1
|
Luo ZY, Huang L, Lin S, Yin YN, Jie W, Hu NY, Hu YY, Guan YF, Liu JH, You QL, Chen YH, Luo ZC, Zhang SR, Li XW, Yang JM, Tao YM, Mei L, Gao TM. Erbin in Amygdala Parvalbumin-Positive Neurons Modulates Anxiety-like Behaviors. Biol Psychiatry 2020; 87:926-936. [PMID: 31889536 DOI: 10.1016/j.biopsych.2019.10.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/02/2019] [Accepted: 10/21/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Anxiety disorders are the most common psychiatric diseases, affecting 28% of people worldwide within their lifetime. The excitation-inhibition imbalance in the amygdala is thought to be an underlying pathological mechanism; however, the cellular and molecular control of amygdala excitation-inhibition balance is largely unknown. METHODS By using mice expressing chemogenetic activator or inhibitor channel in amygdala parvalbumin (PV) neurons, Erbin mutant mice, and mice with Erbin specifically knocked down in amygdala PV neurons, we systematically investigated the role of amygdala PV neurons and Erbin expressed therein in the pathogenesis of anxiety disorders using the combined approaches of immunohistochemistry, electrophysiology, and behavior. RESULTS In naïve mice, chemogenetic inhibition of PV neurons produced anxiogenic effects, suggesting an essential role in the regulation of anxiety. In stressed mice with anxiety, excitatory postsynaptic responses on amygdala PV neurons were selectively diminished, accompanied by a decreased expression of Erbin specifically in amygdala PV neurons. Remarkably, both Erbin mutant mice and amygdala PV-specific Erbin knockdown mice exhibited impaired excitatory postsynaptic responses on amygdala PV neurons and increased anxiety-like behaviors. Furthermore, chemogenetic activation of amygdala PV neurons normalized anxiety behaviors in amygdala PV-specific Erbin knockdown mice and stressed mice. CONCLUSIONS Together, these results demonstrate that Erbin in PV neurons is critical for maintaining the excitation-inhibition balance in the amygdala and reveal a novel pathophysiological mechanism for anxiety disorders.
Collapse
Affiliation(s)
- Zheng-Yi Luo
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lang Huang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Song Lin
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ya-Nan Yin
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wei Jie
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Neng-Yuan Hu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yu-Ying Hu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yan-Fei Guan
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ji-Hong Liu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qiang-Long You
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yi-Hua Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhou-Cai Luo
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Sheng-Rong Zhang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao-Wen Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yan-Mei Tao
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Gao X, Zheng R, Ma X, Gong Z, Xia D, Zhou Q. Elevated Level of PKMζ Underlies the Excessive Anxiety in an Autism Model. Front Mol Neurosci 2019; 12:291. [PMID: 31849605 PMCID: PMC6893886 DOI: 10.3389/fnmol.2019.00291] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022] Open
Abstract
Anxiety affects the life quality of a significant percentage of autism patients. To understand the possible biological basis of this high anxiety level, we used a valproic acid (VPA) model of autism. Anxiety level is significantly higher in VPA-injected mice, at both P35 and P70. In addition, protein kinase Mζ (PKMζ) level in the basolateral amygdala (BLA) is significantly higher in VPA mice at both ages. Consistent with this finding, infusion of a PKMζ-blocking peptide z-pseudosubstrate inhibitory peptide (ZIP) into BLA significantly reduced anxiety levels in VPA mice. Furthermore, viral overexpression of PKMζ in the BLA led to elevated anxiety level in Wild Type (WT) mice, with concomitant higher intrinsic excitability of BLA excitatory neurons. Altogether, our results indicate a key contribution of BLA PKMζ level to anxiety, especially in autism; and this finding may provide a further understanding of the pathogenesis as well as treatment of anxiety symptoms in autism patients.
Collapse
Affiliation(s)
- Xiaoli Gao
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Rui Zheng
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xiaoyan Ma
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zhiting Gong
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,Department of Anatomy, College of Preclinical Medicine, Dali University, Dali, China
| | - Dan Xia
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,Department of Child Healthcare, Shenzhen Children's Hospital, Shenzhen, China
| | - Qiang Zhou
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
3
|
Ochoa-de la Paz LD, González-Andrade M, Pasantes-Morales H, Franco R, Zamora-Alvarado R, Zenteno E, Quiroz-Mercado H, Gonzales-Salinas R, Gulias-Cañizo R. Differential modulation of human GABA C-ρ1 receptor by sulfur-containing compounds structurally related to taurine. BMC Neurosci 2018; 19:47. [PMID: 30075755 PMCID: PMC6076408 DOI: 10.1186/s12868-018-0448-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The amino acid taurine (2-Aminoethanesulfonic acid) modulates inhibitory neurotransmitter receptors. This study aimed to determine if the dual action of taurine on GABAC-ρ1R relates to its structure. To address this, we tested the ability of the structurally related compounds homotaurine, hypotaurine, and isethionic acid to modulate GABAC-ρ1R. RESULTS In Xenopus laevis oocytes, hypotaurine and homotaurine partially activate heterologously expressed GABAC-ρ1R, showing an increment in its deactivation time with no changes in channel permeability, whereas isethionic acid showed no effect. Competitive assays suggest that hypotaurine and homotaurine compete for the GABA-binding site. In addition, their effects were blocked by the ion-channel blockers picrotixin and Methyl(1,2,5,6-tetrahydropyridine-4-yl) phosphinic acid. In contrast to taurine, co-application of GABA with hypotaurine or homotaurine revealed that the dual effect is present separately for each compound: hypotaurine modulates positively the GABA current, while homotaurine shows a negative modulation, both in a dose-dependent manner. Interestingly, homotaurine diminished hypotaurine-induced currents. Thus, these results strongly suggest a competitive interaction between GABA and homotaurine or hypotaurine for the same binding site. "In silico" modeling confirms these observations, but it also shows a second binding site for homotaurine, which could explain the negative effect of this compound on the current generated by GABA or hypotaurine, during co-application protocols. CONCLUSIONS The sulfur-containing compounds structurally related to taurine are partial agonists of GABAC-ρ1R that occupy the agonist binding site. The dual effect is unique to taurine, whereas in the case of hypotaurine and homotaurine it presents separately; hypotaurine increases and homotaurine decreases the GABA current.
Collapse
Affiliation(s)
- Lenin David Ochoa-de la Paz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco Universidad, Cd. Universitaria, 04510, México City, México. .,Departamento de Investigación APEC, Asociación para Evitar la Ceguera en México I.A.P. Hospital Dr. Luis Sánchez Bulnes, Fernández Leal 60, Col. La Concepción Coyoacán, 04020, Mexico City, Mexico.
| | - Martin González-Andrade
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco Universidad, Cd. Universitaria, 04510, México City, México
| | - Herminia Pasantes-Morales
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Coyoacán, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Rodrigo Franco
- Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Rubén Zamora-Alvarado
- Departamento de Investigación APEC, Asociación para Evitar la Ceguera en México I.A.P. Hospital Dr. Luis Sánchez Bulnes, Fernández Leal 60, Col. La Concepción Coyoacán, 04020, Mexico City, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco Universidad, Cd. Universitaria, 04510, México City, México
| | - Hugo Quiroz-Mercado
- Departamento de Investigación APEC, Asociación para Evitar la Ceguera en México I.A.P. Hospital Dr. Luis Sánchez Bulnes, Fernández Leal 60, Col. La Concepción Coyoacán, 04020, Mexico City, Mexico
| | - Roberto Gonzales-Salinas
- Departamento de Investigación APEC, Asociación para Evitar la Ceguera en México I.A.P. Hospital Dr. Luis Sánchez Bulnes, Fernández Leal 60, Col. La Concepción Coyoacán, 04020, Mexico City, Mexico
| | - Rosario Gulias-Cañizo
- Departamento de Investigación APEC, Asociación para Evitar la Ceguera en México I.A.P. Hospital Dr. Luis Sánchez Bulnes, Fernández Leal 60, Col. La Concepción Coyoacán, 04020, Mexico City, Mexico
| |
Collapse
|
4
|
Shen W, Nan C, Nelson PT, Ripps H, Slaughter MM. GABA B receptor attenuation of GABA A currents in neurons of the mammalian central nervous system. Physiol Rep 2017; 5:5/6/e13129. [PMID: 28348006 PMCID: PMC5371550 DOI: 10.14814/phy2.13129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 11/18/2016] [Indexed: 11/24/2022] Open
Abstract
Ionotropic receptors are tightly regulated by second messenger systems and are often present along with their metabotropic counterparts on a neuron's plasma membrane. This leads to the hypothesis that the two receptor subtypes can interact, and indeed this has been observed in excitatory glutamate and inhibitory GABA receptors. In both systems the metabotropic pathway augments the ionotropic receptor response. However, we have found that the metabotropic GABAB receptor can suppress the ionotropic GABAA receptor current, in both the in vitro mouse retina and in human amygdala membrane fractions. Expression of amygdala membrane microdomains in Xenopus oocytes by microtransplantation produced functional ionotropic and metabotropic GABA receptors. Most GABAA receptors had properties of α‐subunit containing receptors, with ~5% having ρ‐subunit properties. Only GABAA receptors with α‐subunit‐like properties were regulated by GABAB receptors. In mouse retinal ganglion cells, where only α‐subunit‐containing GABAA receptors are expressed, GABAB receptors suppressed GABAA receptor currents. This suppression was blocked by GABAB receptor antagonists, G‐protein inhibitors, and GABAB receptor antibodies. Based on the kinetic differences between metabotropic and ionotropic receptors, their interaction would suppress repeated, rapid GABAergic inhibition.
Collapse
Affiliation(s)
- Wen Shen
- Department of Biomedical Science, Charles E. Schmidt College of Medicine Florida Atlantic University, Boca Raton, Florida
| | - Changlong Nan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine Florida Atlantic University, Boca Raton, Florida
| | - Peter T Nelson
- Division of Neuropathology, Department of Pathology, University of Kentucky, Lexington, Kentucky.,Sanders-Brown Centre on Aging, University of Kentucky, Lexington, Kentucky
| | - Harris Ripps
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, Illinois.,Whitman Investigator, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Malcolm M Slaughter
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
5
|
Mohammadi E, Shamsizadeh A, Salari E, Fatemi I, Allahtavakoli M, Roohbakhsh A. Effect of TPMPA (GABACreceptor antagonist) on neuronal response properties in rat barrel cortex. Somatosens Mot Res 2017; 34:108-115. [DOI: 10.1080/08990220.2017.1317240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Elham Mohammadi
- Physiology–Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Shamsizadeh
- Physiology–Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Elham Salari
- Physiology–Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Iman Fatemi
- Physiology–Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Allahtavakoli
- Physiology–Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Heusser SA, Yoluk Ö, Klement G, Riederer EA, Lindahl E, Howard RJ. Functional characterization of neurotransmitter activation and modulation in a nematode model ligand-gated ion channel. J Neurochem 2016; 138:243-53. [PMID: 27102368 DOI: 10.1111/jnc.13644] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/21/2016] [Accepted: 04/07/2016] [Indexed: 11/29/2022]
Abstract
The superfamily of pentameric ligand-gated ion channels includes neurotransmitter receptors that mediate fast synaptic transmission in vertebrates, and are targets for drugs including alcohols, anesthetics, benzodiazepines, and anticonvulsants. However, the mechanisms of ion channel opening, gating, and modulation in these receptors leave many open questions, despite their pharmacological importance. Subtle conformational changes in both the extracellular and transmembrane domains are likely to influence channel opening, but have been difficult to characterize given the limited structural data available for human membrane proteins. Recent crystal structures of a modified Caenorhabditis elegans glutamate-gated chloride channel (GluCl) in multiple states offer an appealing model system for structure-function studies. However, the pharmacology of the crystallographic GluCl construct is not well established. To establish the functional relevance of this system, we used two-electrode voltage-clamp electrophysiology in Xenopus oocytes to characterize activation of crystallographic and native-like GluCl constructs by L-glutamate and ivermectin. We also tested modulation by ethanol and other anesthetic agents, and used site-directed mutagenesis to explore the role of a region of Loop F which was implicated in ligand gating by molecular dynamics simulations. Our findings indicate that the crystallographic construct functionally models concentration-dependent agonism and allosteric modulation of pharmacologically relevant receptors. Specific substitutions at residue Leu174 in loop F altered direct L-glutamate activation, consistent with computational evidence for this region's role in ligand binding. These insights demonstrate conservation of activation and modulation properties in this receptor family, and establish a framework for GluCl as a model system, including new possibilities for drug discovery. In this study, we elucidate the validity of a modified glutamate-gated chloride channel (GluClcryst ) as a structurally accessible model for GABAA receptors. In contrast to native-like controls, GluClcryst exhibits classical activation by its neurotransmitter ligand L-glutamate. The modified channel is also sensitive to allosteric modulators associated with human GABAA receptors, and to site-directed mutations predicted to alter channel opening.
Collapse
Affiliation(s)
- Stephanie A Heusser
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Özge Yoluk
- Swedish e-Science Research Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Göran Klement
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Erika A Riederer
- Department of Chemistry, Skidmore College, Saratoga Springs, NY, USA
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.,Swedish e-Science Research Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Rebecca J Howard
- Department of Chemistry, Skidmore College, Saratoga Springs, NY, USA
| |
Collapse
|
7
|
Müller I, Çalışkan G, Stork O. The GAD65 knock out mouse - a model for GABAergic processes in fear- and stress-induced psychopathology. GENES BRAIN AND BEHAVIOR 2015; 14:37-45. [PMID: 25470336 DOI: 10.1111/gbb.12188] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 12/16/2022]
Abstract
The γ-amino butyric acid (GABA) synthetic enzyme glutamic acid decarboxylase (GAD)65 is critically involved in the activity-dependent regulation of GABAergic inhibition in the central nervous system. It is also required for the maturation of the GABAergic system during adolescence, a phase that is critical for the development of several neuropsychiatric diseases. Mice bearing a null mutation of the GAD65 gene develop hyperexcitability of the amygdala and hippocampus, and a phenotype of increased anxiety and pathological fear memory reminiscent of posttraumatic stress disorder. Although genetic association of GAD65 in human has not yet been reported, these findings are in line with observations of reduced GABAergic function in these brain regions of anxiety disorder patients. The particular value of GAD65(-/-) mice thus lies in modeling the effects of reduced GABAergic function in the mature nervous system. The expression of GAD65 and a second GAD isozyme, GAD67, are differentially regulated in response to stress in limbic brain areas suggesting that by controlling GABAergic inhibition these enzymes determine the vulnerability for the development of pathological anxiety and other stress-induced phenotypes. In fact, we could recently show that GAD65 haplodeficiency, which results in delayed postnatal increase of GABA levels, provides resilience to juvenile-stress-induced anxiety to GAD65(+/-) mice thus foiling the increased fear and anxiety in homozygous GAD65(-/-) mice.
Collapse
Affiliation(s)
- Iris Müller
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | | |
Collapse
|
8
|
Bi LL, Sun XD, Zhang J, Lu YS, Chen YH, Wang J, Geng F, Liu F, Zhang M, Liu JH, Li XW, Mei L, Gao TM. Amygdala NRG1-ErbB4 is critical for the modulation of anxiety-like behaviors. Neuropsychopharmacology 2015; 40:974-86. [PMID: 25308353 PMCID: PMC4330511 DOI: 10.1038/npp.2014.274] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/08/2014] [Accepted: 10/05/2014] [Indexed: 12/27/2022]
Abstract
Anxiety disorder is related to the pathophysiology of psychiatric diseases, including major depression, substance abuse, and schizophrenia. The amygdala is important for manifestation and modulation of anxiety. However, relatively little is known regarding the mechanisms that control the amygdala inhibitory activity that is involved in anxiety. We found that almost all ErbB4, which is the only autonomous receptor of neuregulin 1 (NRG1) in the basolateral amygdala (BLA), was expressed in GABAergic neurons. Endogenous NRG1-ErbB4 signaling pathway in the BLA could modulate anxiety-like behaviors and GABA release, whereas it had no effect on glutamatergic transmission. The administration of NRG1 into the BLA of high-anxiety mice alleviated their anxiety and enhanced GABAergic neurotransmission. Moreover, exogenous NRG1 also produced an anxiolytic effect in the stressed mice. Together, these observations indicated that NRG1-ErbB4 signaling is critical to maintaining GABAergic activity in the amygdala and thus to modulating anxiety-like behaviors. Because NRG1 and ErbB4 are susceptibility genes of schizophrenia, our findings might also help to explain the potential mechanism of emotional abnormality in schizophrenia.
Collapse
Affiliation(s)
- Lin-Lin Bi
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, China,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Dong Sun
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, China,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Jie Zhang
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, China
| | - Yi-Sheng Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Yi-Hua Chen
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, China
| | - Jue Wang
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, China
| | - Fei Geng
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, China
| | - Fang Liu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Meng Zhang
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, China
| | - Ji-Hong Liu
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, China
| | - Xiao-Wen Li
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, China
| | - Lin Mei
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, China,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA, Tel: +01 706 721 8775, Fax: +01 706 434 6432, E-mail:
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, China,State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Guangzhou 510515, China, Tel: +86 20 61648617, Fax: +86 20 61648161, E-mail:
| |
Collapse
|
9
|
|
10
|
Howard RJ, Trudell JR, Harris RA. Seeking structural specificity: direct modulation of pentameric ligand-gated ion channels by alcohols and general anesthetics. Pharmacol Rev 2014; 66:396-412. [PMID: 24515646 PMCID: PMC3973611 DOI: 10.1124/pr.113.007468] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alcohols and other anesthetic agents dramatically alter neurologic function in a wide range of organisms, yet their molecular sites of action remain poorly characterized. Pentameric ligand-gated ion channels, long implicated in important direct effects of alcohol and anesthetic binding, have recently been illuminated in renewed detail thanks to the determination of atomic-resolution structures of several family members from lower organisms. These structures provide valuable models for understanding and developing anesthetic agents and for allosteric modulation in general. This review surveys progress in this field from function to structure and back again, outlining early evidence for relevant modulation of pentameric ligand-gated ion channels and the development of early structural models for ion channel function and modulation. We highlight insights and challenges provided by recent crystal structures and resulting simulations, as well as opportunities for translation of these newly detailed models back to behavior and therapy.
Collapse
Affiliation(s)
- Rebecca J Howard
- Department of Chemistry, Skidmore College, Saratoga Springs, NY 12866.
| | | | | |
Collapse
|
11
|
Blednov YA, Benavidez JM, Black M, Leiter CR, Osterndorff-Kahanek E, Johnson D, Borghese CM, Hanrahan JR, Johnston GAR, Chebib M, Harris RA. GABAA receptors containing ρ1 subunits contribute to in vivo effects of ethanol in mice. PLoS One 2014; 9:e85525. [PMID: 24454882 PMCID: PMC3894180 DOI: 10.1371/journal.pone.0085525] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/27/2013] [Indexed: 11/29/2022] Open
Abstract
GABAA receptors consisting of ρ1, ρ2, or ρ3 subunits in homo- or hetero-pentamers have been studied mainly in retina but are detected in many brain regions. Receptors formed from ρ1 are inhibited by low ethanol concentrations, and family-based association analyses have linked ρ subunit genes with alcohol dependence. We determined if genetic deletion of ρ1 in mice altered in vivo ethanol effects. Null mutant male mice showed reduced ethanol consumption and preference in a two-bottle choice test with no differences in preference for saccharin or quinine. Null mutant mice of both sexes demonstrated longer duration of ethanol-induced loss of righting reflex (LORR), and males were more sensitive to ethanol-induced motor sedation. In contrast, ρ1 null mice showed faster recovery from acute motor incoordination produced by ethanol. Null mutant females were less sensitive to ethanol-induced development of conditioned taste aversion. Measurement of mRNA levels in cerebellum showed that deletion of ρ1 did not change expression of ρ2, α2, or α6 GABAA receptor subunits. (S)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ1” antagonist), when administered to wild type mice, mimicked the changes that ethanol induced in ρ1 null mice (LORR and rotarod tests), but the ρ1 antagonist did not produce these effects in ρ1 null mice. In contrast, (R)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ2” antagonist) did not change ethanol actions in wild type but produced effects in mice lacking ρ1 that were opposite of the effects of deleting (or inhibiting) ρ1. These results suggest that ρ1 has a predominant role in two in vivo effects of ethanol, and a role for ρ2 may be revealed when ρ1 is deleted. We also found that ethanol produces similar inhibition of function of recombinant ρ1 and ρ2 receptors. These data indicate that ethanol action on GABAA receptors containing ρ1/ρ2 subunits may be important for specific effects of ethanol in vivo.
Collapse
Affiliation(s)
- Yuri A. Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jillian M. Benavidez
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Mendy Black
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Courtney R. Leiter
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Elizabeth Osterndorff-Kahanek
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - David Johnson
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Cecilia M. Borghese
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jane R. Hanrahan
- Faculty of Pharmacy, The University of Sydney, Sydney NSW, Australia
| | | | - Mary Chebib
- Faculty of Pharmacy, The University of Sydney, Sydney NSW, Australia
| | - R. Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
12
|
Beggiato S, O'Connor WT, Tomasini MC, Antonelli T, Loche A, Tanganelli S, Cacciaglia R, Ferraro L. GET73 increases rat extracellular hippocampal CA1 GABA levels through a possible involvement of local mGlu5 receptor. Synapse 2013; 67:678-91. [DOI: 10.1002/syn.21672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/02/2013] [Indexed: 01/24/2023]
Affiliation(s)
| | - William Thomas O'Connor
- Graduate Entry Medical School and Materials and Surface Science Institute; University of Limerick; Limerick; Ireland
| | | | | | | | | | | | | |
Collapse
|
13
|
Evidence for a role of GABAergic and glutamatergic signalling in the basolateral amygdala in endocannabinoid-mediated fear-conditioned analgesia in rats. Pain 2013; 154:576-585. [DOI: 10.1016/j.pain.2012.12.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 08/25/2012] [Accepted: 12/20/2012] [Indexed: 12/17/2022]
|
14
|
Palomares-Castillo E, Hernández-Pérez OR, Pérez-Carrera D, Crespo-Ramírez M, Fuxe K, Pérez de la Mora M. The intercalated paracapsular islands as a module for integration of signals regulating anxiety in the amygdala. Brain Res 2012; 1476:211-34. [DOI: 10.1016/j.brainres.2012.03.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/15/2012] [Accepted: 03/19/2012] [Indexed: 11/30/2022]
|
15
|
Ochoa-de la Paz L, Estrada-Mondragón A, Limón A, Miledi R, Martínez-Torres A. Dopamine and serotonin modulate human GABAρ1 receptors expressed in Xenopus laevis oocytes. ACS Chem Neurosci 2012; 3:96-104. [PMID: 22860179 PMCID: PMC3382461 DOI: 10.1021/cn200083m] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 12/03/2011] [Indexed: 11/30/2022] Open
Abstract
GABAρ1 receptors are highly expressed in bipolar neurons of the retina and to a lesser extent in several areas of the central nervous system (CNS), and dopamine and serotonin are also involved in the modulation of retinal neural transmission. Whether these biogenic amines have a direct effect on ionotropic GABA receptors was not known. Here, we report that GABAρ1 receptors, expressed in X. laevis oocytes, were negatively modulated by dopamine and serotonin and less so by octopamine and tyramine. Interestingly, these molecules did not have effects on GABA(A) receptors. 5-Carboxamido-tryptamine and apomorphine did not exert evident effects on any of the receptors. Schild plot analyses of the inhibitory actions of dopamine and serotonin on currents elicited by GABA showed slopes of 2.7 ± 0.3 and 6.1 ± 1.8, respectively, indicating a noncompetitive mechanism of inhibition. The inhibition of GABAρ1 currents was independent of the membrane potential and was insensitive to picrotoxin, a GABA receptor channel blocker and to the GABAρ-specific antagonist (1,2,5,6-tetrahydropyridine-4-yl)methyl phosphinic acid (TPMPA). Dopamine and serotonin changed the sensitivity of GABAρ1 receptors to the inhibitory actions of Zn(2+). In contrast, La(3+) potentiated the amplitude of the GABA currents generated during negative modulation by dopamine (EC(50) 146 μM) and serotonin (EC(50) 196 μM). The functional role of the direct modulation of GABAρ receptors by dopamine and serotonin remains to be elucidated; however, it may represent an important modulatory pathway in the retina, where GABAρ receptors are highly expressed and where these biogenic amines are abundant.
Collapse
Affiliation(s)
- Lenin
D. Ochoa-de la Paz
- Departamento de Neurobiología Celular y Molecular, Laboratorio
de Neurobiología Molecular y Celular I-II, Instituto de Neurobiología, Campus UNAM Juriquilla, Querétaro, Qro. México
CP 76230
| | - Argel Estrada-Mondragón
- Departamento de Neurobiología Celular y Molecular, Laboratorio
de Neurobiología Molecular y Celular I-II, Instituto de Neurobiología, Campus UNAM Juriquilla, Querétaro, Qro. México
CP 76230
- Institut
de Biologie Structurale Jean-Pierre Ebel, CEA-CNRS-UJF,
41 rue Jules Horowitz, F-38027 Grenoble, France
| | - Agenor Limón
- Neurobiology and Behavior, University
of California, Irvine, 2205 McGaugh Hall, Irvine California
92697, United States
| | - Ricardo Miledi
- Departamento de Neurobiología Celular y Molecular, Laboratorio
de Neurobiología Molecular y Celular I-II, Instituto de Neurobiología, Campus UNAM Juriquilla, Querétaro, Qro. México
CP 76230
| | - Ataúlfo Martínez-Torres
- Departamento de Neurobiología Celular y Molecular, Laboratorio
de Neurobiología Molecular y Celular I-II, Instituto de Neurobiología, Campus UNAM Juriquilla, Querétaro, Qro. México
CP 76230
| |
Collapse
|
16
|
Rosas-Arellano A, Machuca-Parra AI, Reyes-Haro D, Miledi R, Martínez-Torres A. Expression of GABAρ receptors in the neostriatum: localization in aspiny, medium spiny neurons and GFAP-positive cells. J Neurochem 2012; 122:900-10. [PMID: 22168837 DOI: 10.1111/j.1471-4159.2011.07621.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
GABAergic transmission in the neostriatum plays a central role in motor coordination, in which a plethora of GABA-A receptor subunits combine to modulate neural inhibition. GABAρ receptors were originally described in the mammalian retina. These receptors possess special electrophysiological and pharmacological properties, forming a characteristic class of ionotropic receptors. In previous studies, we suggested that GABAρ receptors are expressed in the neostriatum, and in this report we show that they are indeed present in all the calretinin-positive interneurons of the neostriatum. In addition, they are located in calbindin-positive interneurons and projection neurons that express the dopamine D(2) receptor. GABAρ receptors were also located in 30% of the glial fibrillary acidic protein-positive cells, and may therefore also contribute to gliotransmission. Quantitative reverse transcription-PCR suggested that the mRNAs of this receptor do not express as much as in the retina, and that GABAρ2 is more abundant than GABAρ1. Electrophysiological recordings in brain slices provided evidence of neurons expressing a cis-4-aminocrotonic acid-activated, 1,2,5,6-tetrahydropyridine-4-yl methylphosphinic acid-sensitive ionotropic GABA receptor, indicating the presence of functional GABAρ receptors in the neostriatum. Finally, electron-microscopy and immunogold located the receptors mainly in perisynaptic as well as in extrasynaptic sites. All these observations reinforce the importance of GABAρ receptors in the neostriatum and contribute to the diversity of inhibitory regulation in this area.
Collapse
Affiliation(s)
- Abraham Rosas-Arellano
- Departamento de Neurobiología Celular y Molecular, Universidad Nacional Autónoma de México, Instituto de Neurobiología, Campus Juriquilla, Querétaro, Mexico
| | | | | | | | | |
Collapse
|
17
|
Rosas-Arellano A, Parodi J, Machuca-Parra AI, Sánchez-Gutiérrez A, Inestrosa NC, Miledi R, Martínez-Torres A. The GABA(A)ρ receptors in hippocampal spontaneous activity and their distribution in hippocampus, amygdala and visual cortex. Neurosci Lett 2011; 500:20-5. [PMID: 21683123 DOI: 10.1016/j.neulet.2011.05.235] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/13/2011] [Accepted: 05/31/2011] [Indexed: 10/18/2022]
Abstract
A bicuculline-resistant and TPMPA-sensitive GABAergic component was identified in hippocampal neurons in culture and in acute isolated brain slices. In both preparations, total GABAergic activity showed two inactivation kinetics: fast and slow. RT-PCR, in situ hybridization (ISH) and immunohistochemistry detected expression of GABAρ subunits. Immunogold and electron microscopy indicated that the receptors are mostly extrasynaptic. In addition, by RT-PCR and immunofluorescence we found GABAρ present in amygdala and visual cortex.
Collapse
Affiliation(s)
- Abraham Rosas-Arellano
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Campus UNAM-Juriquilla, Querétaro, QRO 76230, Mexico
| | | | | | | | | | | | | |
Collapse
|