1
|
Beaver JN, Weber BL, Ford MT, Anello AE, Kassis SK, Gilman TL. Uncovering Functional Contributions of PMAT ( Slc29a4) to Monoamine Clearance Using Pharmacobehavioral Tools. Cells 2022; 11:cells11121874. [PMID: 35741002 PMCID: PMC9220966 DOI: 10.3390/cells11121874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Plasma membrane monoamine transporter (PMAT, Slc29a4) transports monoamine neurotransmitters, including dopamine and serotonin, faster than more studied monoamine transporters, e.g., dopamine transporter (DAT), or serotonin transporter (SERT), but with ~400–600-fold less affinity. A considerable challenge in understanding PMAT’s monoamine clearance contributions is that no current drugs selectively inhibit PMAT. To advance knowledge about PMAT’s monoamine uptake role, and to circumvent this present challenge, we investigated how drugs that selectively block DAT/SERT influence behavioral readouts in PMAT wildtype, heterozygote, and knockout mice of both sexes. Drugs typically used as antidepressants (escitalopram, bupropion) were administered acutely for readouts in tail suspension and locomotor tests. Drugs with psychostimulant properties (cocaine, D-amphetamine) were administered repeatedly to assess initial locomotor responses plus psychostimulant-induced locomotor sensitization. Though we hypothesized that PMAT-deficient mice would exhibit augmented responses to antidepressant and psychostimulant drugs due to constitutively attenuated monoamine uptake, we instead observed sex-selective responses to antidepressant drugs in opposing directions, and subtle sex-specific reductions in psychostimulant-induced locomotor sensitization. These results suggest that PMAT functions differently across sexes, and support hypotheses that PMAT’s monoamine clearance contribution emerges when frontline transporters (e.g., DAT, SERT) are absent, saturated, and/or blocked. Thus, known human polymorphisms that reduce PMAT function could be worth investigating as contributors to varied antidepressant and psychostimulant responses.
Collapse
|
2
|
Weidenauer A, Bauer M, Sauerzopf U, Bartova L, Praschak-Rieder N, Sitte HH, Kasper S, Willeit M. Making Sense of: Sensitization in Schizophrenia. Int J Neuropsychopharmacol 2016; 20:1-10. [PMID: 27613293 PMCID: PMC5604613 DOI: 10.1093/ijnp/pyw081] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/07/2016] [Indexed: 12/12/2022] Open
Abstract
Sensitization is defined as a process whereby repeated intermittent exposure to a given stimulus results in an enhanced response at subsequent exposures. Next to robust findings of an increased dopamine synthesis capacity in schizophrenia, empirical data and neuroimaging studies support the notion that the mesolimbic dopamine system of patients with schizophrenia is more reactive compared with healthy controls. These studies led to the conceptualization of schizophrenia as a state of endogenous sensitization, as stronger behavioral response and increased dopamine release after amphetamine administration or exposure to stress have been observed in patients with schizophrenia. These findings have also been integrated into the neurodevelopmental model of the disorder, which assumes that vulnerable neuronal circuits undergo progressive changes during puberty and young adulthood that lead to manifest psychosis. Rodent and human studies have made an attempt to identify the exact mechanisms of sensitization of the dopaminergic system and its association with psychosis. Doing so, several epigenetic and molecular alterations associated with dopamine release, neuroplasticity, and cellular energy metabolism have been discovered. Future research aims at targeting these key proteins associated with sensitization in schizophrenia to enhance the knowledge of the pathophysiology of the illness and pave the way for an improved treatment or even prevention of this severe psychiatric disorder.
Collapse
Affiliation(s)
- Ana Weidenauer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Drs Weidenauer, Bauer, Sauerzopf, Bartova, Praschak-Rieder, Kasper, and Willeit); Department of Clinical Pharmacology (Dr Bauer), and Institute of Pharmacology, Medical University of Vienna, Austria (Dr Sitte)
| | - Martin Bauer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Drs Weidenauer, Bauer, Sauerzopf, Bartova, Praschak-Rieder, Kasper, and Willeit); Department of Clinical Pharmacology (Dr Bauer), and Institute of Pharmacology, Medical University of Vienna, Austria (Dr Sitte)
| | - Ulrich Sauerzopf
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Drs Weidenauer, Bauer, Sauerzopf, Bartova, Praschak-Rieder, Kasper, and Willeit); Department of Clinical Pharmacology (Dr Bauer), and Institute of Pharmacology, Medical University of Vienna, Austria (Dr Sitte)
| | - Lucie Bartova
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Drs Weidenauer, Bauer, Sauerzopf, Bartova, Praschak-Rieder, Kasper, and Willeit); Department of Clinical Pharmacology (Dr Bauer), and Institute of Pharmacology, Medical University of Vienna, Austria (Dr Sitte)
| | - Nicole Praschak-Rieder
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Drs Weidenauer, Bauer, Sauerzopf, Bartova, Praschak-Rieder, Kasper, and Willeit); Department of Clinical Pharmacology (Dr Bauer), and Institute of Pharmacology, Medical University of Vienna, Austria (Dr Sitte)
| | - Harald H. Sitte
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Drs Weidenauer, Bauer, Sauerzopf, Bartova, Praschak-Rieder, Kasper, and Willeit); Department of Clinical Pharmacology (Dr Bauer), and Institute of Pharmacology, Medical University of Vienna, Austria (Dr Sitte)
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Drs Weidenauer, Bauer, Sauerzopf, Bartova, Praschak-Rieder, Kasper, and Willeit); Department of Clinical Pharmacology (Dr Bauer), and Institute of Pharmacology, Medical University of Vienna, Austria (Dr Sitte).
| | - Matthäus Willeit
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Drs Weidenauer, Bauer, Sauerzopf, Bartova, Praschak-Rieder, Kasper, and Willeit); Department of Clinical Pharmacology (Dr Bauer), and Institute of Pharmacology, Medical University of Vienna, Austria (Dr Sitte)
| |
Collapse
|
3
|
Yoon HS, Cai WT, Lee YH, Park KT, Lee YS, Kim JH. The expression of methiopropamine-induced locomotor sensitization requires dopamine D2, but not D1, receptor activation in the rat. Behav Brain Res 2016; 311:403-407. [DOI: 10.1016/j.bbr.2016.05.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/05/2016] [Accepted: 05/30/2016] [Indexed: 01/01/2023]
|
4
|
Wang C, Niu M, Zhou Z, Zheng X, Zhang L, Tian Y, Yu X, Bu G, Xu H, Ma Q, Zhang YW. VPS35 regulates cell surface recycling and signaling of dopamine receptor D1. Neurobiol Aging 2016; 46:22-31. [PMID: 27460146 DOI: 10.1016/j.neurobiolaging.2016.05.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/24/2016] [Accepted: 05/15/2016] [Indexed: 02/08/2023]
Abstract
Vacuolar protein sorting 35 (VPS35) is a retromer complex component regulating membrane protein trafficking and retrieval. Mutations or dysfunction of VPS35 have been linked to Parkinson's disease (PD), which is pathologically characterized by the loss of dopamine neurons in brain substantia nigra region. Dopamine plays a key role in regulating various brain physiological functions by binding to its receptors and triggering their endocytosis and signaling pathways. However, it is unclear whether there is a link between VPS35 and dopamine signaling in PD. Herein, we found that VPS35 interacted with dopamine receptor D1 (DRD1). Notably, overexpression and downregulation of VPS35 increased and decreased steady-state cell surface levels of DRD1 and phosphorylation of cAMP-response element binding protein (CREB) and extracellular regulated protein kinases (ERK) that are important dopamine signaling effectors, respectively. In addition, overexpression of VPS35 promoted cell surface recycling of endocytic DRD1. Furthermore, downregulation of VPS35 abolished dopamine-induced CREB/ERK phosphorylation. More importantly, although the PD-associated VPS35 mutant VPS35 (D620N) still interacted with DRD1, its expression did not affect cell surface recycling of DRD1 and phosphorylation of CREB/ERK nor rescue the reduction of CREB/ERK phosphorylation caused by VPS35 downregulation. These results demonstrate that VPS35 regulates DRD1 trafficking and DRD1-mediated dopamine signaling pathway, and that the PD-associated VPS35 (D620N) mutant loses such functions, providing a novel molecular mechanism underlying PD pathogenesis.
Collapse
Affiliation(s)
- Chen Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Collaborative Innovation Center for Brain Science, College of Medicine, Xiamen University, Xiamen, Fujian, China; Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Mengxi Niu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Collaborative Innovation Center for Brain Science, College of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zehua Zhou
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Collaborative Innovation Center for Brain Science, College of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyuan Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Collaborative Innovation Center for Brain Science, College of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Lingzhi Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Collaborative Innovation Center for Brain Science, College of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ye Tian
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Collaborative Innovation Center for Brain Science, College of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaojun Yu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Collaborative Innovation Center for Brain Science, College of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Guojun Bu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Collaborative Innovation Center for Brain Science, College of Medicine, Xiamen University, Xiamen, Fujian, China; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Collaborative Innovation Center for Brain Science, College of Medicine, Xiamen University, Xiamen, Fujian, China; Degenerative Diseases Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Qilin Ma
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Collaborative Innovation Center for Brain Science, College of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
5
|
Zhu J, Midde NM, Gomez AM, Sun WL, Harrod SB. Intra-ventral tegmental area HIV-1 Tat1-86 attenuates nicotine-mediated locomotor sensitization and alters mesocorticolimbic ERK and CREB signaling in rats. Front Microbiol 2015; 6:540. [PMID: 26150803 PMCID: PMC4473058 DOI: 10.3389/fmicb.2015.00540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/15/2015] [Indexed: 12/24/2022] Open
Abstract
Cigarette smoking prevalence in the HIV-positive individuals is profoundly higher than that in the HIV-negative individuals. We have demonstrated that HIV-1 transgenic rats exhibit attenuated nicotine-mediated locomotor activity, altered cAMP response element binding protein (CREB) and extracellular regulated kinase (ERK1/2) signaling in the mesocorticolimbic regions. This study investigated the role of HIV-1 transactivator of transcription (Tat) protein in the alterations of nicotine-mediated behavior and the signaling pathway observed in the HIV-1 transgenic rats. Rats received bilateral microinjection of recombinant Tat1-86 (25 μg/side) or vehicle directed at ventral tegmental area (VTA) followed by locomotor testing in response to 13 daily intravenous injections of nicotine (0.05 mg/kg, freebase, once/day) or saline. Further, we examined the phosphorylated levels of CREB (pCREB) and ERK1/2 (pERK1/2) in the prefrontal cortex (PFC), nucleus accumbens (NAc) and VTA. Tat diminished baseline activity in saline control rats, and attenuated nicotine-induced behavioral sensitization. Following repeated saline injection, the basal levels of pERK1 in the NAc and VTA and pERK2 in VTA were lower in the vehicle control group, relative to the Tat group. After repeated nicotine injection, pERK1 in NAc and VTA and pERK2 in VTA were increased in the vehicle group, but not in the Tat group. Moreover, repeated nicotine injections decreased pCREB in the PFC and VTA in the Tat group but not in the vehicle group. Thus, these findings indicate that the direct injection of Tat at the VTA may mediate CREB and ERK activity in response to nicotine-induced locomotor activity.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina , Columbia, SC, USA
| | - Narasimha M Midde
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina , Columbia, SC, USA
| | - Adrian M Gomez
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina , Columbia, SC, USA
| | - Wei-Lun Sun
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina , Columbia, SC, USA
| | - Steven B Harrod
- Department of Psychology, University of South Carolina , Columbia, SC, USA
| |
Collapse
|
6
|
Hutson PH, Tarazi FI, Madhoo M, Slawecki C, Patkar AA. Preclinical pharmacology of amphetamine: Implications for the treatment of neuropsychiatric disorders. Pharmacol Ther 2014; 143:253-64. [DOI: 10.1016/j.pharmthera.2014.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/14/2014] [Indexed: 11/28/2022]
|
7
|
Gonçalves J, Baptista S, Silva AP. Psychostimulants and brain dysfunction: a review of the relevant neurotoxic effects. Neuropharmacology 2014; 87:135-49. [PMID: 24440369 DOI: 10.1016/j.neuropharm.2014.01.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/18/2013] [Accepted: 01/06/2014] [Indexed: 12/21/2022]
Abstract
Psychostimulants abuse is a major public concern because is associated with serious health complications, including devastating consequences on the central nervous system (CNS). The neurotoxic effects of these drugs have been extensively studied. Nevertheless, numerous questions and uncertainties remain in our understanding of these toxic events. Thus, the purpose of the present manuscript is to review cellular and molecular mechanisms that might be responsible for brain dysfunction induced by psychostimulants. Topics reviewed include some classical aspects of neurotoxicity, such as monoaminergic system and mitochondrial dysfunction, oxidative stress, excitotoxicity and hyperthermia. Moreover, recent literature has suggested new phenomena regarding the toxic effects of psychostimulants. Thus, we also reviewed the impact of these drugs on neuroinflammatory response, blood-brain barrier (BBB) function and neurogenesis. Assessing the relative importance of these mechanisms on psychostimulants-induced brain dysfunction presents an exciting challenge for future research efforts. This article is part of the Special Issue entitled 'CNS Stimulants'.
Collapse
Affiliation(s)
- Joana Gonçalves
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra Portugal
| | - Sofia Baptista
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra Portugal
| | - Ana Paula Silva
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra Portugal.
| |
Collapse
|
8
|
Abstract
Decreases in brain dopamine (DA) lead to catalepsy, quantified by the time a rat remains with its forepaws resting on a suspended horizontal bar. Low doses of the DA D2 receptor-preferring antagonist haloperidol repeatedly injected in a particular environment lead to gradual day-to-day increases in catalepsy (catalepsy sensitization) and subsequent testing following an injection of saline reveal conditioned catalepsy. We tested the hypothesis that D1-like and D2 receptors play different roles in catalepsy sensitization and in acquisition and expression of conditioned catalepsy. Rats were repeatedly treated with the DA D1-like receptor antagonist SCH 23990 (0.05, 0.1 and 0.25 mg/kg i.p.), the D2 receptor-preferring antagonist haloperidol (0.1, 0.25 and 0.5 mg/kg i.p.) or a combination of the two drugs and tested for catalepsy each day in the same environment. Following 10 drug treatment days, rats were injected with saline and tested for conditioned catalepsy in the previously drug-paired environment. Haloperidol did not elicit cataleptic responses in the initial session; however, rats developed sensitization with repeated testing. Significant catalepsy sensitization was not observed in rats repeatedly tested with SCH 23390. When rats were injected and tested with saline following haloperidol sensitization they exhibited conditioned catalepsy in the test environment; conditioned catalepsy was not seen following SCH 23390. Rats treated with 0.05 mg/kg SCH 23390+0.25 mg/kg haloperidol showed catalepsy sensitization but failed to show conditioned catalepsy. Conversely, SCH 23390 (0.05 mg/kg) given on the test day after sensitization to haloperidol (0.25 mg/kg) failed to block conditioned catalepsy. Repeated antagonism of D2 receptors leads to catalepsy sensitization with repeated testing in a specific environment. Conditioned catalepsy requires intact D1-like receptor function during sensitization sessions but not during test sessions. In conclusion, repeated antagonism of D2, but not D1-like receptors leads to catalepsy sensitization with repeated testing in a specific environment. Conditioned catalepsy requires functional D1-like receptors during sensitization sessions but not during test sessions.
Collapse
|
9
|
Midde NM, Gomez AM, Harrod SB, Zhu J. Genetically expressed HIV-1 viral proteins attenuate nicotine-induced behavioral sensitization and alter mesocorticolimbic ERK and CREB signaling in rats. Pharmacol Biochem Behav 2011; 98:587-97. [PMID: 21420997 PMCID: PMC3091851 DOI: 10.1016/j.pbb.2011.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 03/07/2011] [Accepted: 03/12/2011] [Indexed: 12/29/2022]
Abstract
The prevalence of tobacco smoking in HIV-1 positive individuals is 3-fold greater than that in the HIV-1 negative population; however, whether HIV-1 viral proteins and nicotine together produce molecular changes in mesolimbic structures that mediate psychomotor behavior has not been studied. This study determined whether HIV-1 viral proteins changed nicotine-induced behavioral sensitization in HIV-1 transgenic (HIV-1Tg) rats. Further, we examined cAMP response element binding protein (CREB) and extracellular regulated kinase (ERK1/2) signaling in the prefrontal cortex (PFC), nucleus accumbens (NAc) and ventral tegmental area (VTA). HIV-1Tg rats exhibited a transient decrease of activity during habituation, but showed attenuated nicotine (0.35mg/kg, s.c.)-induced behavioral sensitization compared to Fisher 344 (F344) rats. The basal levels of phosphorylated CREB and ERK2 were lower in the PFC of HIV-1Tg rats, but not in the NAc and VTA, relative to the controls. In the nicotine-treated groups, the levels of phosphorylated CREB and ERK2 in the PFC were increased in HIV-1Tg rats, but decreased in F344 animals. Moreover, repeated nicotine administration reduced phosphorylated ERK2 in the VTA of HIV-1Tg rats and in the NAc of F344 rats, but had no effect on phosphorylated CREB, indicating a region-specific change of intracellular signaling. These results demonstrate that HIV-1 viral proteins produce differences in basal and nicotine-induced alterations in CREB and ERK signaling that may contribute to the alteration in psychomotor sensitization. Thus, HIV-1 positive smokers are possibly more vulnerable to alterations in CREB and ERK signaling and this has implications for motivated behavior, including tobacco smoking, in HIV-1 positive individuals who self-administer nicotine.
Collapse
Affiliation(s)
- Narasimha M. Midde
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - Adrian M. Gomez
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - Steven B. Harrod
- Department of Psychology, University of South Carolina, Columbia, SC 29208
| | - Jun Zhu
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208
- Department of Psychology, University of South Carolina, Columbia, SC 29208
| |
Collapse
|
10
|
Motawaj M, Arrang JM. Ciproxifan, a histamine H₃-receptor antagonist / inverse agonist, modulates methamphetamine-induced sensitization in mice. Eur J Neurosci 2011; 33:1197-204. [PMID: 21366724 DOI: 10.1111/j.1460-9568.2011.07618.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The role of histamine neurons in schizophrenia and psychostimulant abuse remains unclear. Behavioural sensitization to psychostimulants is a cardinal feature of these disorders. Here, we have explored the ability of imetit and ciproxifan (CPX), a reference H₃-receptor agonist and inverse agonist, respectively, to modulate locomotor sensitization induced in mice by methamphetamine (MET). Mice received saline, CPX (3 mg/kg) or imetit (3 mg/kg) 2 h before MET (2 mg/kg), once daily for 12 days, and were killed after a 2-day wash out. Imetit had no effect, but CPX induced a decrease of MET-induced locomotor activity, which became significant at Day 5, and even more at Day 10. Quantitative polymerase chain reaction was used in the sensitized mice to quantify brain-derived neurotrophic factor (BDNF) and N-methyl-D-aspartate (NMDA)-receptor subunit 1 (NR1) mRNAs, two factors that are altered in both schizophrenia and drug abuse. Imetit and CPX used alone had no effect on any marker. Sensitization by MET decreased BDNF mRNAs by 40% in the hippocampus. This decrease was reversed by CPX. Sensitization by MET also induced strong decreases of NR1 mRNAs in the cerebral cortex, hippocampus and striatum, but not hypothalamus. These decreases were also reversed by CPX. The strong modulator effect of CPX in mice sensitized to MET may result from its modulator effect on NR1 mRNAs in the cerebral cortex and striatum. The reversal by CPX of BDNF and NR1 mRNAs in the hippocampus of sensitized animals further strengthens the interest of H₃-receptor inverse agonists for the long-term treatment of cognitive deficits of patients with schizophrenia.
Collapse
Affiliation(s)
- Mouhammad Motawaj
- INSERM, Laboratoire de Neurobiologie et Pharmacologie Moléculaire, Centre de Psychiatrie et Neurosciences (CPN, U 894), Paris, France
| | | |
Collapse
|