1
|
Nomiya H, Sakurai K, Miyamoto Y, Oka M, Yoneda Y, Hikida T, Yamada M. A Kpna1-deficient psychotropic drug-induced schizophrenia model mouse for studying gene-environment interactions. Sci Rep 2024; 14:3376. [PMID: 38336912 PMCID: PMC10858057 DOI: 10.1038/s41598-024-53237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
KPNA1 is a mediator of nucleocytoplasmic transport that is abundantly expressed in the mammalian brain and regulates neuronal differentiation and synaptic function. De novo mutations in Kpna1 have been identified using genome-wide association studies in humans with schizophrenia; however, it remains unclear how KPNA1 contributes to schizophrenia pathogenesis. Recent studies have suggested a complex combination of genetic and environmental factors that are closely related to psychiatric disorders. Here, we found that subchronic administration of phencyclidine, a psychotropic drug, induced vulnerability and behavioral abnormalities consistent with the symptoms of schizophrenia in Kpna1-deficient mice. Microarray assessment revealed that the expression levels of dopamine d1/d2 receptors, an RNA editing enzyme, and a cytoplasmic dynein component were significantly altered in the nucleus accumbens brain region in a gene-environment (G × E) interaction-dependent manner. Our findings demonstrate that Kpna1-deficient mice may be useful as a G × E interaction mouse model for psychiatric disorders and for further investigation into the pathogenesis of such diseases and disorders.
Collapse
Affiliation(s)
- Hirotaka Nomiya
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Koki Sakurai
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Yoshihiro Yoneda
- The Research Foundation for Microbial Diseases Osaka University, Integrated Life Science Building, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8397, Japan.
| | - Masami Yamada
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
- Life Science Innovation Center, University of Fukui, 3-9-1, Bunkyo, Fukui-City, Fukui, 910-8507, Japan.
| |
Collapse
|
2
|
Castner SA, Zhang L, Yang CR, Hao J, Cramer JW, Wang X, Bruns RF, Marston H, Svensson KA, Williams GV. Effects of DPTQ, a novel positive allosteric modulator of the dopamine D1 receptor, on spontaneous eye blink rate and spatial working memory in the nonhuman primate. Psychopharmacology (Berl) 2023; 240:1033-1048. [PMID: 36961560 PMCID: PMC10102062 DOI: 10.1007/s00213-022-06282-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/23/2022] [Indexed: 03/25/2023]
Abstract
RATIONALE Dopamine (DA) signaling through the D1 receptor has been shown to be integral to multiple aspects of cognition, including the core process of working memory. The discovery of positive allosteric modulators (PAMs) of the D1 receptor has enabled treatment modalities that may have alternative benefits to orthosteric D1 agonists arising from a synergism of action with functional D1 receptor signaling. OBJECTIVES To investigate this potential, we have studied the effects of the novel D1 PAM DPTQ on a spatial delayed response working memory task in the rhesus monkey. Initial studies indicated that DPTQ binds to primate D1R with high affinity and selectivity and elevates spontaneous eye blink rate in rhesus monkeys in a dose-dependent manner consistent with plasma ligand exposures and central D1activation. RESULTS Based on those results, DPTQ was tested at 2.5 mg/kg IM in the working memory task. No acute effect was observed 1 h after dosing, but performance was impaired 48 h later. Remarkably, this deficit was immediately followed by a significant enhancement in cognition over the next 3 days. In a second experiment in which DPTQ was administered on days 1 and 5, the early impairment was smaller and did not reach statistical significance, but statistically significant enhancement of performance was observed over the following week. Lower doses of 0.1 and 1.0 mg/kg were also capable of producing this protracted enhancement without inducing any transient impairment. CONCLUSIONS DPTQ exemplifies a class of D1PAMs that may be capable of providing long-term improvements in working memory.
Collapse
Affiliation(s)
- Stacy A Castner
- Department of Comparative Medicine, Yale University, 310 Cedar St, New Haven, CT, 06520, USA
| | - Linli Zhang
- ChemPartner, 99 Lian He North Road, Zhe Lin Town, Fengxian Area, Shanghai, China
| | - Charles R Yang
- ChemPartner, 99 Lian He North Road, Zhe Lin Town, Fengxian Area, Shanghai, China
| | - Junliang Hao
- Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Jeffrey W Cramer
- Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Xushan Wang
- Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Robert F Bruns
- Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | | | - Kjell A Svensson
- Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Graham V Williams
- Department of Comparative Medicine, Yale University, 310 Cedar St, New Haven, CT, 06520, USA.
| |
Collapse
|
3
|
Yang Y, Lewis MM, Kong L, Mailman RB. A Dopamine D 1 Agonist Versus Methylphenidate in Modulating Prefrontal Cortical Working Memory. J Pharmacol Exp Ther 2022; 382:88-99. [PMID: 35661631 PMCID: PMC9341252 DOI: 10.1124/jpet.122.001215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022] Open
Abstract
Methylphenidate is used widely to treat symptoms of attention-deficit/hyperactivity disorder (ADHD), but like other stimulants has significant side effects. This study used a rodent model (spontaneously hypertensive rat) of spatial working memory (sWM) to compare the effects of methylphenidate with the novel dopamine D1-like receptor agonist 2-methyldihydrexidine. Acute oral administration of methylphenidate (1.5 mg/kg) caused sWM improvement in half of the tested rats, but impairment in the others. Both improvement or impairment were eliminated by administration of the D1 antagonist SCH39266 directly into the prefrontal cortex (PFC). Conversely, 2-methyldihydrexidine showed greater sWM improvement compared with methylphenidate without significant impairment in any subject. Its effects correlated negatively with vehicle-treated baseline performance (i.e., rats with lower baseline performance improved more than rats with higher baseline performance). These behavioral effects were associated with neural activities in the PFC. Single neuron firing rate was changed, leading to the alteration in neuronal preference to correct or error behavioral responses. Overall, 2-methyldihydrexidine was superior to methylphenidate in decreasing the neuronal preference, prospectively, in the animals whose behavior was improved. In contrast, methylphenidate, but not 2-methyldihydrexidine, significantly decreased neuronal preference, retrospectively, in those animals who had impaired performance. These results suggest that a D1 agonist may be more effective than methylphenidate in regulating sWM-related behavior through neural modulation of the PFC, and thus may be superior to methylphenidate or other stimulants as ADHD pharmacotherapy. SIGNIFICANCE STATEMENT: Methylphenidate is effective in ADHD by its indirect agonist stimulation of dopamine and/or adrenergic receptors, but the precise effects on specific targets are unclear. This study compared methylphenidate to a dopamine D1 receptor-selective agonist by investigating effects on working memory occurring via neural modulation in the prefrontal cortex. The data suggest that pharmacological treatment selectively targeting the dopamine D1 may offer a superior approach to ADHD pharmacotherapy.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology (Y.Y., M.M.L., R.B.M.), Department of Neurology (M.M.L., R.B.M.), and Department of Public Health Sciences (L.K.), Penn State University College of Medicine, Hershey, Pennsylvania
| | - Mechelle M Lewis
- Department of Pharmacology (Y.Y., M.M.L., R.B.M.), Department of Neurology (M.M.L., R.B.M.), and Department of Public Health Sciences (L.K.), Penn State University College of Medicine, Hershey, Pennsylvania
| | - Lan Kong
- Department of Pharmacology (Y.Y., M.M.L., R.B.M.), Department of Neurology (M.M.L., R.B.M.), and Department of Public Health Sciences (L.K.), Penn State University College of Medicine, Hershey, Pennsylvania
| | - Richard B Mailman
- Department of Pharmacology (Y.Y., M.M.L., R.B.M.), Department of Neurology (M.M.L., R.B.M.), and Department of Public Health Sciences (L.K.), Penn State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
4
|
Jones-Tabah J, Mohammad H, Paulus EG, Clarke PBS, Hébert TE. The Signaling and Pharmacology of the Dopamine D1 Receptor. Front Cell Neurosci 2022; 15:806618. [PMID: 35110997 PMCID: PMC8801442 DOI: 10.3389/fncel.2021.806618] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
The dopamine D1 receptor (D1R) is a Gαs/olf-coupled GPCR that is expressed in the midbrain and forebrain, regulating motor behavior, reward, motivational states, and cognitive processes. Although the D1R was initially identified as a promising drug target almost 40 years ago, the development of clinically useful ligands has until recently been hampered by a lack of suitable candidate molecules. The emergence of new non-catechol D1R agonists, biased agonists, and allosteric modulators has renewed clinical interest in drugs targeting this receptor, specifically for the treatment of motor impairment in Parkinson's Disease, and cognitive impairment in neuropsychiatric disorders. To develop better therapeutics, advances in ligand chemistry must be matched by an expanded understanding of D1R signaling across cell populations in the brain, and in disease states. Depending on the brain region, the D1R couples primarily to either Gαs or Gαolf through which it activates a cAMP/PKA-dependent signaling cascade that can regulate neuronal excitability, stimulate gene expression, and facilitate synaptic plasticity. However, like many GPCRs, the D1R can signal through multiple downstream pathways, and specific signaling signatures may differ between cell types or be altered in disease. To guide development of improved D1R ligands, it is important to understand how signaling unfolds in specific target cells, and how this signaling affects circuit function and behavior. In this review, we provide a summary of D1R-directed signaling in various neuronal populations and describe how specific pathways have been linked to physiological and behavioral outcomes. In addition, we address the current state of D1R drug development, including the pharmacology of newly developed non-catecholamine ligands, and discuss the potential utility of D1R-agonists in Parkinson's Disease and cognitive impairment.
Collapse
|
5
|
Contributions of animal models of cognitive disorders to neuropsychopharmacology. Therapie 2021; 76:87-99. [PMID: 33589315 DOI: 10.1016/j.therap.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/30/2021] [Indexed: 12/18/2022]
Abstract
Cognitive disorders and symptoms are key features of many mental and neurological diseases, with a large spectrum of impaired domains. Because of their possible evolution and detrimental functioning impact, they are a major pharmacological target for both symptomatic and disease-modifier drugs, while few cognitive enhancers have been marketed with an insufficient efficiency. It explains the need to model these cognitive disorders beyond the modelization of mental or neurological diseases themselves. According to the experimental strategy used to induce cognitive impairment, three categories of models have been identified: neurotransmission-driven models; pathophysiology-driven models; environment-driven models. These three categories of models reflect different levels of integration of endogenous and exogenous mechanisms underlying cognitive disorders in humans. Their comprehensive knowledge and illustration of their pharmacological modulation could help to propose a renewing strategy of drug development in central nervous system (CNS) field at a time when the academic and industrial invest seems to be declining despite the medical and social burden of brain diseases.
Collapse
|
6
|
Desormeaux C, Demars F, Davenas E, Jay TM, Lavergne F. Selective activation of D1 dopamine receptors exerts antidepressant-like activity in rats. J Psychopharmacol 2020; 34:1443-1448. [PMID: 33256509 DOI: 10.1177/0269881120959613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Major depressive disorder is a common illness that severely decreases psychosocial functioning. Due to the major limitations of current treatments including response failure, it is crucial to develop better therapy strategies. Evidence suggests that dopamine dysregulation might play a major role in major depressive disorder physiopathology. AIMS This study investigates whether the dopamine D1 receptor agonist A77636 modulates antidepressant-like activity in rats. METHODS Rats were injected with an acute single dose of A77636 (0.75, 1.5 or 3 mg/kg), a potent and selective dopamine D1-like receptor agonist. Their locomotor activity, social interactions and behavioural response to the forced swim test were analysed 30 min after the injection. RESULTS During the forced swim test, the D1 agonist dose dependently reduced the immobility while the time of bursting was increased. Social interactions were significantly increased in the animals exposed to 3 mg/kg of A77636 whereas no significant changes were measured in general motor activity. CONCLUSIONS The present results provide evidence that pharmacological modulation of D1 receptor by the selective agonist A77636 induces antidepressant-like effects in rats, which encourages further studies regarding D1-specific modulation in major depressive disorder treatment.
Collapse
Affiliation(s)
- Cleo Desormeaux
- Pathophysiology of Psychiatric Disorders, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, Paris, France
| | - Fanny Demars
- Pathophysiology of Psychiatric Disorders, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, Paris, France
| | - Elisabeth Davenas
- Pathophysiology of Psychiatric Disorders, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, Paris, France
| | - Therese M Jay
- Pathophysiology of Psychiatric Disorders, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, Paris, France
| | - Francis Lavergne
- Pathophysiology of Psychiatric Disorders, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, Paris, France
| |
Collapse
|
7
|
Kozak R, Kiss T, Dlugolenski K, Johnson DE, Gorczyca RR, Kuszpit K, Harvey BD, Stolyar P, Sukoff Rizzo SJ, Hoffmann WE, Volfson D, Hajós M, Davoren JE, Abbott AL, Williams GV, Castner SA, Gray DL. Characterization of PF-6142, a Novel, Non-Catecholamine Dopamine Receptor D1 Agonist, in Murine and Nonhuman Primate Models of Dopaminergic Activation. Front Pharmacol 2020; 11:1005. [PMID: 32733245 PMCID: PMC7358525 DOI: 10.3389/fphar.2020.01005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022] Open
Abstract
Selective activation of dopamine D1 receptors remains a promising pro-cognitive therapeutic strategy awaiting robust clinical investigation. PF-6142 is a key example from a recently disclosed novel series of non-catechol agonists and partial agonists of the dopamine D1/5 receptors (D1R) that exhibit pharmacokinetic (PK) properties suitable for oral delivery. Given their reported potential for functionally biased signaling compared to known catechol-based selective agonists, and the promising rodent PK profile of PF-6142, we utilized relevant in vivo assays in male rodents and male and female non-human primates (NHP) to evaluate the pharmacology of this new series. Studies in rodents showed that PF-6142 increased locomotor activity and prefrontal cortex acetylcholine release, increased time spent in wakefulness, and desynchronized the EEG, like known D1R agonists. D1R selectivity of PF-6142 was supported by lack of effect in D1R knock-out mice and blocked response in the presence of the D1R antagonist SCH-23390. Further, PF-6142 improved performance in rodent models of NMDA receptor antagonist-induced cognitive dysfunction, such as MK-801-disrupted paired-pulse facilitation, and ketamine-disrupted working memory performance in the radial arm maze. Similarly, PF-6142 reversed ketamine-induced deficits in NHP performing the spatial delayed recognition task. Of importance, PF-6142 did not alter the efficacy of risperidone in assays predictive of antipsychotic-like effect in rodents including pre-pulse inhibition and conditioned avoidance responding. These data support the continued development of non-catechol based D1R agonists for the treatment of cognitive impairment associated with brain disorders including schizophrenia.
Collapse
Affiliation(s)
- Rouba Kozak
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | - Tamás Kiss
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | - Keith Dlugolenski
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | - David E Johnson
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | | | - Kyle Kuszpit
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | - Brian D Harvey
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | - Polina Stolyar
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | | | | | - Dmitri Volfson
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | - Mihaly Hajós
- Global Research and Development, Pfizer Inc., Groton, CT, United States.,Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, United States
| | | | - Amanda L Abbott
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Graham V Williams
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Stacy A Castner
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, United States
| | - David L Gray
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| |
Collapse
|
8
|
Felsing DE, Jain MK, Allen JA. Advances in Dopamine D1 Receptor Ligands for Neurotherapeutics. Curr Top Med Chem 2019; 19:1365-1380. [PMID: 31553283 DOI: 10.2174/1568026619666190712210903] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/04/2019] [Accepted: 04/07/2019] [Indexed: 12/15/2022]
Abstract
The dopamine D1 receptor (D1R) is essential for neurotransmission in various brain pathways where it modulates key functions including voluntary movement, memory, attention and reward. Not surprisingly, the D1R has been validated as a promising drug target for over 40 years and selective activation of this receptor may provide novel neurotherapeutics for neurodegenerative and neuropsychiatric disorders. Several pharmacokinetic challenges with previously identified small molecule D1R agonists have been recently overcome with the discovery and advancement of new ligands, including drug-like non-catechol D1R agonists and positive allosteric modulators. From this, several novel molecules and mechanisms have recently entered clinical studies. Here we review the major classes of D1R selective ligands including antagonists, orthosteric agonists, non-catechol biased agonists and positive allosteric modulators, highlighting their structure-activity relationships and medicinal chemistry. Recent chemistry breakthroughs and innovative approaches to selectively target and activate the D1R also hold promise for creating pharmacotherapy for several neurological diseases.
Collapse
Affiliation(s)
- Daniel E Felsing
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States.,Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States
| | - Manish K Jain
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States.,Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States
| | - John A Allen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States.,Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States
| |
Collapse
|
9
|
Svensson KA, Hao J, Bruns RF. Positive allosteric modulators of the dopamine D1 receptor: A new mechanism for the treatment of neuropsychiatric disorders. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 86:273-305. [PMID: 31378255 DOI: 10.1016/bs.apha.2019.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dopamine D1 receptor plays an important role in motor activity, reward, and cognition. Efforts to develop D1 agonists have been mixed due to poor drug-like properties, tachyphylaxis, and inverted U-shaped dose-response curves. Recently, positive allosteric modulators (PAMs) for the dopamine D1 receptor were discovered and initial pharmacological profiling has suggested that several of the above issues could be addressed with this mechanism. This paper presents an overview of key findings for DETQ (2-(2,6-dichlorophenyl)-1-((1S,3R)-3-(hydroxymethyl)-5-(2-hydroxypropan-2-yl)-1-methyl-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-one), which is currently the only D1 PAM for which published in vivo data is available. In vitro studies showed selective potentiation of the human D1 receptor without significant allosteric agonist effects. Due to a species difference in affinity for DETQ, transgenic mice expressing the human D1 receptor (hD1 mice) were used in vivo. In contrast to D1 agonists, DETQ increased locomotor activity over a wide dose-range without inverted U-shaped dose response or tachyphylaxis. DETQ also reversed hypo-activity in mice with dopamine depletion due to reserpine pretreatment, suggesting potential for treatment of motor symptoms in Parkinson's disease. Potential pro-cognitive effects were supported by improved performance in the novel object recognition task, enhanced release of cortical acetylcholine and histamine, and increased phosphorylation of the AMPA receptor (GluR1) and the transcription factor CREB. In addition, DETQ enhanced wakefulness in EEG studies and decreased immobility in the forced-swim test. Together, these results provide support for potential utility of D1 PAMs in the treatment of several neuropsychiatric disorders. LY3154207, a close analog of DETQ, is currently in phase 2 clinical trials.
Collapse
Affiliation(s)
- Kjell A Svensson
- Neuroscience Discovery, Lilly Research Laboratories, Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, United States.
| | - Junliang Hao
- Discovery Chemistry and Research Technologies, Lilly Research Laboratories, Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, United States
| | - Robert F Bruns
- Discovery Chemistry and Research Technologies, Lilly Research Laboratories, Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, United States
| |
Collapse
|
10
|
Chronic phencyclidine treatment impairs spatial working memory in rhesus monkeys. Psychopharmacology (Berl) 2019; 236:2223-2232. [PMID: 30911792 DOI: 10.1007/s00213-019-05214-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 03/01/2019] [Indexed: 12/17/2022]
Abstract
RATIONALE Phencyclidine (PCP) could induce schizophrenia (Sz) like behavior in both humans and animals, therefore, has been widely utilized to establish Sz animal models. It induced cognitive deficits, the core symptom of Sz, mainly through influencing frontal dopaminergic function. Nonhuman primate (NHP) studies demonstrated impaired object retrieval detour (ORD) and spatial delayed response (SDR) task performance by acute or chronic PCP treatment. However, NHP investigations, continually monitoring SDR performance before, during and after PCP treatment, are lacking. OBJECTIVES Present study investigated the long-term influence of chronic PCP treatment on SDR performance and the possible increase of SDR deficit severity and duration by the incremental dosing procedure in rhesus monkeys. METHODS SDR task was performed repeatedly up to eight weeks after constant dosing procedure (i.m., 0.3 mg/kg, day 12-25), during which drug effects on locomotor activity and blood cortisol concentration were assessed. Incremental dosing procedure (starting dose 0.3 mg/kg, day 6-19) began five months later. RESULTS Constant dosing procedure induced differential level of hyperactivity across testing days, without significant influence on blood cortisol concentration. It reduced SDR performance, until occurrence of the first and worst impairment on day 15 and 23 respectively. The impaired performance recovered to pretreatment level over one week after drug cessation. In contrast, incremental dosing procedure impaired SDR performance on the first treatment day, which recovered within treatment period. CONCLUSION Results suggested increase of SDR deficit severity by repeated PCP administrations, whereas the incremental dosing procedure did not increase SDR deficit severity and duration.
Collapse
|
11
|
Réus GZ, Becker IRT, Scaini G, Petronilho F, Oses JP, Kaddurah-Daouk R, Ceretta LB, Zugno AI, Dal-Pizzol F, Quevedo J, Barichello T. The inhibition of the kynurenine pathway prevents behavioral disturbances and oxidative stress in the brain of adult rats subjected to an animal model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:55-63. [PMID: 29030243 DOI: 10.1016/j.pnpbp.2017.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022]
Abstract
Evidence has shown that the kynurenine pathway (KP) plays a role in the onset of oxidative stress and also in the pathophysiology of schizophrenia. The aim of this study was to use a pharmacological animal model of schizophrenia induced by ketamine to investigate if KP inhibitors could protect the brains of Wistar rats against oxidative stress and behavioral changes. Ketamine, injected at the dose of 25mg/kg, increased spontaneous locomotor activity. However, the inhibitors of tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase (IDO) and kynurenine-3-monooxygenase (KMO) were able to reverse these changes. In addition, the IDO inhibitor prevented lipid peroxidation, and decreased the levels of protein carbonyl in the prefrontal cortex (PFC), hippocampus and striatum. It also increased the activity of superoxide dismutase (SOD) in the hippocampus, as well as increasing the levels of catalase activity in the PFC and hippocampus. The TDO inhibitor prevented lipid damage in the striatum and reduced the levels of protein carbonyl in the hippocampus and striatum. Also, the TDO inhibitor increased the levels of SOD activity in the striatum and CAT activity in the hippocampus of ketamine-induced pro-oxidant effects. Lipid damage was not reversed by the KMO inhibitor. The KMO inhibitor increased the levels of SOD activity in the hippocampus, and reduced the levels of protein carbonyl while elevating the levels of CAT activity in the striatum of rats that had been injected with ketamine. Our findings revealed that the KP pathway could be a potential mechanism by which a schizophrenia animal model induced by ketamine could cause interference by producing behavioral disturbance and inducing oxidative stress in the brain, suggesting that the inhibition of the KP pathway could be a potential target in treating schizophrenia.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Indianara R T Becker
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Giselli Scaini
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Fabricia Petronilho
- Laboratory of Clinical and Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, SC, Brazil
| | - Jean P Oses
- Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, RS, Brazil
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke Institute for Brain Sciences, Duke University, Durham, NC, USA; Programa de Pós-graduação em Saúde Coletiva, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Luciane B Ceretta
- Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Alexandra I Zugno
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| |
Collapse
|
12
|
Kesby JP, Eyles DW, McGrath JJ, Scott JG. Dopamine, psychosis and schizophrenia: the widening gap between basic and clinical neuroscience. Transl Psychiatry 2018; 8:30. [PMID: 29382821 PMCID: PMC5802623 DOI: 10.1038/s41398-017-0071-9] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/10/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
The stagnation in drug development for schizophrenia highlights the need for better translation between basic and clinical research. Understanding the neurobiology of schizophrenia presents substantial challenges but a key feature continues to be the involvement of subcortical dopaminergic dysfunction in those with psychotic symptoms. Our contemporary knowledge regarding dopamine dysfunction has clarified where and when dopaminergic alterations may present in schizophrenia. For example, clinical studies have shown patients with schizophrenia show increased presynaptic dopamine function in the associative striatum, rather than the limbic striatum as previously presumed. Furthermore, subjects deemed at high risk of developing schizophrenia show similar presynaptic dopamine abnormalities in the associative striatum. Thus, our view of subcortical dopamine function in schizophrenia continues to evolve as we accommodate this newly acquired information. However, basic research in animal models has been slow to incorporate these clinical findings. For example, psychostimulant-induced locomotion, the commonly utilised phenotype for positive symptoms in rodents, is heavily associated with dopaminergic activation in the limbic striatum. This anatomical misalignment has brought into question how we assess positive symptoms in animal models and represents an opportunity for improved translation between basic and clinical research. The current review focuses on the role of subcortical dopamine dysfunction in psychosis and schizophrenia. We present and discuss alternative phenotypes that may provide a more translational approach to assess the neurobiology of positive symptoms in schizophrenia. Incorporation of recent clinical findings is essential if we are to develop meaningful translational animal models.
Collapse
Affiliation(s)
- JP Kesby
- 0000 0000 9320 7537grid.1003.2Queensland Brain Institute, The University of Queensland, St. Lucia, QLD Australia ,0000 0000 9320 7537grid.1003.2Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD Australia
| | - DW Eyles
- 0000 0000 9320 7537grid.1003.2Queensland Brain Institute, The University of Queensland, St. Lucia, QLD Australia ,0000 0004 0606 3563grid.417162.7Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD Australia
| | - JJ McGrath
- 0000 0000 9320 7537grid.1003.2Queensland Brain Institute, The University of Queensland, St. Lucia, QLD Australia ,0000 0004 0606 3563grid.417162.7Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD Australia ,0000 0001 1956 2722grid.7048.bNational Centre for Register-based Research, Aarhus University, Aarhus C, Denmark
| | - JG Scott
- 0000 0000 9320 7537grid.1003.2Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD Australia ,0000 0004 0606 3563grid.417162.7Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD Australia ,0000 0001 0688 4634grid.416100.2Metro North Mental Health, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| |
Collapse
|
13
|
Chen YT, Lin CH, Huang CH, Liang WM, Lane HY. PICK1 Genetic Variation and Cognitive Function in Patients with Schizophrenia. Sci Rep 2017; 7:1889. [PMID: 28507309 PMCID: PMC5432511 DOI: 10.1038/s41598-017-01975-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/04/2017] [Indexed: 11/09/2022] Open
Abstract
The gene of protein interacting with C kinase 1 alpha (PICK1) has been implicated in schizophrenia, nevertheless, conflicting results existed. However, its role in cognitive function remains unclear. Besides, cognitive deficits impair the long-term outcome. We explored whether the polymorphisms of PICK1 (rs2076369, rs3952) affected cognitive functions in schizophrenic patients. We analyzed 302 patients and tested the differences of cognitive functions, clinical symptoms between genetic groups. We also used general linear model to analyze the effect of PICK1 genetic polymorphisms on cognitive functions. After adjustment for gender, age, education, the patients with rs2076369 G/T genotype showed better performance than T/T homozygotes in the summary score, global composite score, neurocognitive composite score, category fluency subtest, WAIS-III-Digit Symbol Coding subtest, working memory, WMS-III-Spatial Span (backward) subtest, MSCEIT-managing emotions branch (p = 0.038, 0.025, 0.046, 0.036, 0.025, 0.027, 0.035, 0.028, respectively). G/G homozygotes performed better than T/T in category fluency subtest (p = 0.049). A/A homozygotes of rs3952 performed better than G/G in trail making A subtest (p = 0.048). To our knowledge, this is the first study to indicate that PICK1 polymorphisms may associate with cognitive functions in schizophrenic patients. Further replication studies in healthy controls or other ethnic groups are warranted.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Center for General Education, Cheng Shiu University, Kaohsiung, Taiwan
| | - Chiung-Hsien Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Miin Liang
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
14
|
Ketamine abuse potential and use disorder. Brain Res Bull 2016; 126:68-73. [DOI: 10.1016/j.brainresbull.2016.05.016] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/26/2016] [Accepted: 05/30/2016] [Indexed: 02/07/2023]
|
15
|
Girgis RR, Van Snellenberg JX, Glass A, Kegeles LS, Thompson JL, Wall M, Cho RY, Carter CS, Slifstein M, Abi-Dargham A, Lieberman JA. A proof-of-concept, randomized controlled trial of DAR-0100A, a dopamine-1 receptor agonist, for cognitive enhancement in schizophrenia. J Psychopharmacol 2016; 30:428-35. [PMID: 26966119 DOI: 10.1177/0269881116636120] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Evidence from preclinical and human studies indicates the presence of reduced dopamine-1 receptor (D1R) signaling in the cortex, where D1Rs predominate, in patients with schizophrenia (SCZ), which may contribute to their cognitive deficits. Furthermore, studies in nonhuman primates (NHP) have suggested that intermittent administration of low doses of D1R agonists produce long-lasting reversals in cognitive deficits. The purpose of this trial was to test whether a similar design, involving subacute intermittent administration of low doses of a full, selective agonist at D1Rs, DAR-0100A, would improve cognitive deficits in SCZ. METHODS We randomized 49 clinically stable individuals with SCZ to three weeks of intermittent treatment with 0.5 mg or 15 mg of DAR-0100A, or placebo (normal saline). Functional magnetic resonance imaging (fMRI) BOLD was used to evaluate the effects of drug administration on brain activity during a working memory (WM) task. Effects on cognition were also assessed using the MATRICS and the N-back task as primary endpoints. The CogState battery was used as a secondary endpoint. RESULTS There were no observed treatment effects on either the BOLD fMRI signal during WM tasks or the WM domains of the MATRICS. Moderate improvement was detected on the CogState battery and on the attention domain of the MATRICS. CONCLUSION These results suggest that low doses of D1 agonists that do not result in measureable occupancy of the D1R do not reliably improve cognition in SCZ, unlike the observations in NHP. As this drug is limited by its pharmacokinetic profile, better D1R agonists that can achieve adequate levels of D1R occupancy are needed to test the efficacy of this mechanism for cognitive enhancement in SCZ.
Collapse
Affiliation(s)
- Ragy R Girgis
- Department of Psychiatry, Columbia University, New York, NY, USA New York State Psychiatric Institute, New York, NY, USA
| | - Jared X Van Snellenberg
- Department of Psychiatry, Columbia University, New York, NY, USA New York State Psychiatric Institute, New York, NY, USA
| | - Andrew Glass
- Department of Psychiatry, Columbia University, New York, NY, USA New York State Psychiatric Institute, New York, NY, USA
| | - Lawrence S Kegeles
- Department of Psychiatry, Columbia University, New York, NY, USA New York State Psychiatric Institute, New York, NY, USA
| | - Judy L Thompson
- Department of Psychiatry, Columbia University, New York, NY, USA New York State Psychiatric Institute, New York, NY, USA Rutgers University, New Brunswick, NJ, USA
| | - Melanie Wall
- Department of Psychiatry, Columbia University, New York, NY, USA New York State Psychiatric Institute, New York, NY, USA
| | - Raymond Y Cho
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California-Davis, Sacramento, CA, USA
| | - Mark Slifstein
- Department of Psychiatry, Columbia University, New York, NY, USA New York State Psychiatric Institute, New York, NY, USA
| | - Anissa Abi-Dargham
- Department of Psychiatry, Columbia University, New York, NY, USA New York State Psychiatric Institute, New York, NY, USA Department of Radiology, Columbia University, New York, NY, USA
| | - Jeffrey A Lieberman
- Department of Psychiatry, Columbia University, New York, NY, USA New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
16
|
Negative Allosteric Modulators Selective for The NR2B Subtype of The NMDA Receptor Impair Cognition in Multiple Domains. Neuropsychopharmacology 2016; 41:568-77. [PMID: 26105137 PMCID: PMC5130132 DOI: 10.1038/npp.2015.184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/28/2015] [Accepted: 06/11/2015] [Indexed: 01/16/2023]
Abstract
Antidepressant activity of N-methyl-D-aspartate (NMDA) receptor antagonists and negative allosteric modulators (NAMs) has led to increased investigation of their behavioral pharmacology. NMDA antagonists, such as ketamine, impair cognition in multiple species and in multiple cognitive domains. However, studies with NR2B subtype-selective NAMs have reported mixed results in rodents including increased impulsivity, no effect on cognition, impairment or even improvement of some cognitive tasks. To date, the effects of NR2B-selective NAMs on cognitive tests have not been reported in nonhuman primates. The current study evaluated two selective NR2B NAMs, CP101,606 and BMT-108908, along with the nonselective NMDA antagonists, ketamine and AZD6765, in the nonhuman primate Cambridge Neuropsychological Test Automated Battery (CANTAB) list-based delayed match to sample (list-DMS) task. Ketamine and the two NMDA NR2B NAMs produced selective impairments in memory in the list-DMS task. AZD6765 impaired performance in a non-specific manner. In a separate cohort, CP101,606 impaired performance of the nonhuman primate CANTAB visuo-spatial Paired Associates Learning (vsPAL) task with a selective impairment at more difficult conditions. The results of these studies clearly show that systemic administration of a selective NR2B NAM can cause transient cognitive impairment in multiple cognitive domains.
Collapse
|
17
|
Ameqrane I, Wattiez N, Pouget P, Missal M, Pouget P, Pierre P, Missal M, Marcus M. A subanesthetic dose of ketamine in the Rhesus monkey reduces the occurrence of anticipatory saccades. Psychopharmacology (Berl) 2015; 232:3563-72. [PMID: 26153067 DOI: 10.1007/s00213-015-4005-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 06/28/2015] [Indexed: 12/20/2022]
Abstract
RATIONALE It has been shown that antagonism of the glutamatergic N-methyl-D-aspartate (NMDA) receptor with subanesthetic doses of ketamine perturbs the perception of elapsed time. Anticipatory eye movements are based on an internal representation of elapsed time. Therefore, the occurrence of anticipatory saccades could be a particularly sensitive indicator of abnormal time perception due to NMDA receptors blockade. OBJECTIVES The objective of this study was to determine whether the occurrence of anticipatory saccades could be selectively altered by a subanesthetic dose of ketamine. METHODS Three Rhesus monkeys were trained in a simple visually guided saccadic task with a variable delay. Monkeys were rewarded for making a visually guided saccade at the end of the delay. Premature anticipatory saccades to the future position of the eccentric target initiated before the end of the delay were not rewarded. A subanesthetic dose of ketamine (0.25 mg/kg) or a saline solution of the same volume was injected i.m. during the task. RESULTS We found that the injected dose of ketamine did not induce sedation or abnormal behavior. However, in ∼4 min, ketamine induced a strong reduction of the occurrence of anticipatory saccades but did not reduce the occurrence of visually guided saccades. CONCLUSION This unexpected reduction of anticipatory saccade occurrence could be interpreted as resulting from an altered use of the perception of elapsed time during the delay period induced by NMDA receptors antagonism.
Collapse
|
18
|
Yohn SE, Santerre JL, Nunes EJ, Kozak R, Podurgiel SJ, Correa M, Salamone JD. The role of dopamine D1 receptor transmission in effort-related choice behavior: Effects of D1 agonists. Pharmacol Biochem Behav 2015; 135:217-26. [DOI: 10.1016/j.pbb.2015.05.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/05/2015] [Accepted: 05/09/2015] [Indexed: 12/27/2022]
|
19
|
Kim YC, Alberico SL, Emmons E, Narayanan NS. New therapeutic strategies targeting D1-type dopamine receptors for neuropsychiatric disease. ACTA ACUST UNITED AC 2015; 10:230-238. [PMID: 28280503 DOI: 10.1007/s11515-015-1360-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The neurotransmitter dopamine acts via two major classes of receptors, D1-type and D2-type. D1 receptors are highly expressed in the striatum and can also be found in the cerebral cortex. Here we review the role of D1 dopamine signaling in two major domains: L-DOPA-induced dyskinesias in Parkinson's disease and cognition in neuropsychiatric disorders. While there are many drugs targeting D2-type receptors, there are no drugs that specifically target D1 receptors. It has been difficult to use selective D1-receptor agonists for clinical applications due to issues with bioavailability, binding affinity, pharmacological kinetics, and side effects. We propose potential therapies that selectively modulate D1 dopamine signaling by targeting second messengers downstream of D1 receptors, allosteric modulators, or by making targeted modifications to D1-receptor machinery. The development of therapies specific to D1-receptor signaling could be a new frontier in the treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Young-Cho Kim
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | | | - Eric Emmons
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Nandakumar S Narayanan
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA; Aging Mind and Brain Initiative, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
20
|
Ketamine administration during the second postnatal week induces enduring schizophrenia-like behavioral symptoms and reduces parvalbumin expression in the medial prefrontal cortex of adult mice. Behav Brain Res 2015; 282:165-75. [PMID: 25591475 DOI: 10.1016/j.bbr.2015.01.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/24/2014] [Accepted: 01/06/2015] [Indexed: 12/14/2022]
Abstract
Dysfunctions in the GABAergic system are considered a core feature of schizophrenia. Pharmacological blockade of NMDA receptors (NMDAR), or their genetic ablation in parvalbumin (PV)-expressing GABAergic interneurons can induce schizophrenia-like behavior in animals. NMDAR-mediated currents shape the maturation of GABAergic interneurons during a critical period of development, making transient blockade of NMDARs during this period an attractive model for the developmental changes that occur in the course of schizophrenia's pathophysiology. Here, we examined whether developmental administration of the non-competitive NMDAR antagonist ketamine results in persistent deficits in PFC-dependent behaviors in adult animals. Mice received injections of ketamine (30mg/kg) on postnatal days (PND) 7, 9 and 11, and then tested on a battery of behavioral experiments aimed to mimic major symptoms of schizophrenia in adulthood (between PND 90 and 120). Ketamine treatment reduced the number of cells that expressed PV in the PFC by ∼60% as previously described. Ketamine affected performance in an attentional set-shifting task, impairing the ability of the animals to perform an extradimensional shift to acquire a new strategy. Ketamine-treated animals showed deficits in latent inhibition, novel-object recognition and social novelty detection compared to their SAL-treated littermates. These deficits were not a result of generalized anxiety, as both groups performed comparably on an elevated plus maze. Ketamine treatment did not cause changes in amphetamine-induced hyperlocomotion that are often taken as measures for the positive-like symptoms of the disorder. Thus, ketamine administration during development appears to be a useful model for inducing cognitive and negative symptoms of schizophrenia.
Collapse
|
21
|
Nakako T, Murai T, Ikejiri M, Hashimoto T, Kotani M, Matsumoto K, Manabe S, Ogi Y, Konoike N, Nakamura K, Ikeda K. Effects of lurasidone on ketamine-induced joint visual attention dysfunction as a possible disease model of autism spectrum disorders in common marmosets. Behav Brain Res 2014; 274:349-54. [DOI: 10.1016/j.bbr.2014.08.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 08/10/2014] [Accepted: 08/16/2014] [Indexed: 12/14/2022]
|
22
|
Castner SA, Murthy NV, Ridler K, Herdon H, Roberts BM, Weinzimmer DP, Huang Y, Zheng MQ, Rabiner EA, Gunn RN, Carson RE, Williams GV, Laruelle M. Relationship between glycine transporter 1 inhibition as measured with positron emission tomography and changes in cognitive performances in nonhuman primates. Neuropsychopharmacology 2014; 39:2742-9. [PMID: 24487737 PMCID: PMC4200505 DOI: 10.1038/npp.2014.4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 11/04/2013] [Accepted: 12/13/2013] [Indexed: 01/22/2023]
Abstract
Several lines of evidence suggest that schizophrenia is associated with deficits in glutamatergic transmission at the N-methyl-d-aspartate (NMDA) receptors. Glycine is a NMDA receptor co-agonist, and extracellular levels of glycine are regulated in the forebrain by the glycine type-1 transporters (GlyT-1). GlyT-1 inhibitors elevate extracellular glycine and thus potentiate NMDA transmission. This mechanism represents a promising new avenue for the treatment of schizophrenia. Here, the recently introduced positron emission tomography radiotracer [11C]GSK931145 was used to quantify the relationship between occupancy of GlyT-1 by a GlyT-1 inhibitor, Org 25935, and its impact on spatial working memory performances in rhesus monkeys. The effect of Org 25935 on working memory was assessed both in control conditions and during a state of relative NMDA hypofunction induced by ketamine administration, at a dose selected for each animal to reduce task performance by about 50%. Under control conditions, Org 25935 had no effect on working memory at GlyT-1 occupancies lower than 75% and significantly impaired working memory at occupancies higher than 75%. Under ketamine conditions, Org 25935 reversed the deficit in working memory induced by ketamine and did so optimally in the 40-70% GlyT-1 occupancy range. The results confirm the efficacy of this mechanism to correct working memory deficits associated with NMDA hypofunction. These data also suggest the existence of an inverted-U dose-response curve in the potential therapeutic effect of this class of compounds.
Collapse
Affiliation(s)
- S A Castner
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - N V Murthy
- Neurosciences Centre for Excellence in Drug Discovery, GlaxoSmithKline, Harlow, UK
| | - K Ridler
- Clinical Imaging Centre, GlaxoSmithKline, Hammersmith Hospital–Imperial College, London, UK
| | - H Herdon
- Neurosciences Centre for Excellence in Drug Discovery, GlaxoSmithKline, Harlow, UK
| | - B M Roberts
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - D P Weinzimmer
- Department of Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Y Huang
- Department of Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - M Q Zheng
- Department of Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - E A Rabiner
- Clinical Imaging Centre, GlaxoSmithKline, Hammersmith Hospital–Imperial College, London, UK
| | - R N Gunn
- Clinical Imaging Centre, GlaxoSmithKline, Hammersmith Hospital–Imperial College, London, UK
| | - R E Carson
- Department of Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - G V Williams
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - M Laruelle
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Neurosciences Centre for Excellence in Drug Discovery, GlaxoSmithKline, Harlow, UK,Department of Radiology, Yale University School of Medicine, New Haven, CT, USA,UCB Pharma, Braine-l'Alleud, Brussels, Belgium,UCB Pharma, Chemin du Foriest, Braine-l'Alleud 1420, Belgium, Tel: +1 914 316 0923, Fax: +322 386 2550, E-mail:
| |
Collapse
|
23
|
Kozak R, Campbell BM, Strick CA, Horner W, Hoffmann WE, Kiss T, Chapin DS, McGinnis D, Abbott AL, Roberts BM, Fonseca K, Guanowsky V, Young DA, Seymour PA, Dounay A, Hajos M, Williams GV, Castner SA. Reduction of brain kynurenic acid improves cognitive function. J Neurosci 2014; 34:10592-602. [PMID: 25100593 PMCID: PMC6802596 DOI: 10.1523/jneurosci.1107-14.2014] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/18/2014] [Accepted: 06/24/2014] [Indexed: 11/21/2022] Open
Abstract
The elevation of kynurenic acid (KYNA) observed in schizophrenic patients may contribute to core symptoms arising from glutamate hypofunction, including cognitive impairments. Although increased KYNA levels reduce excitatory neurotransmission, KYNA has been proposed to act as an endogenous antagonist at the glycine site of the glutamate NMDA receptor (NMDAR) and as a negative allosteric modulator at the α7 nicotinic acetylcholine receptor. Levels of KYNA are elevated in CSF and the postmortem brain of schizophrenia patients, and these elevated levels of KYNA could contribute to NMDAR hypofunction and the cognitive deficits and negative symptoms associated with this disease. However, the impact of endogenously produced KYNA on brain function and behavior is less well understood due to a paucity of pharmacological tools. To address this issue, we identified PF-04859989, a brain-penetrable inhibitor of kynurenine aminotransferase II (KAT II), the enzyme responsible for most brain KYNA synthesis. In rats, systemic administration of PF-04859989 dose-dependently reduced brain KYNA to as little as 28% of basal levels, and prevented amphetamine- and ketamine-induced disruption of auditory gating and improved performance in a sustained attention task. It also prevented ketamine-induced disruption of performance in a working memory task and a spatial memory task in rodents and nonhuman primates, respectively. Together, these findings support the hypotheses that endogenous KYNA impacts cognitive function and that inhibition of KAT II, and consequent lowering of endogenous brain KYNA levels, improves cognitive performance under conditions considered relevant for schizophrenia.
Collapse
Affiliation(s)
- Rouba Kozak
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts 02139,
| | | | - Christine A Strick
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Weldon Horner
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts 02139
| | - William E Hoffmann
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Tamas Kiss
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Douglas S Chapin
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Dina McGinnis
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Amanda L Abbott
- Departments of Psychiatry and VA Connecticut Healthcare System, West Haven, Connecticut 06519
| | - Brooke M Roberts
- Departments of Psychiatry and VA Connecticut Healthcare System, West Haven, Connecticut 06519
| | - Kari Fonseca
- Department of Pharmacokinetics, Pharmacodynamics and Metabolism, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Victor Guanowsky
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Damon A Young
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Patricia A Seymour
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Amy Dounay
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Mihaly Hajos
- Comparative Medicine, Yale School of Medicine, New Haven, Connecticut 06510
| | - Graham V Williams
- Departments of Psychiatry and VA Connecticut Healthcare System, West Haven, Connecticut 06519
| | - Stacy A Castner
- Departments of Psychiatry and VA Connecticut Healthcare System, West Haven, Connecticut 06519
| |
Collapse
|
24
|
English BA, Thomas K, Johnstone J, Bazih A, Gertsik L, Ereshefsky L. Use of translational pharmacodynamic biomarkers in early-phase clinical studies for schizophrenia. Biomark Med 2014; 8:29-49. [PMID: 24325223 DOI: 10.2217/bmm.13.135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia is a severe mental disorder characterized by cognitive deficits, and positive and negative symptoms. The development of effective pharmacological compounds for the treatment of schizophrenia has proven challenging and costly, with many compounds failing during clinical trials. Many failures occur due to disease heterogeneity and lack of predictive preclinical models and biomarkers that readily translate to humans during early characterization of novel antipsychotic compounds. Traditional early-phase trials consist of single- or multiple-dose designs aimed at determining the safety and tolerability of an investigational compound in healthy volunteers. However, by incorporating a translational approach employing methodologies derived from preclinical studies, such as EEG measures and imaging, into the traditional Phase I program, critical information regarding a compound's dose-response effects on pharmacodynamic biomarkers can be acquired. Furthermore, combined with the use of patients with stable schizophrenia in early-phase clinical trials, significant 'de-risking' and more confident 'go/no-go' decisions are possible.
Collapse
|
25
|
Gresack JE, Seymour PA, Schmidt CJ, Risbrough VB. Inhibition of phosphodiesterase 10A has differential effects on dopamine D1 and D2 receptor modulation of sensorimotor gating. Psychopharmacology (Berl) 2014; 231:2189-97. [PMID: 24363077 PMCID: PMC4017785 DOI: 10.1007/s00213-013-3371-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 11/21/2013] [Indexed: 01/06/2023]
Abstract
RATIONALE Inhibitors of phosphodiesterase 10A (PDE10A), an enzyme highly expressed in medium spiny neurons of the mammalian striatum, enhance activity in direct (dopamine D1 receptor-expressing) and indirect (D2 receptor-expressing striatal output) pathways. The ability of such agents to act to potentiate D1 receptor signaling while inhibiting D2 receptor signaling suggest that PDE10A inhibitors may have a unique antipsychotic-like behavioral profile differentiated from the D2 receptor antagonist-specific antipsychotics currently used in the treatment of schizophrenia. OBJECTIVES To evaluate the functional consequences of PDE10A inhibitor modulation of D1 and D2 receptor pathway signaling, we compared the effects of a PDE10A inhibitor (TP-10) on D1 and D2 receptor agonist-induced disruptions in prepulse inhibition (PPI), a measure of sensorimotor gating disrupted in patients with schizophrenia. RESULTS Our results indicate that, in rats: (1) PDE10A inhibition (TP-10, 0.32-10.0 mg/kg) has no effect on PPI disruption resulting from the mixed D1/D2 receptor agonist apomorphine (0.5 mg/kg), confirming previous report; (2) Yet, TP-10 blocked the PPI disruption induced by the D2 receptor agonist quinpirole (0.5 mg/kg); and attenuated apomorphine-induced disruptions in PPI in the presence of the D1 receptor antagonist SCH23390 (0.005 mg/kg). CONCLUSIONS These findings indicate that TP-10 cannot block dopamine agonist-induced deficits in PPI in the presence of D1 activation and suggest that the effect of PDE10A inhibition on D1 signaling may be counterproductive in some models of antipsychotic activity. These findings, and the contribution of TP-10 effects in the direct pathway on sensorimotor gating in particular, may have implications for the potential antipsychotic efficacy of PDE10A inhibitors.
Collapse
Affiliation(s)
- Jodi E. Gresack
- Dept. Psychiatry, University of California San Diego, La Jolla, CA
,To whom correspondence should be addressed: Jodi E. Gresack, Ph.D., Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, Phone: 212-327-8870, Fax: 212-327-7888,
| | | | | | - Victoria B. Risbrough
- Dept. Psychiatry, University of California San Diego, La Jolla, CA
,Veterans Affairs Center of Excellence for Stress and Mental Health, La Jolla, CA
| |
Collapse
|
26
|
Abstract
The observation that antagonists of the N-methyl-D-aspartate receptor (NMDAR), such as phencyclidine (PCP) and ketamine, transiently induce symptoms of acute schizophrenia had led to a paradigm shift from dopaminergic to glutamatergic dysfunction in pharmacological models of schizophrenia. The glutamate hypothesis can explain negative and cognitive symptoms of schizophrenia better than the dopamine hypothesis, and has the potential to explain dopamine dysfunction itself. The pharmacological and psychomimetic effects of ketamine, which is safer for human subjects than phencyclidine, are herein reviewed. Ketamine binds to a variety of receptors, but principally acts at the NMDAR, and convergent genetic and molecular evidence point to NMDAR hypofunction in schizophrenia. Furthermore, NMDAR hypofunction can explain connectional and oscillatory abnormalities in schizophrenia in terms of both weakened excitation of inhibitory γ-aminobutyric acidergic (GABAergic) interneurons that synchronize cortical networks and disinhibition of principal cells. Individuals with prenatal NMDAR aberrations might experience the onset of schizophrenia towards the completion of synaptic pruning in adolescence, when network connectivity drops below a critical value. We conclude that ketamine challenge is useful for studying the positive, negative, and cognitive symptoms, dopaminergic and GABAergic dysfunction, age of onset, functional dysconnectivity, and abnormal cortical oscillations observed in acute schizophrenia.
Collapse
Affiliation(s)
- Joel Frohlich
- Neuroscience Research Program, 1506D Gonda Center, University of California, Los Angeles Box 951761, Los Angeles, CA 90095-1761
| | - John Darrell Van Horn
- The Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, 2001 North Soto Street – SSB1-102, Los Angeles, CA 90032, Phone: (323) 442-7246
| |
Collapse
|
27
|
Effects of ketamine on context-processing performance in monkeys: a new animal model of cognitive deficits in schizophrenia. Neuropsychopharmacology 2013; 38:2090-100. [PMID: 23660706 PMCID: PMC3773669 DOI: 10.1038/npp.2013.118] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/07/2013] [Accepted: 04/15/2013] [Indexed: 11/09/2022]
Abstract
Cognitive deficits are at the crux of why many schizophrenia patients have poor functional outcomes. One of the cognitive symptoms experienced by schizophrenia patients is a deficit in context processing, the ability to use contextual information stored in working memory to adaptively respond to subsequent stimuli. As such, context processing can be thought of as the intersection between working memory and executive control. Although deficits in context processing have been extensively characterized by neuropsychological testing in schizophrenia patients, they have never been effectively translated to an animal model of the disease. To bridge that gap, we trained monkeys to perform the same dot pattern expectancy (DPX) task, which has been used to measure context-processing deficits in human patients with schizophrenia. In the DPX task, the first stimulus in each trial provides the contextual information that subjects must remember in order to appropriately respond to the second stimulus in the trial. We found that administration of ketamine, an N-methyl-D-aspartate receptor antagonist, in monkeys caused a dose-dependent failure in context processing, replicating in monkeys the same specific pattern of errors committed by patients with schizophrenia when performing the same task. Therefore, our results provide the first evidence that context-processing dysfunction can be modeled in animals. Replicating a schizophrenia-like behavioral performance pattern in monkeys performing the same task used in humans provides a strong bridge to better understand the biological basis for this psychiatric disease and its cognitive manifestations using animal models.
Collapse
|
28
|
Arnsten AFT. The neurobiology of thought: the groundbreaking discoveries of Patricia Goldman-Rakic 1937-2003. Cereb Cortex 2013; 23:2269-81. [PMID: 23926115 PMCID: PMC3767966 DOI: 10.1093/cercor/bht195] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Patricia S. Goldman-Rakic (1937–2003) transformed the study of the prefrontal cortex (PFC) and the neural basis of mental representation, the basic building block of abstract thought. Her pioneering research first identified the dorsolateral PFC (dlPFC) region essential for spatial working memory, and the extensive circuits of spatial cognition. She discovered the cellular basis of working memory, illuminating the dlPFC microcircuitry underlying spatially tuned, persistent firing, whereby precise information can be held “in mind”: persistent firing arises from recurrent excitation within glutamatergic pyramidal cell circuits in deep layer III, while tuning arises from GABAergic lateral inhibition. She was the first to discover that dopamine is essential for dlPFC function, particularly through D1 receptor actions. She applied a host of technical approaches, providing a new paradigm for scientific inquiry. Goldman-Rakic's work has allowed the perplexing complexities of mental illness to begun to be understood at the cellular level, including atrophy of the dlPFC microcircuits subserving mental representation. She correctly predicted that impairments in dlPFC working memory activity would contribute to thought disorder, a cardinal symptom of schizophrenia. Ten years following her death, we look back to see how she inspired an entire field, fundamentally changing our view of cognition and cognitive disorders.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neurobiology, Yale Medical School, New Haven, CT 06510, USA
| |
Collapse
|
29
|
Effects of a dopamine D1 agonist on ketamine-induced spatial working memory dysfunction in common marmosets. Behav Brain Res 2013; 249:109-15. [DOI: 10.1016/j.bbr.2013.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/11/2013] [Accepted: 04/14/2013] [Indexed: 12/14/2022]
|
30
|
Hoffman KL, Basurto E. One-trial object recognition memory in the domestic rabbit (Oryctolagus cuniculus) is disrupted by NMDA receptor antagonists. Behav Brain Res 2013; 250:62-73. [PMID: 23651879 DOI: 10.1016/j.bbr.2013.04.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 04/24/2013] [Accepted: 04/28/2013] [Indexed: 11/28/2022]
Abstract
The spontaneous response to novelty is the basis of one-trial object recognition tests for the study of object recognition memory (ORM) in rodents. We describe an object recognition task for the rabbit, based on its natural tendency to scent-mark ("chin") novel objects. The object recognition task comprised a 15min sample phase in which the rabbit was placed into an open field arena containing two similar objects, then removed for a 5-360min delay, and then returned to the same arena that contained one object similar to the original ones ("Familiar") and one that differed from the original ones ("Novel"), for a 15min test phase. Chin-marks directed at each of the objects were registered. Some animals received injections (sc) of saline, ketamine (1mg/kg), or MK-801 (37μg/kg), 5 or 20min before the sample phase. We found that chinning decreased across the sample phase, and that this response showed stimulus specificity, a defining characteristic of habituation: in the test phase, chinning directed at the Novel, but not Familiar, object was increased. Chinning directed preferentially at the novel object, which we interpret as novelty-induced sensitization and the behavioral correlate of ORM, was promoted by tactile/visual and spatial novelty. ORM deficits were induced by pre-treatment with MK-801 and, to a lesser extent, ketamine. Novel object discrimination was not observed after delays longer than 5min. These results suggest that short-term habituation and sensitization, not long-term memory, underlie novel object discrimination in this test paradigm.
Collapse
Affiliation(s)
- Kurt Leroy Hoffman
- Centro de Investigación en Reproducción Animal (CIRA), Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico.
| | | |
Collapse
|
31
|
Preclinical evaluation of non-imidazole histamine H3 receptor antagonists in comparison to atypical antipsychotics for the treatment of cognitive deficits associated with schizophrenia. Int J Neuropsychopharmacol 2013; 16:889-904. [PMID: 22906530 DOI: 10.1017/s1461145712000739] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cognitive deficits associated with schizophrenia (CDS) are implicated as a core symptom cluster of the disease and are associated with poor daily life functioning. Unfortunately, current antipsychotic agents provide little alleviation of CDS, representing a critical unmet therapeutic need. Here we investigated the effects of ABT-239 and A-431404, non-imidazole histamine H(3) receptor (H(3)R) antagonists, in animal models with relevance to CDS. As N-methyl-d-aspartate receptor hypofunction is considered an important factor in the pathogenesis of schizophrenia, acute administration of ketamine or MK-801 was used to induce cognitive impairments. The assays employed in the current studies were spontaneous alternation in cross-maze, used as an indication of working memory, and inhibitory avoidance (IA), used to assess long-term memory retention. Risperidone and olanzapine were also tested to directly compare the effects of H(3)R antagonists to two widely used antipsychotics. ABT-239 and A-431404, but not risperidone and olanzapine, attenuated ketamine-induced deficits on spontaneous alternation in cross-maze, while none of these compounds affected alternation performance on their own. ABT-239 and A-431404 also attenuated MK-801-induced impairments in IA; no effects were observed when given alone. Risperidone and olanzapine, however, failed to attenuate MK-801-induced deficits in IA and produced dose-dependent impairments when given alone. ABT-239 was also investigated in methylazoxymethanol acetate (MAM) treated rats, a neurodevelopmental model for schizophrenia. Chronic, but not acute, treatment with ABT-239 significantly improved spontaneous alternation impairments in MAM rats tested in cross-maze. In summary, these results suggest H(3)R antagonists may have the potential to ameliorate CDS.
Collapse
|
32
|
Prepulse inhibition predicts working memory performance whilst startle habituation predicts spatial reference memory retention in C57BL/6 mice. Behav Brain Res 2013; 242:166-77. [DOI: 10.1016/j.bbr.2012.12.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 12/01/2012] [Accepted: 12/06/2012] [Indexed: 12/26/2022]
|
33
|
Valentim AM, Olsson IAS, Antunes LM. The anaesthetic combination of ketamine/midazolam does not alter the acquisition of spatial and motor tasks in adult mice. Lab Anim 2013; 47:19-25. [DOI: 10.1258/la.2012.011179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ketamine/midazolam association of a dissociative with a sedative agent is used for the induction and maintenance of anaesthesia in laboratory animals. Anaesthesia may interfere with research results through side-effects on the nervous system, such as memory impairment. It is known that ketamine and midazolam affect cognition; however, their effects have not been clarified when used in a context of balanced anaesthesia. Thus, this study evaluated the effects of ketamine/midazolam on the acquisition of motor and of a spatial memory task in adult mice. Twenty-eight C57BL/6 adult male mice were divided into three groups: untreated control, treated with ketamine/midazolam (75 mg/kg / 10 mg/kg) and treated with midazolam (10 mg/kg) groups. Respiratory rate, heart rate and systolic pressure were measured every 5 min in the animals treated with ketamine/midazolam, as this was the only group that exhibited loss of the righting reflex. One day after treatment, animals were tested in the open field, rotarod and radial arm maze. There were no differences between treatments regarding open-field activity, rotarod performance or number of working and reference memory errors in the radial arm maze task. In conclusion, the learning process of spatial and motor tasks was not disrupted by the anaesthetic combination of ketamine/midazolam. These results suggest its safe use in adult mice in projects where acquisition of a spatial and motor task is necessary.
Collapse
Affiliation(s)
- A M Valentim
- Laboratory Animal Science, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Departamentos de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - I A S Olsson
- Laboratory Animal Science, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - L M Antunes
- Laboratory Animal Science, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Departamentos de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| |
Collapse
|
34
|
Horiguchi M, Hannaway KE, Adelekun AE, Huang M, Jayathilake K, Meltzer HY. D(1) receptor agonists reverse the subchronic phencyclidine (PCP)-induced novel object recognition (NOR) deficit in female rats. Behav Brain Res 2012; 238:36-43. [PMID: 23018127 DOI: 10.1016/j.bbr.2012.09.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 09/14/2012] [Accepted: 09/18/2012] [Indexed: 12/26/2022]
Abstract
Development of dopamine (DA) D(1) receptor agonists is a priority to improve cognitive impairment in schizophrenia (CIS). This study examined the dose-response relationship of the selective D(1) agonist, SKF38393 (0.5-40 mg/kg), to reverse the deficit in novel object recognition (NOR), an analog of declarative memory in man, produced by subchronic phencyclidine (PCP), an N-methyl-D-aspartate (NMDA) receptor non-competitive antagonist, and the ability of the D(1) antagonists, SCH23390 (0.05 mg/kg) and SKF83566 (0.15 mg/kg), to impair NOR in normal Long-Evans female rats. We also examined the ability of tandospirone, a serotonin (5-HT)(1A) receptor partial agonist, and LY341495, a mGluR2/3 receptor antagonist, to potentiate or block the effects of SKF38393 on NOR, respectively. SKF38393 reversed the persistent NOR deficit produced by subchronic PCP; the dose-response curve for SKF38393 was an inverted U-shape, with the peak effect at 6 mg/kg. SKF83566 and SCH23390 impaired NOR in normal rats. Co-administration of sub-effective doses of SKF38393 (0.25 mg/kg) and tandospirone (0.2 mg/kg) improved the PCP-induced NOR deficit, while LY341495 (1 mg/kg) blocked the ameliorating effect of SKF38393 (6 mg/kg), respectively. These data provide the first evidence that the reversal of the PCP-induced NOR deficit by D(1) agonism has an inverted U-shaped dose-response curve and that 5-HT(1A) and mGluR2/3 receptor signalling facilitates the efficacy of D(1) agonism to improve these deficits. These data suggest that although D(1) agonists may be useful to improve CIS, these agents, particularly higher doses, may also worsen cognitive function in some patients, because of an inverted U-shaped dose response curve.
Collapse
Affiliation(s)
- Masakuni Horiguchi
- Division of Psychopharmacology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | | | | | | | | | | |
Collapse
|
35
|
Javitt DC, Zukin SR, Heresco-Levy U, Umbricht D. Has an angel shown the way? Etiological and therapeutic implications of the PCP/NMDA model of schizophrenia. Schizophr Bull 2012; 38:958-66. [PMID: 22987851 PMCID: PMC3446214 DOI: 10.1093/schbul/sbs069] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Over the last 20 years, glutamatergic models of schizophrenia have become increasingly accepted as etiopathological models of schizophrenia, based on the observation that phencyclidine (PCP) induces a schizophrenia-like psychosis by blocking neurotransmission at N-methyl-D-aspartate (NMDA)-type glutamate receptors. This article reviews developments in two key predictions of the model: first, that neurocognitive deficits in schizophrenia should follow the pattern of deficit predicted based on underlying NMDAR dysfunction and, second, that agents that stimulate NMDAR function should be therapeutically beneficial. As opposed to dopamine receptors, NMDAR are widely distributed throughout the brain, including subcortical as well as cortical brain regions, and sensory as well as association cortex. Studies over the past 20 years have documented severe sensory dysfunction in schizophrenia using behavioral, neurophysiological, and functional brain imaging approaches, including impaired generation of key sensory-related potentials such as mismatch negativity and visual P1 potentials. Similar deficits are observed in humans following administration of NMDAR antagonists such as ketamine in either humans or animal models. Sensory dysfunction, in turn, predicts impairments in higher order cognitive functions such as auditory or visual emotion recognition. Treatment studies have been performed with compounds acting directly at the NMDAR glycine site, such as glycine, D-serine, or D-cycloserine, and, more recently, with high-affinity glycine transport inhibitors such as RG1678 (Roche). More limited studies have been performed with compounds targeting the redox site. Overall, these compounds have been found to induce significant beneficial effects on persistent symptoms, suggesting novel approaches for treatment and prevention of schizophrenia.
Collapse
Affiliation(s)
- Daniel C. Javitt
- Departments of Psychiatry and Neuroscience, Nathan Kline Institute for Psychiatric Research/Columbia University College of Physicians and Surgeons, Orangeburg, NY 10962, To whom correspondence should be addressed; 140 Old Orangeburg Rd, Orangeburg, NY 10962; tel: 845-398-6534 (personal)/6546 (admin), fax: 845-398-6545, e-mail:
| | - Stephen R. Zukin
- Departments of Psychiatry and Radiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, and Senior Director, Forest Research Institute, Jersey City, NJ 07311
| | - Uriel Heresco-Levy
- Department of Psychiatry, Herzog Memorial Hospital/Hadassah Medical School, Jerusalem, Israel
| | - Daniel Umbricht
- Translational Medicine Leader in Neurosciences, F. Hoffman-La Roche, Ltd, Switzerland
| |
Collapse
|
36
|
Gilmour G, Dix S, Fellini L, Gastambide F, Plath N, Steckler T, Talpos J, Tricklebank M. NMDA receptors, cognition and schizophrenia – Testing the validity of the NMDA receptor hypofunction hypothesis. Neuropharmacology 2012; 62:1401-12. [DOI: 10.1016/j.neuropharm.2011.03.015] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/10/2011] [Accepted: 03/12/2011] [Indexed: 11/25/2022]
|
37
|
Remington G, Agid O, Foussias G. Schizophrenia as a disorder of too little dopamine: implications for symptoms and treatment. Expert Rev Neurother 2011; 11:589-607. [PMID: 21469931 DOI: 10.1586/ern.10.191] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Antipsychotics represent the first effective therapy for schizophrenia, with their benefits linked to dopamine D2 blockade. Schizophrenia was soon identified as a hyperdopaminergic disorder, and antipsychotics proved to be reasonably effective in controlling positive symptoms. However, over the years, schizophrenia has been reconceptualized more broadly, now defined as a heterogeneous disorder with multiple symptom domains. Negative and cognitive features, not particularly responsive to antipsychotic therapy, have taken on increased importance--current thinking suggests that these domains predate the onset of positive symptoms and are more closely tied to functional outcome. That they are better understood in the context of decreased dopamine activity suggests that schizophrenia may fundamentally represent a hypodopaminergic disorder. This shift in thinking has important theoretical implications from the standpoint of etiology and pathophysiology, but also clinically in terms of treatment and drug development.
Collapse
|
38
|
Moustafa AA, Gluck MA. Computational cognitive models of prefrontal-striatal-hippocampal interactions in Parkinson's disease and schizophrenia. Neural Netw 2011; 24:575-91. [PMID: 21411277 DOI: 10.1016/j.neunet.2011.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/22/2011] [Accepted: 02/17/2011] [Indexed: 11/29/2022]
Abstract
Disruption to different components of the prefrontal cortex, basal ganglia, and hippocampal circuits leads to various psychiatric and neurological disorders including Parkinson's disease (PD) and schizophrenia. Medications used to treat these disorders (such as levodopa, dopamine agonists, antipsychotics, among others) affect the prefrontal-striatal-hippocampal circuits in a complex fashion. We have built models of prefrontal-striatal and striatal-hippocampal interactions which simulate cognitive dysfunction in PD and schizophrenia. In these models, we argue that the basal ganglia is key for stimulus-response learning, the hippocampus for stimulus-stimulus representational learning, and the prefrontal cortex for stimulus selection during learning about multidimensional stimuli. In our models, PD is associated with reduced dopamine levels in the basal ganglia and prefrontal cortex. In contrast, the cognitive deficits in schizophrenia are associated primarily with hippocampal dysfunction, while the occurrence of negative symptoms is associated with frontostriatal deficits in a subset of patients. In this paper, we review our past models and provide new simulation results for both PD and schizophrenia. We also describe an extended model that includes simulation of the different functional role of D1 and D2 dopamine receptors in the basal ganglia and prefrontal cortex, a dissociation we argue is essential for understanding the non-uniform effects of levodopa, dopamine agonists, and antipsychotics on cognition. Motivated by clinical and physiological data, we discuss model limitations and challenges to be addressed in future models of these brain disorders.
Collapse
Affiliation(s)
- Ahmed A Moustafa
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey 07102, USA.
| | | |
Collapse
|
39
|
Kiss T, Hoffmann WE, Scott L, Kawabe TT, Milici AJ, Nilsen EA, Hajós M. Role of Thalamic Projection in NMDA Receptor-Induced Disruption of Cortical Slow Oscillation and Short-Term Plasticity. Front Psychiatry 2011; 2:14. [PMID: 21556284 PMCID: PMC3089990 DOI: 10.3389/fpsyt.2011.00014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 03/22/2011] [Indexed: 11/13/2022] Open
Abstract
NMDA receptor (NMDAR) antagonists, such as phencyclidine, ketamine, or dizocilpine (MK-801) are commonly used in psychiatric drug discovery in order to model several symptoms of schizophrenia, including psychosis and impairments in working memory. In spite of the widespread use of NMDAR antagonists in preclinical and clinical studies, our understanding of the mode of action of these drugs on brain circuits and neuronal networks is still limited. In the present study spontaneous local field potential (LFP), multi- (MUA) and single-unit activity, and evoked potential, including paired-pulse facilitation (PPF) in response to electrical stimulation of the ipsilateral subiculum were carried out in the medial prefrontal cortex (mPFC) in urethane anesthetized rats. Systemic administration of MK-801 (0.05 mg/kg, i.v.) decreased overall MUA, with a diverse effect on single-unit activity, including increased, decreased, or unchanged firing, and in line with our previous findings shifted delta-frequency power of the LFP and disrupted PPF (Kiss et al., 2011). In order to provide further insight to the mechanisms of action of NMDAR antagonists, MK-801 was administered intracranially into the mPFC and mediodorsal nucleus of the thalamus (MD). Microinjections of MK-801, but not physiological saline, localized into the MD evoked changes in both LFP parameters and PPF similar to the effects of systemically administered MK-801. Local microinjection of MK-801 into the mPFC was without effect on these parameters. Our findings indicate that the primary site of the action of systemic administration of NMDAR antagonists is unlikely to be the cortex. We presume that multiple neuronal networks, involving thalamic nuclei contribute to disrupted behavior and cognition following NMDAR blockade.
Collapse
Affiliation(s)
- Tamás Kiss
- Neuroscience Research Unit, Pfizer Global Research and Development, Pfizer Inc . Groton, CT, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Prevention of ketamine-induced working memory impairments by AMPA potentiators in a nonhuman primate model of cognitive dysfunction. Behav Brain Res 2010; 212:41-8. [DOI: 10.1016/j.bbr.2010.03.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/27/2010] [Accepted: 03/19/2010] [Indexed: 12/15/2022]
|
41
|
Selemon LD, Begović A, Williams GV, Castner SA. Reversal of neuronal and cognitive consequences of amphetamine sensitization following chronic treatment with a D1 antagonist. Pharmacol Biochem Behav 2010; 96:325-32. [PMID: 20600252 DOI: 10.1016/j.pbb.2010.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 05/28/2010] [Accepted: 06/10/2010] [Indexed: 10/19/2022]
Abstract
Neuroplasticity is a key factor in restoration of brain function following neuropathology associated with disease or drug exposure. Here we examined the potential for chronic treatment with the selective D1 receptor antagonist SCH39166 to reverse the profound and enduring cognitive impairment associated with amphetamine (AMPH) sensitization in the nonhuman primate and to stimulate re-growth of atrophied pyramidal dendrites in the dorsolateral prefrontal cortex of these animals. Four rhesus monkeys with sustained cognitive impairment (>1year following AMPH sensitization) were treated for up to 8months with SCH39166. Cognitive testing was performed before, during, and for up to 1(1/2) year following treatment. Significant improvement in working memory performance was observed only after cessation of the D1 antagonist treatment but then was sustained for the duration of the post-treatment testing period. Postmortem quantitative assessment of Golgi-impregnated pyramidal neurons in BA9 showed that apical dendritic length and trunk spine density were increased in D1 antagonist treated monkeys relative to AMPH-sensitized and AMPH-naïve monkeys. These findings, which suggest that the deleterious consequences of AMPH sensitization can be reversed by modulation of D1 receptor signaling, have implications for treating the underlying neural basis of cognitive deficits in both schizophrenia and substance abuse.
Collapse
Affiliation(s)
- Lynn D Selemon
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, 28013-600, RJ, Brazil
| | | | | | | |
Collapse
|