1
|
Balsamo F, Meneo D, Berretta E, Baglioni C, Gelfo F. Could sleep be a brain/cognitive/neural reserve-builder factor? A systematic review on the cognitive effects of sleep modulation in animal models. Neurosci Biobehav Rev 2025; 169:106015. [PMID: 39828234 DOI: 10.1016/j.neubiorev.2025.106015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
The brain/cognitive/neural reserve concept suggests that lifelong experiences, from early life through adulthood, make the brain more resilient to neuronal damage. Modifiable lifestyle factors, such as sleep, can support the development and enhance such a reserve, helping to counteract age- or disease-related brain changes and their impact on cognition. Sleep plays a crucial role in cognitive functioning, and disruptions or disorders may increase neurodegenerative risks. This systematic review aims to explore how functional and disturbed sleep impacts cognitive functions and neuromorphological mechanisms in rodents, aiming to better understand its role in brain/cognitive/neural reserve development. This systematic review, registered on PROSPERO (ID: CRD42023423901) and conducted according to PRISMA-P guidelines, searched PubMed, Scopus, Web of Science, and Embase databases for studies up to June 2022, with terms related to sleep, rodents, and cognitive functions. Of the 28,666 articles identified, 142 met the inclusion criteria. Main results showed significant cognitive decline after sleep deprivation, especially in memory performance. These findings supports the importance of sleep as a critical factor in modulating brain/cognitive/neural reserve.
Collapse
Affiliation(s)
- Francesca Balsamo
- Department of Human Sciences, Guglielmo Marconi University, Rome 00193, Italy; IRCCS Fondazione Santa Lucia, Rome 00179, Italy.
| | - Debora Meneo
- Department of Human Sciences, Guglielmo Marconi University, Rome 00193, Italy
| | | | - Chiara Baglioni
- Department of Human Sciences, Guglielmo Marconi University, Rome 00193, Italy; Department of Clinical Psychology and Psychophysiology/Sleep, Medicine, Centre for Mental Disorders, University Medical Centre, Freiburg, Germany
| | - Francesca Gelfo
- Department of Human Sciences, Guglielmo Marconi University, Rome 00193, Italy; IRCCS Fondazione Santa Lucia, Rome 00179, Italy.
| |
Collapse
|
2
|
Cognitive profiling and proteomic analysis of the modafinil analogue S-CE-123 in experienced aged rats. Sci Rep 2021; 11:23962. [PMID: 34907284 PMCID: PMC8671572 DOI: 10.1038/s41598-021-03372-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022] Open
Abstract
The lack of novel cognitive enhancer drugs in the clinic highlights the prediction problems of animal assays. The objective of the current study was to test a putative cognitive enhancer in a rodent cognitive test system with improved translational validity and clinical predictivity. Cognitive profiling was complemented with post mortem proteomic analysis. Twenty-seven male Lister Hooded rats (26 months old) having learned several cognitive tasks were subchronically treated with S-CE-123 (CE-123) in a randomized blind experiment. Rats were sacrificed after the last behavioural procedure and plasma and brains were collected. A label-free quantification approach was used to characterize proteomic changes in the synaptosomal fraction of the prefrontal cortex. CE-123 markedly enhanced motivation which resulted in superior performance in a new-to-learn operant discrimination task and in a cooperation assay of social cognition, and mildly increased impulsivity. The compound did not affect attention, spatial and motor learning. Proteomic quantification revealed 182 protein groups significantly different between treatment groups containing several proteins associated with aging and neurodegeneration. Bioinformatic analysis showed the most relevant clusters delineating synaptic vesicle recycling, synapse organisation and antioxidant activity. The cognitive profile of CE-123 mapped by the test system resembles that of modafinil in the clinic showing the translational validity of the test system. The findings of modulated synaptic systems are paralleling behavioral results and are in line with previous evidence for the role of altered synaptosomal protein groups in mechanisms of cognitive function.
Collapse
|
3
|
Chen TH, Chen YJ, Huang TS, Hsiao M, Lin CC, Liu YP. Does positive feeling lead to more impulsiveness? - Implication of previous rewarded experience on location-dependent motoric impulsivity. CHINESE J PHYSIOL 2021; 64:218-224. [PMID: 34708713 DOI: 10.4103/cjp.cjp_63_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Positive feeling or rewarding experience is crucial for individuals to operative their cognitive activities via an outcome evaluation of incentive reinforcement. For a long time, rewarding process or outcome evaluation is assumed greatly influenced by neuronal construct that holds individuals' impulsiveness, a capacity to inhibit unwanted behaviors provoked in a given situation. In the present study, we proposed that the outcome evaluation or rewarding experience can influence the occurrence of impulsiveness too. We hypothesized that animals would be more likely to deliver impulsive action in the place where it was previously associated with reinforcing process, in which central dopamine may play an important role. By employing five-choice serial reaction time task (5-CSRTT), we examined whether one of the five holes where rats made a correct response to get the reward would gain a higher probability to deliver premature or perseverative activities than other holes in the next trial of 5-CSRTT under baseline or longer waiting period condition. The effects of D1 receptor antagonist SCH23390 were also evaluated in the above paradigm. We demonstrated that (i) the influence on motoric impulsive response from previous rewarded experience can be described in a behavioral paradigm such as the 5-CSRTT, (ii) both prematures and perseverations at the hole associated with previous rewarding were about one-fifth of probability, however were statistically not correlated unless the interventions of inter-trial interval = 7 plus SCH23390, and (iii) the hole associated with the positive reinforcement of the 5-CSRTT appears more likely for rats to carry out an intuitive impetus under SCH23390 in a longer waiting condition. Our results may shed some insight toward the role of rewarding process in impulsive behavior.
Collapse
Affiliation(s)
- Tsung-Hua Chen
- Department of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Jung Chen
- Department of Psychiatry, Hualien Armed Forces General Hospital, Hualien, Taiwan
| | - Teng-Shun Huang
- Department of Physiology, Laboratory of Cognitive Neuroscience, National Defense Medical Center, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chen-Cheng Lin
- Department of Physiology, Laboratory of Cognitive Neuroscience, National Defense Medical Center; Genomics Research Center, Academia Sinica; Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Yia-Ping Liu
- Department of Physiology, Laboratory of Cognitive Neuroscience, National Defense Medical Center; Department of Psychiatry, Cheng Hsin General Hospital; Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Nilsson SRO, Heath CJ, Takillah S, Didienne S, Fejgin K, Nielsen V, Nielsen J, Saksida LM, Mariani J, Faure P, Didriksen M, Robbins TW, Bussey TJ, Mar AC. Continuous performance test impairment in a 22q11.2 microdeletion mouse model: improvement by amphetamine. Transl Psychiatry 2018; 8:247. [PMID: 30429456 PMCID: PMC6235862 DOI: 10.1038/s41398-018-0295-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 08/21/2018] [Accepted: 10/05/2018] [Indexed: 02/03/2023] Open
Abstract
The 22q11.2 deletion syndrome (22q11.2DS) confers high risk of neurodevelopmental disorders such as schizophrenia and attention-deficit hyperactivity disorder. These disorders are associated with attentional impairment, the remediation of which is important for successful therapeutic intervention. We assessed a 22q11.2DS mouse model (Df(h22q11)/+) on a touchscreen rodent continuous performance test (rCPT) of attention and executive function that is analogous to human CPT procedures. Relative to wild-type littermates, Df(h22q11)/+ male mice showed impaired attentional performance as shown by decreased correct response ratio (hit rate) and a reduced ability to discriminate target stimuli from non-target stimuli (discrimination sensitivity, or d'). The Df(h22q11)/+ model exhibited decreased prefrontal cortical-hippocampal oscillatory synchrony within multiple frequency ranges during quiet wakefulness, which may represent a biomarker of cognitive dysfunction. The stimulant amphetamine (0-1.0 mg/kg, i.p.) dose-dependently improved d' in Df(h22q11)/+ mice whereas the highest dose of modafinil (40 mg/kg, i.p.) exacerbated their d' impairment. This is the first report to directly implicate attentional impairment in a 22q11.2DS mouse model, mirroring a key endophenotype of the human disorder. The capacity of the rCPT to detect performance impairments in the 22q11.2DS mouse model, and improvement following psychostimulant-treatment, highlights the utility and translational potential of the Df(h22q11)/+ model and this automated behavioral procedure.
Collapse
Affiliation(s)
- Simon R. O. Nilsson
- 0000000121885934grid.5335.0Department of Psychology, University of Cambridge, Cambridge, UK ,0000000121885934grid.5335.0MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK ,0000 0001 2109 4251grid.240324.3Neuroscience Institute, New York University Medical Center, New York, NY USA ,0000 0004 1936 8753grid.137628.9Department of Neuroscience and Physiology, School of Medicine, New York University, New York, NY USA
| | - Christopher J. Heath
- 0000000096069301grid.10837.3dSchool of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, UK
| | - Samir Takillah
- Fatigue and Vigilance team, Neuroscience and Operational Constraints Department, French Armed Forces Biomedical Research Institute (IRBA), Brétigny-sur-Orge, France ,0000 0001 2188 0914grid.10992.33VIFASOM team (EA 7330), Paris Descartes University, Sorbonne Paris Cité, Hôtel Dieu, Paris, France ,0000 0001 2097 0141grid.121334.6Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, INSERM, U1130, Institut de Biologie Paris Seine (IBPS), UMR 8246 Neuroscience Paris Seine (NPS), Team Neurophysiology and Behavior, Paris, France ,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris Seine (IBPS), UMR 8256 Biological adaptation and ageing (B2A), Team Brain Development, Repair and Ageing, Paris, France ,APHP Hôpital, DHU Fast, Institut de la Longévité, Ivry-Sur-Seine, France
| | - Steve Didienne
- 0000 0001 2097 0141grid.121334.6Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, INSERM, U1130, Institut de Biologie Paris Seine (IBPS), UMR 8246 Neuroscience Paris Seine (NPS), Team Neurophysiology and Behavior, Paris, France
| | - Kim Fejgin
- 0000 0004 0476 7612grid.424580.fH. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Copenhagen, Denmark
| | - Vibeke Nielsen
- 0000 0004 0476 7612grid.424580.fH. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Copenhagen, Denmark
| | - Jacob Nielsen
- 0000 0004 0476 7612grid.424580.fH. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Copenhagen, Denmark
| | - Lisa M. Saksida
- 0000000121885934grid.5335.0Department of Psychology, University of Cambridge, Cambridge, UK ,0000000121885934grid.5335.0MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK ,0000 0004 1936 8884grid.39381.30Molecular Medicine Research Group, Robarts Research Institute & Department of Physiology, Western University, London, ON Canada ,0000 0004 1936 8884grid.39381.30Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON Canada ,0000 0004 1936 8884grid.39381.30The Brain and Mind Institute, Western University, London, ON Canada
| | - Jean Mariani
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris Seine (IBPS), UMR 8256 Biological adaptation and ageing (B2A), Team Brain Development, Repair and Ageing, Paris, France ,APHP Hôpital, DHU Fast, Institut de la Longévité, Ivry-Sur-Seine, France
| | - Philippe Faure
- 0000 0001 2188 0914grid.10992.33VIFASOM team (EA 7330), Paris Descartes University, Sorbonne Paris Cité, Hôtel Dieu, Paris, France
| | - Michael Didriksen
- 0000 0004 0476 7612grid.424580.fH. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Copenhagen, Denmark
| | - Trevor W. Robbins
- 0000000121885934grid.5335.0Department of Psychology, University of Cambridge, Cambridge, UK ,0000000121885934grid.5335.0MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Timothy J. Bussey
- 0000000121885934grid.5335.0Department of Psychology, University of Cambridge, Cambridge, UK ,0000000121885934grid.5335.0MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK ,0000 0004 1936 8884grid.39381.30Molecular Medicine Research Group, Robarts Research Institute & Department of Physiology, Western University, London, ON Canada ,0000 0004 1936 8884grid.39381.30Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON Canada ,0000 0004 1936 8884grid.39381.30The Brain and Mind Institute, Western University, London, ON Canada
| | - Adam C. Mar
- 0000 0001 2109 4251grid.240324.3Neuroscience Institute, New York University Medical Center, New York, NY USA ,0000 0004 1936 8753grid.137628.9Department of Neuroscience and Physiology, School of Medicine, New York University, New York, NY USA
| |
Collapse
|
5
|
Yang YN, Liu YP, Hsieh MT, Lin YC, Tung CS. Effects of prolonged paradoxical sleep deprivation with or without acute cold stress on hemodynamic perturbations in rats. Stress 2018; 21:520-527. [PMID: 29939104 DOI: 10.1080/10253890.2018.1483328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Prolonged paradoxical sleep deprivation (PSD) and cold stress (CS) are known to cause sympathoexcitation and increase the risk of cardiovascular disease. The present study examined the effect of PSD with CS on hemodynamic perturbations by investigating blood pressure and heart rate variability (BPV and HRV) in conscious rats. Adult male Sprague-Dawley rats were divided into three groups (n = 10, each): normal sleep (NS), PSD of 72 h, and recovery sleep of 7 days after PSD. When compared with NS, PSD increased systolic blood pressure in all three conditions: before CS (PreCS), CS, and after CS (PostCS). The PSD also increased heart rate in both PreCS and PostCS. Furthermore, spectral power changes were observed throughout the experiment. The PSD increased very-low-frequency BPV in PreCS, decreased very-low-frequency HRV in CS, and increased low-frequency BPV in all three conditions. The PSD increased low-frequency HRV in PreCS, increased high-frequency BPV in both CS and PostCS, and also increased high-frequency HRV in both PreCS and CS but decreased that in PostCS. On the other hand, when compared with PSD, recovery sleep has reversed most cardiovascular changes in PSD toward the NS level. However, when compared with NS, spectral powers of very-low-frequency BPV in the recovery phase showed a lower level. These results showed that in the resting condition, PSD might evoke sympathoexcitation with a tendency to increase both very-low-frequency BPV and very-low-frequency HRV, as the intensified myogenic oscillations. However, in the CS condition, PSD evoked the sympathoexcitation yet might attenuate such myogenic oscillations.
Collapse
Affiliation(s)
- Yung-Nien Yang
- Heart Center, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China
| | - Yia-Ping Liu
- Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China
- Department of Physiology, Laboratory of Cognitive Neuroscience, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | - Mong-Ting Hsieh
- Department of Emergency, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China
| | - Yu-Chieh Lin
- Division of Medical Research & Education, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China
| | - Che-Se Tung
- Division of Medical Research & Education, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China
| |
Collapse
|
6
|
Nikiforuk A, Kalaba P, Ilic M, Korz V, Dragačević V, Wackerlig J, Langer T, Höger H, Golebiowska J, Popik P, Lubec G. A Novel Dopamine Transporter Inhibitor CE-123 Improves Cognitive Flexibility and Maintains Impulsivity in Healthy Male Rats. Front Behav Neurosci 2017; 11:222. [PMID: 29230168 PMCID: PMC5711856 DOI: 10.3389/fnbeh.2017.00222] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/24/2017] [Indexed: 11/24/2022] Open
Abstract
Reduced cognitive abilities are often characterized by an impairment of flexibility, i.e., the ability to switch from learned rules or categories that were important in certain contexts to different new modalities that rule the task. Drugs targeting the dopamine transporter (DAT) are widely used for their potential to enhance cognitive abilities. However, commercially available drugs are of limited specificity for DAT, blocking also noradrenaline and serotonine transporters, that can lead to unwanted side effects in healthy subjects. Therefore, we tested a newly synthetized compound (CE-123) with higher specificity for DAT in male rats in an attentional set-shifting task (ASST), that proves for cognitive flexibility and a 5-choice serial-reaction time task (5-CSRTT) assessing visuospatial attention and impulsivity. Treated rats at a dose of 0.3 and 1.0 but not 0.1 mg/kg bodyweight showed reduced extra-dimensional shifts in the ASST compared to controls indicating increased cognitive flexibility. Rats treated with R-Modafinil, a commercially available DAT inhibitor at a dose of 10 mg/kg bodyweight showed increased premature responses, an indicator of increased impulsivity, during a 10 s but not a 2.5, 5, or 7.5 s intertrial interval when compared to vehicle-treated rats in the 5-CSRTT. This was not found in rats treated with CE-123 at the same dose as for R-Modafinil. Visuospatial attention, except premature responses, did not differ between R-Modafinil and CE-123-treated rats and their respective controls. Thus, CE-123 increased cognitive flexibility with diminished impulsivity.
Collapse
Affiliation(s)
- Agnieszka Nikiforuk
- Department of Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Predrag Kalaba
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Marija Ilic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Volker Korz
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Vladimir Dragačević
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Judith Wackerlig
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Harald Höger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Vienna, Austria
| | - Joanna Golebiowska
- Department of Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Popik
- Department of Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Gert Lubec
- Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
7
|
Mar AC, Nilsson SRO, Gamallo-Lana B, Lei M, Dourado T, Alsiö J, Saksida LM, Bussey TJ, Robbins TW. MAM-E17 rat model impairments on a novel continuous performance task: effects of potential cognitive enhancing drugs. Psychopharmacology (Berl) 2017; 234:2837-2857. [PMID: 28744563 PMCID: PMC5591806 DOI: 10.1007/s00213-017-4679-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/18/2017] [Indexed: 12/02/2022]
Abstract
RATIONALE Impairments in attention and inhibitory control are endophenotypic markers of neuropsychiatric disorders such as schizophrenia and represent key targets for therapeutic management. Robust preclinical models and assays sensitive to clinically relevant treatments are crucial for improving cognitive enhancement strategies. OBJECTIVES We assessed a rodent model with neural and behavioral features relevant to schizophrenia (gestational day 17 methylazoxymethanol acetate treatment (MAM-E17)) on a novel test of attention and executive function, and examined the impact of putative nootropic drugs. METHODS MAM-E17 and sham control rats were trained on a novel touchscreen-based rodent continuous performance test (rCPT) designed to closely mimic the human CPT paradigm. Performance following acute, systemic treatment with an array of pharmacological compounds was investigated. RESULTS Two cohorts of MAM-E17 rats were impaired on rCPT performance including deficits in sensitivity (d') and increased false alarm rates (FARs). Sulpiride (0-30 mg/kg) dose-dependently reduced elevated FAR in MAM-E17 rats whereas low-dose modafinil (8 mg/kg) only improved d' in sham controls. ABT-594 (5.9-19.4 μg/kg) and modafinil (64 mg/kg) showed expected stimulant-like effects, while LSN2463359 (5 mg/kg), RO493858 (10 mg/kg), atomoxetine (0.3-1 mg/kg), and sulpiride (30 mg/kg) showed expected suppressant effects on performance across all animals. Donepezil (0.1-1 mg/kg) showed near-significant enhancements in d', and EVP-6124 (0.3-3 mg/kg) exerted no effects in the rCPT paradigm. CONCLUSION The MAM-E17 model exhibits robust and replicable impairments in rCPT performance that resemble attention and inhibitory control deficits seen in schizophrenia. Pharmacological profiles were highly consistent with known drug effects on cognition in preclinical and clinical studies. The rCPT is a sensitive and reliable tool with high translational potential for understanding the etiology and treatment of disorders affecting attention and executive dysfunction.
Collapse
Affiliation(s)
- Adam C Mar
- Neuroscience Institute, New York University Medical Center, New York, NY, 10016, USA.
- Department of Neuroscience and Physiology, New York University Medical Center, New York, NY, USA.
- Department of Psychology, University of Cambridge, Cambridge, UK.
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.
| | - Simon R O Nilsson
- Neuroscience Institute, New York University Medical Center, New York, NY, 10016, USA
- Department of Neuroscience and Physiology, New York University Medical Center, New York, NY, USA
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Begoña Gamallo-Lana
- Neuroscience Institute, New York University Medical Center, New York, NY, 10016, USA
- Department of Neuroscience and Physiology, New York University Medical Center, New York, NY, USA
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Ming Lei
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Health Industry Management, Beijing International Studies University, 1 Dingfuzhuang Nanli, Beijing, China
| | - Theda Dourado
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Johan Alsiö
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Neuroscience, Unit of Functional Neurobiology, University of Uppsala, Uppsala, Sweden
| | - Lisa M Saksida
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Molecular Medicine Research Group, Robarts Research Institute, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- The Brain and Mind Institute, Western University, London, ON, Canada
| | - Timothy J Bussey
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Molecular Medicine Research Group, Robarts Research Institute, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- The Brain and Mind Institute, Western University, London, ON, Canada
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, UK
- MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Deurveilher S, Bush JE, Rusak B, Eskes GA, Semba K. Psychomotor vigilance task performance during and following chronic sleep restriction in rats. Sleep 2015; 38:515-28. [PMID: 25515100 DOI: 10.5665/sleep.4562] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 11/07/2014] [Indexed: 12/21/2022] Open
Abstract
STUDY OBJECTIVES Chronic sleep restriction (CSR) impairs sustained attention in humans, as commonly assessed with the psychomotor vigilance task (PVT). To further investigate the mechanisms underlying performance deficits during CSR, we examined the effect of CSR on performance on a rat version of PVT (rPVT). DESIGN Adult male rats were trained on a rPVT that required them to press a bar when they detected irregularly presented, brief light stimuli, and were then tested during CSR. CSR consisted of 100 or 148 h of continuous cycles of 3-h sleep deprivation (using slowly rotating wheels) alternating with a 1-h sleep opportunity (3/1 protocol). MEASUREMENTS AND RESULTS After 28 h of CSR, the latency of correct responses and the percentages of lapses and omissions increased, whereas the percentage of correct responses decreased. Over 52-148 h of CSR, all performance measures showed partial or nearly complete recovery, and were at baseline levels on the first or second day after CSR. There were large interindividual differences in the magnitude of performance impairment during CSR, suggesting differential vulnerability to the effects of sleep loss. Wheel-running controls showed no changes in performance. CONCLUSIONS A 28-h period of the 3/1 chronic sleep restriction (CSR) protocol disrupted performance on a sustained attention task in rats, as sleep deprivation does in humans. Performance improved after longer periods of CSR, suggesting allostatic adaptation, contrary to some reports of progressive deterioration in psychomotor vigilance task performance during CSR in humans. However, as observed in humans, there were individual differences among rats in the vulnerability of their attention performance to CSR.
Collapse
Affiliation(s)
- Samuel Deurveilher
- Departments of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jacquelyn E Bush
- Departments of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Benjamin Rusak
- Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.,Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gail A Eskes
- Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.,Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kazue Semba
- Departments of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
9
|
Liu YP, Huang TS, Tung CS, Lin CC. Effects of atomoxetine on attention and impulsivity in the five-choice serial reaction time task in rats with lesions of dorsal noradrenergic ascending bundle. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:81-90. [PMID: 25151304 DOI: 10.1016/j.pnpbp.2014.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/04/2014] [Accepted: 08/16/2014] [Indexed: 10/24/2022]
Abstract
Atomoxetine, a noradrenaline reuptake inhibitor (NRI), which is a non-stimulating medicine that is used for the treatment of patients with attention deficit hyperactivity disorder (ADHD), has been found to be effective in reducing behavioral impulsivity in rodents, but its efficacy in a dorsal noradrenergic ascending bundle (DNAB)-lesioned condition has not been examined. The present study aimed to investigate the effects of DNAB lesions on attention and impulsive control in the five-choice serial reaction time task (5-CSRTT) in rats treated with atomoxetine. The drug-induced changes in noradrenaline efflux in the medial prefrontal cortex were also measured. 5-CSRTT-trained rats were included in one of the following groups: N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4)/Atomoxetine, Sham/Atomoxetine, DSP-4/Saline, or Sham/Saline. Acute atomoxetine (0.3 mg/kg) was administered 14 days after the DSP-4 regime. The behavioral testing included manipulations of the inter-trial interval (ITI), stimulation duration and food satiety. In vivo microdialysis of the noradrenaline efflux in the medial prefrontal cortex and the expression of the noradrenaline transporter (NAT) in the DNAB areas were examined. Atomoxetine reduced impulsivity and perseveration in the long-ITI condition with no effects on any other variables. This phenomenon was not influenced by DSP-4 pre-treatment. The DNAB-lesioned rats had lower noradrenaline efflux in the medial prefrontal cortex. DSP-4 caused no change in NAT expression in the DNAB areas. These findings suggested that noradrenaline reuptake may not be exclusively responsible for the atomoxetine effects in adjusting impulsivity. The role of DNAB should also be considered, particularly in conditions requiring greater behavioral inhibition.
Collapse
Affiliation(s)
- Yia-Ping Liu
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan, ROC; Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan, ROC.
| | - Teng-Shun Huang
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Che-Se Tung
- Division of Medical Research & Education, Cheng Hsin General Hospital, Taipei, Taiwan, ROC
| | - Chen-Cheng Lin
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
10
|
Loomis S, McCarthy A, Baxter C, Kellett DO, Edgar DM, Tricklebank M, Gilmour G. Distinct pro-vigilant profile induced in rats by the mGluR5 potentiator LSN2814617. Psychopharmacology (Berl) 2015; 232:3977-89. [PMID: 25902875 PMCID: PMC4600478 DOI: 10.1007/s00213-015-3936-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/02/2015] [Indexed: 12/30/2022]
Abstract
While treatment options are available, excessive daytime sleepiness (EDS) remains a significant unmet medical need for many patients. Relatively little rodent behavioural pharmacology has been conducted in this context to assess potential pro-vigilant compounds for their ability to restore functional capacity following experimentally induced sleep loss. Male Wistar rats were prepared for electroencephalographic (EEG) recording and subject to 11 h of sleep restriction using a biofeedback-induced cage rotation protocol. A simple response latency task (SRLT) was used to behaviourally index sleep restriction and the effects of pro-vigilant compounds: modafinil, D-amphetamine, caffeine, and the mGlu5-positive allosteric modulator LSN2814617. Sleep restriction resulted in a consistent, quantified loss of non-rapid eye movement (NREM) and REM sleep that impaired SRLT performance in a manner suggestive of progressive task disengagement. In terms of EEG parameters, all compounds induced wakefulness. Amphetamine treatment further decreased SRLT performance capacity, whereas the other three compounds decreased omissions and allowed animals to re-engage in the task. Caffeine and modafinil also significantly increased premature responses during this period, an effect not observed for LSN2814617. While all compounds caused compensatory sleep responses, the magnitude of compensation observed for LSN2814617 was much smaller than would be predicted to result from the prolongation of wakefulness exhibited. Using simple response latencies to index performance, an mGlu5 PAM dramatically increased wakefulness and improved functional capacity of sleep-restricted animals, without eliciting a proportionate compensatory sleep response. This effect was qualitatively distinct from that of amphetamine, caffeine and modafinil.
Collapse
Affiliation(s)
- Sally Loomis
- Lilly Research Laboratories, Eli Lilly & Co. Ltd, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey, GU20 6PH England UK
| | - Andrew McCarthy
- Lilly Research Laboratories, Eli Lilly & Co. Ltd, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey, GU20 6PH England UK
| | - Christopher Baxter
- Lilly Research Laboratories, Eli Lilly & Co. Ltd, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey, GU20 6PH England UK
| | - Daniel O. Kellett
- Lilly Research Laboratories, Eli Lilly & Co. Ltd, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey, GU20 6PH England UK
| | - Dale M. Edgar
- Lilly Research Laboratories, Eli Lilly & Co. Ltd, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey, GU20 6PH England UK
| | - Mark Tricklebank
- Lilly Research Laboratories, Eli Lilly & Co. Ltd, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey, GU20 6PH England UK
| | - Gary Gilmour
- Lilly Research Laboratories, Eli Lilly & Co. Ltd, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey, GU20 6PH, England, UK.
| |
Collapse
|
11
|
Effects of REM sleep deprivation on sensorimotor gating and startle habituation in rats: Role of social isolation in early development. Neurosci Lett 2014; 575:63-7. [DOI: 10.1016/j.neulet.2014.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 05/05/2014] [Accepted: 05/13/2014] [Indexed: 11/22/2022]
|
12
|
Lu CL, Ku YC, Lo SM, Peng CH, Tung CS, Lin YW, Liu YP. Acute and subchronic effects of buspirone on attention and impulsivity in the five-choice serial reaction time task in rats. Neurosci Lett 2013; 556:210-5. [DOI: 10.1016/j.neulet.2013.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/29/2013] [Accepted: 10/04/2013] [Indexed: 11/16/2022]
|
13
|
He B, Peng H, Zhao Y, Zhou H, Zhao Z. Modafinil treatment prevents REM sleep deprivation-induced brain function impairment by increasing MMP-9 expression. Brain Res 2011; 1426:38-42. [PMID: 22036079 DOI: 10.1016/j.brainres.2011.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/09/2011] [Accepted: 09/01/2011] [Indexed: 01/14/2023]
Abstract
Previous work showed that sleep deprivation (SD) impairs hippocampal-dependent cognitive function and synaptic plasticity, and a novel wake-promoting agent modafinil prevents SD-induced memory impairment in rat. However, the mechanisms by which modafinil prevented REM-SD-induced impairment of brain function remain poorly understood. In the present study, rats were sleep-deprived by using the modified multiple platform method and brain function was detected. The results showed that modafinil treatment prevented REM-SD-induced impairment of cognitive function. Modafinil significantly reduced the number of errors compared to placebo and upregulated synapsin I expression in the dorsal hippocampal CA3 region. A synaptic plasticity-related gene, MMP-9 expression was also upregulated in modafinil-treated rats. Importantly, downregulation of MMP-9 expression by special siRNA decreased synapsin I protein levels and synapse numbers. Therefore, we demonstrated that modafinil increased cognition function and synaptic plasticity, at least in part by increasing MMP-9 expression in REM-SD rats.
Collapse
Affiliation(s)
- Bin He
- Department of Neurology, Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Center of Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | | | | | | | | |
Collapse
|