcription-polymerase chain reaction (PCR) to assess mRNA expression. We analyzed RNA editing with amplification refractory mutation system PCR and complementary DNA sequencing. Protein expression and ERK phosphorylation were assessed using Western blots. We studied gene silencing with specific small interfering RNAs (siRNA), and we studied intracellular Ca(2+) using fluorometry. RESULTS All GluK subunits were present in the brain in vivo, and GluK2-5 subunits were present in cultured astrocytes. Fluoxetine upregulated GluK2 and ADAR2. Enhanced GluK2 editing by fluoxetine abolished glutamate-mediated increases in intra cellular Ca(2+) and ERK(1/2) phosphorylation. Enhanced editing of GluK2 was prevented by siRNA against the 5-HT(2B) receptor or ADAR2. LIMITATIONS Limitations of our study include the use of an in vitro system, but our cultured cells in many respects behave like in vivo astrocytes. CONCLUSION Fluoxetine alters astrocytic glutamatergic function.
Collapse
Affiliation(s)
| | | | | | | | - Liang Peng
- Correspondence to: Prof. L. Peng, College of Basic Medical Sciences, China Medical University, No. 92 Beier Rd., Heping District, Shenyang, China;
| |
Collapse
|
36
|
Yu Z, Ono C, Kim HB, Komatsu H, Tanabe Y, Sakae N, Nakayama KI, Matsuoka H, Sora I, Bunney WE, Tomita H. Four mood stabilizers commonly induce FEZ1 expression in human astrocytes. Bipolar Disord 2011; 13:486-99. [PMID: 22017218 DOI: 10.1111/j.1399-5618.2011.00946.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Mood stabilizers influence the morphology, chemotaxis, and survival of neurons, which are considered to be related to the mood-stabilizing effects of these drugs. Although previous studies suggest glial abnormalities in patients with bipolar disorder and an effect of mood stabilizers on certain genes in astrocytes, less is known about the effects of mood stabilizers in astrocytes than in neurons. The present study identifies a common underlying response to mood stabilizers in astrocytes. METHODS Human astrocyte-derived cells (U-87 MG) were treated with the four most commonly used mood stabilizers (lithium, valproic acid, carbamazepine, and lamotrigine) and subjected to microarray gene expression analyses. The most prominently regulated genes were validated by qRT-PCR and western blot analysis. The intercellular localization of one of these regulated genes, fasciculation and elongation protein zeta 1 (FEZ1), was evaluated by immunofluorescence staining. RESULTS The microarray data indicated that FEZ1 was the only gene commonly induced by the four mood stabilizers in human astrocyte-derived cells. An independent experiment confirmed astrocytic FEZ1 induction at both the transcript and protein levels following mood stabilizer treatments. FEZ1 localized to the cytoplasm of transformed and primary astrocytes from the human adult brain. CONCLUSIONS Our data suggest that FEZ1 may play important roles in human astrocytes, and that mood stabilizers might exert their cytoprotective and mood-stabilizing effects by inducing FEZ1 expression in astrocytes.
Collapse
Affiliation(s)
- Zhiqian Yu
- Department of Biological Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Serotonergic neurotransmission plays a major role in the action of the glycogenic convulsant methionine sulfoximine. Neurosci Res 2011; 70:313-20. [DOI: 10.1016/j.neures.2011.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/31/2011] [Accepted: 03/02/2011] [Indexed: 11/21/2022]
|
38
|
Li B, Dong L, Fu H, Wang B, Hertz L, Peng L. Effects of chronic treatment with fluoxetine on receptor-stimulated increase of [Ca2+]i in astrocytes mimic those of acute inhibition of TRPC1 channel activity. Cell Calcium 2011; 50:42-53. [PMID: 21640379 DOI: 10.1016/j.ceca.2011.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 04/30/2011] [Accepted: 05/03/2011] [Indexed: 12/17/2022]
Abstract
Primary cultures of mouse astrocytes were used to investigate effects by chronic treatment (3-21 days) with fluoxetine (0.5-10 μM) on capacitative Ca(2+) influx after treatment with the SERCA inhibitor thapsigargin and on receptor agonist-induced increases in free cytosolic Ca(2+) concentration [Ca(2+)](i), determined with Fura-2. The agonists were the 5-HT(2B) agonist fluoxetine, the α(2)-adrenergic agonist dexmedetomidine, and ryanodine receptor (RyR) and IP(3) receptor (IP(3)R) agonists. In untreated sister cultures each agonist distinctly increased [Ca(2+)](i), but in cultures treated for sufficient length of time or with sufficiently high doses of fluoxetine, acute administration of fluoxetine, dexmedetomidine, or RyR or IP(3)R agonists elicited reduced, in some cases abolished, effects. Capacitative Ca(2+) entry, meditated by TRPC1 channels, was sufficiently inhibited to cause a depletion of Ca(2+) stores, which could explain the reduced agonist effects. All effects of chronic fluoxetine administration could be replicated by TRPC1 channel antibody or siRNA. Since increases in astrocytic [Ca(2+)](i) regulate release of gliotransmitters, these effects may have profound effects on brain function. They may be important for therapeutic effects of all 5 conventional 'serotonin-specific reuptake inhibitors' (SSRIs), which at concentrations used therapeutically (∼1 μM) share other of fluoxetine's chronic effects (Zhang et al., Neuron Glia Biol. 16 (2010) 1-13).
Collapse
Affiliation(s)
- Baoman Li
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | | | | | | | | | | |
Collapse
|
39
|
Millan MJ. MicroRNA in the regulation and expression of serotonergic transmission in the brain and other tissues. Curr Opin Pharmacol 2011; 11:11-22. [PMID: 21345728 DOI: 10.1016/j.coph.2011.01.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 12/12/2022]
Abstract
In addition to transcriptional regulation, the translation of protein-coding genes is modulated by MicroRNA-binding miRNAs (miRNAs), which have emerged to fulfil important roles in the control and expression of serotonergic transmission. Thus, miR-96 and miR-510 inhibit the translation of serotonin (5-HT)(1B) receptors and 5-HT(3E) receptor subunits respectively, and their susceptibility to repression is modified by polymorphisms in the 3'-UTR (miRNA-binding) regions of their mRNAs. Contrasting susceptibility of human subjects to miRNA-induced alterations in the translation of cerebral 5-HT(1B) receptors and intestinal 5-HT(3E) receptor subunits is related to differential aggressive behaviour and incidence of irritable bowel syndrome, respectively. Fluoxetine promotes the biogenesis of miR-16, leading to translational repression of 5-HT transporters in mouse serotonergic neurones. While the precise mechanism of action of fluoxetine is uncertain, studies of Aplysia have shown that 5-HT inhibits the generation of miR-124, thereby promoting de-repression of CREB and facilitation of synaptic plasticity. Interestingly, 5-HT(2C) receptors harbour a miRNA (miR-448) in their 4th intron that - oppositely to 5-HT(2C) sites - reduces adipocyte differentiation. Finally, interactions amongst 5-HT and miRNAs control processes of bone formation, as well as growth, motility and survival of tumours. The present article discusses the functionally and clinically important interplay amongst miRNAs and serotoninergic mechanisms in the brain, peripheral organs and cancerous tissue.
Collapse
Affiliation(s)
- Mark J Millan
- IDR Servier, 125 chemin de Ronde, 78290 Croissy/Seine, Paris, France.
| |
Collapse
|
40
|
Xia M, Zhu Y. Signaling pathways of ATP-induced PGE2 release in spinal cord astrocytes are EGFR transactivation-dependent. Glia 2011; 59:664-74. [PMID: 21294165 DOI: 10.1002/glia.21138] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 12/09/2010] [Indexed: 01/29/2023]
Abstract
Traumatic spinal cord injury is characterized by an immediate, irreversible loss of tissue at the lesion site, as well as a secondary expansion of tissue damage over time. Although secondary injury should, in principle, be preventable, no effective treatment options currently exist for patients with acute spinal cord injury (SCI). Excessive release of ATP by the traumatized tissue, triggers the rapid release of arachidonic acid (AA) and prostaglandin E2 (PGE2), and has beenimplicated in acute and chronic neuropathic pain and inflammation. But the intracellular pathways between ATP and PGE2 remain largely unknown. We have explored the signaling events involved in this synthesis by primarily culturing spinal cord astrocytes: (1) we determined significant PGE2 production increased by ATP is mainly via Subtype 1 of P2 purinoceptors (P2Y1) but not P2Y2; (2) we found that ATP strongly increased the level of intracellular Ca(2+) via P2Y1 receptor; (3) we indicated that ATP stimulates the definitely release of AA and PGE2 which involved the transactivation of epidermal growth factor (EGF) receptor, the phosphorylation of extracellular-regulated protein kinases 1 and 2 (ERK(1/2) ) and the activation of cytosolic phospholipase A(2) (cPLA(2) ); (4) we examined ATP could increase the phosphorylation of Akt via P2Y1 receptor which also depend on the transactivation of EGFR, but the activation of Akt has no effect on the downstream of cPLA(2) phosphorylation. ATP induced by SCI could mobilize the release of AA and PGE2. And inhibition of PGE2 release reduces behavioral signs of pain after SCI and peripheral nerve injury.
Collapse
Affiliation(s)
- Maosheng Xia
- Department of Orthopaedics, The First Hospital of China Medical University, Heping District, Shenyang, People's Republic of China
| | | |
Collapse
|
41
|
Astrocytic transactivation by α2A-adrenergic and 5-HT2B serotonergic signaling. Neurochem Int 2010; 57:421-31. [DOI: 10.1016/j.neuint.2010.04.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/24/2010] [Accepted: 04/28/2010] [Indexed: 12/11/2022]
|
42
|
5-HT2B receptors are expressed on astrocytes from brain and in culture and are a chronic target for all five conventional ‘serotonin-specific reuptake inhibitors’. ACTA ACUST UNITED AC 2010; 6:113-25. [DOI: 10.1017/s1740925x10000141] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In well-differentiated primary cultures of mouse astrocytes, which express no serotonin transporter (SERT), the ‘serotonin-specific reuptake inhibitor’ (SSRI) fluoxetine leads acutely to 5-HT2B receptor-mediated, transactivation-dependent phosphorylation of extracellular regulated kinases 1/2 (ERK1/2) with an EC50 of ~5 μM, and chronically to ERK1/2 phosphorylation-dependent upregulation of mRNA and protein expression of calcium-dependent phospholipase A2 (cPLA2) with ten-fold higher affinity. This affinity is high enough that fluoxetine given therapeutically may activate astrocytic 5-HT2B receptors (Li et al., 2008, 2009). We now confirm the expression of 5-HT2B receptors in astrocytes freshly dissociated from mouse brain and isolated by fluorescence-activated cell sorting (FACS) and investigate in cultured cells if the effects of fluoxetine are shared by all five conventional SSRIs with sufficiently high affinity to be relevant for mechanism(s) of action of SSRIs. Phosphorylated and total ERK1/2 and mRNA and protein expression of cPLA2a were determined by Western blot and reverse transcription polymerase chain reaction (RT-PCR). Paroxetine, which differs widely from fluoxetine in affinity for SERT and for another 5-HT2 receptor, the 5-HT2C receptor, acted acutely and chronically like fluoxetine. One micromolar of paroxetine, fluvoxamine or sertraline increased cPLA2a expression during chronic treatment; citalopram had a similar effect at 0.1–0.5 μM; these are therapeutically relevant concentrations.
Collapse
|
43
|
Matsukawa N, Furuya Y, Ogura H, Ojika K. HCNP precursor protein transgenic mice display a depressive-like phenotype in old age. Brain Res 2010; 1349:153-61. [DOI: 10.1016/j.brainres.2010.06.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/14/2010] [Accepted: 06/16/2010] [Indexed: 11/17/2022]
|
44
|
Sharif A, Prevot V. ErbB receptor signaling in astrocytes: a mediator of neuron-glia communication in the mature central nervous system. Neurochem Int 2010; 57:344-58. [PMID: 20685225 DOI: 10.1016/j.neuint.2010.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 03/29/2010] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
Abstract
Astrocytes are now recognized as active players in the developing and mature central nervous system. Each astrocyte contacts vascular structures and thousands of synapses within discrete territories. These cells receive a myriad of inputs and generate appropriate responses to regulate the function of brain microdomains. Emerging evidence has implicated receptors of the ErbB tyrosine kinase family in the integration and processing of neuronal inputs by astrocytes: ErbB receptors can be activated by a wide range of neuronal stimuli; they control critical steps of glutamate-glutamine metabolism; and they regulate the biosynthesis and release of various glial-derived neurotrophic factors, gliomediators and gliotransmitters. These key properties of astrocytic ErbB signaling in neuron-glia interactions have significance for the physiology of the mature central nervous system, as exemplified by the central control of reproduction within the hypothalamus, and are also likely to contribute to pathological situations, since both dysregulation of ErbB signaling and glial dysfunction occur in many neurological disorders.
Collapse
Affiliation(s)
- Ariane Sharif
- Inserm, Jean-Pierre Aubert Research Center, U837, Development and Plasticity of the postnatal Brain, Lille, France.
| | | |
Collapse
|