1
|
Bryant CD, Yazdani N. RNA-binding proteins, neural development and the addictions. GENES BRAIN AND BEHAVIOR 2016; 15:169-86. [PMID: 26643147 DOI: 10.1111/gbb.12273] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022]
Abstract
Transcriptional and post-transcriptional regulation of gene expression defines the neurobiological mechanisms that bridge genetic and environmental risk factors with neurobehavioral dysfunction underlying the addictions. More than 1000 genes in the eukaryotic genome code for multifunctional RNA-binding proteins (RBPs) that can regulate all levels of RNA biogenesis. More than 50% of these RBPs are expressed in the brain where they regulate alternative splicing, transport, localization, stability and translation of RNAs during development and adulthood. Dysfunction of RBPs can exert global effects on their targetomes that underlie neurodegenerative disorders such as Alzheimer's and Parkinson's diseases as well as neurodevelopmental disorders, including autism and schizophrenia. Here, we consider the evidence that RBPs influence key molecular targets, neurodevelopment, synaptic plasticity and neurobehavioral dysfunction underlying the addictions. Increasingly well-powered genome-wide association studies in humans and mammalian model organisms combined with ever more precise transcriptomic and proteomic approaches will continue to uncover novel and possibly selective roles for RBPs in the addictions. Key challenges include identifying the biological functions of the dynamic RBP targetomes from specific cell types throughout subcellular space (e.g. the nuclear spliceome vs. the synaptic translatome) and time and manipulating RBP programs through post-transcriptional modifications to prevent or reverse aberrant neurodevelopment and plasticity underlying the addictions.
Collapse
Affiliation(s)
- C D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - N Yazdani
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
2
|
Marchesi N, Amadio M, Colombrita C, Govoni S, Ratti A, Pascale A. PKC Activation Counteracts ADAM10 Deficit in HuD-Silenced Neuroblastoma Cells. J Alzheimers Dis 2016; 54:535-47. [DOI: 10.3233/jad-160299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nicoletta Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Marialaura Amadio
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Claudia Colombrita
- Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Center, University of Milan, Milan, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Antonia Ratti
- Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Center, University of Milan, Milan, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| |
Collapse
|
3
|
Talman V, Pascale A, Jäntti M, Amadio M, Tuominen RK. Protein Kinase C Activation as a Potential Therapeutic Strategy in Alzheimer's Disease: Is there a Role for Embryonic Lethal Abnormal Vision-like Proteins? Basic Clin Pharmacol Toxicol 2016; 119:149-60. [PMID: 27001133 DOI: 10.1111/bcpt.12581] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/04/2016] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is an irreversible and progressive neurodegenerative disorder. It affects predominantly brain areas that are critical for memory and learning and is characterized by two main pathological hallmarks: extracellular amyloid plaques and intracellular neurofibrillary tangles. Protein kinase C (PKC) has been classified as one of the cognitive kinases controlling memory and learning. By regulating several signalling pathways involved in amyloid and tau pathologies, it also plays an inhibitory role in AD pathophysiology. Among downstream targets of PKC are the embryonic lethal abnormal vision (ELAV)-like RNA-binding proteins that modulate the stability and the translation of specific target mRNAs involved in synaptic remodelling linked to cognitive processes. This MiniReview summarizes the current evidence on the role of PKC and ELAV-like proteins in learning and memory, highlighting how their derangement can contribute to AD pathophysiology. This last aspect emphasizes the potential of pharmacological activation of PKC as a promising therapeutic strategy for the treatment of AD.
Collapse
Affiliation(s)
- Virpi Talman
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alessia Pascale
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Maria Jäntti
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Marialaura Amadio
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Raimo K Tuominen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Pascale A, Osera C, Moro F, Di Clemente A, Giannotti G, Caffino L, Govoni S, Fumagalli F, Cervo L. Abstinence from cocaine-self-administration activates the nELAV/GAP -43 pathway in the hippocampus: A stress-related effect? Hippocampus 2016; 26:700-4. [PMID: 26850084 DOI: 10.1002/hipo.22572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2016] [Indexed: 11/06/2022]
Abstract
We previously demonstrated that nELAV/GAP-43 pathway is pivotal for learning and its hippocampal expression is up-regulated by acute stress following repeated cocaine administration. We therefore hypothesized that abstinence-induced stress may sustain nELAV/GAP-43 pathway during early abstinence following 2 weeks of cocaine self-administration. We found that contingent, but not non-contingent, cocaine exposure selectively increases hippocampal nELAV, but not GAP-43, expression immediately after the last self-administration session, an effect that wanes after 24 h and that comes back 7 days later when nELAV activation becomes associated with increased expression of GAP-43, an effect again observed only in animals self-administering the psychostimulant. Such effect is specific for nELAV since the ubiquitous ELAV/HuR is unchanged. This nELAV profile suggests that its initial transient alteration is perhaps related to the daily administration of cocaine, while the increase in the nELAV/GAP-43 pathway following a week of abstinence may reflect the activation of this cascade as a target of stressful conditions associated with drug-related memories. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Cecilia Osera
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Federico Moro
- Experimental Psychopharmacology, Department of Neuroscience, IRCCS-Istituto Di Ricerche Farmacologiche "Mario Negri,", Milan, Italy
| | - Angelo Di Clemente
- Experimental Psychopharmacology, Department of Neuroscience, IRCCS-Istituto Di Ricerche Farmacologiche "Mario Negri,", Milan, Italy
| | - Giuseppe Giannotti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Milano, Italy
| | - Lucia Caffino
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Milano, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Fabio Fumagalli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Milano, Italy
| | - Luigi Cervo
- Experimental Psychopharmacology, Department of Neuroscience, IRCCS-Istituto Di Ricerche Farmacologiche "Mario Negri,", Milan, Italy
| |
Collapse
|
5
|
Vasile F, Rossi D, Collina S, Potenza D. Diffusion-Ordered Spectroscopy and Saturation Transfer Difference NMR Spectroscopy Studies of Selective Interactions between ELAV Protein Fragments and an mRNA Target. European J Org Chem 2014. [DOI: 10.1002/ejoc.201403014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Polman JAE, de Kloet ER, Datson NA. Two populations of glucocorticoid receptor-binding sites in the male rat hippocampal genome. Endocrinology 2013; 154:1832-44. [PMID: 23525215 DOI: 10.1210/en.2012-2187] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the present study, genomic binding sites of glucocorticoid receptors (GR) were identified in vivo in the rat hippocampus applying chromatin immunoprecipitation followed by next-generation sequencing. We identified 2470 significant GR-binding sites (GBS) and were able to confirm GR binding to a random selection of these GBS covering a wide range of P values. Analysis of the genomic distribution of the significant GBS revealed a high prevalence of intragenic GBS. Gene ontology clusters involved in neuronal plasticity and other essential neuronal processes were overrepresented among the genes harboring a GBS or located in the vicinity of a GBS. Male adrenalectomized rats were challenged with increasing doses of the GR agonist corticosterone (CORT) ranging from 3 to 3000 μg/kg, resulting in clear differences in the GR-binding profile to individual GBS. Two groups of GBS could be distinguished: a low-CORT group that displayed GR binding across the full range of CORT concentrations, and a second high-CORT group that displayed significant GR binding only after administering the highest concentration of CORT. All validated GBS, in both the low-CORT and high-CORT groups, displayed mineralocorticoid receptor binding, which remained relatively constant from 30 μg/kg CORT upward. Motif analysis revealed that almost all GBS contained a glucocorticoid response element resembling the consensus motif in literature. In addition, motifs corresponding with new potential GR-interacting proteins were identified, such as zinc finger and BTB domain containing 3 (Zbtb3) and CUP (CG11181 gene product from transcript CG11181-RB), which may be involved in GR-dependent transactivation and transrepression, respectively. In conclusion, our results highlight the existence of 2 populations of GBS in the rat hippocampal genome.
Collapse
Affiliation(s)
- J Annelies E Polman
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|
7
|
Amadio M, Pascale A, Govoni S, Laurini E, Pricl S, Gaggeri R, Rossi D, Collina S. Identification of Peptides with ELAV-like mRNA-Stabilizing Effect: An IntegratedIn Vitro/In SilicoApproach. Chem Biol Drug Des 2013; 81:707-14. [DOI: 10.1111/cbdd.12117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/10/2012] [Accepted: 01/29/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Marialaura Amadio
- Pharmacology Section, Department of Drug Sciences; University of Pavia; Viale Taramelli 12; Pavia; 27100; Italy
| | - Alessia Pascale
- Pharmacology Section, Department of Drug Sciences; University of Pavia; Viale Taramelli 12; Pavia; 27100; Italy
| | - Stefano Govoni
- Pharmacology Section, Department of Drug Sciences; University of Pavia; Viale Taramelli 12; Pavia; 27100; Italy
| | - Erik Laurini
- Molecular Simulation Engineering (MOSE) Laboratory, Department of Industrial Engineering and Information Technology; University of Trieste; Via A. Valerio 10; Trieste; 34127; Italy
| | - Sabrina Pricl
- Molecular Simulation Engineering (MOSE) Laboratory, Department of Industrial Engineering and Information Technology; University of Trieste; Via A. Valerio 10; Trieste; 34127; Italy
| | - Raffaella Gaggeri
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences; University of Pavia; Viale Taramelli 12; Pavia; 27100; Italy
| | - Daniela Rossi
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences; University of Pavia; Viale Taramelli 12; Pavia; 27100; Italy
| | - Simona Collina
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences; University of Pavia; Viale Taramelli 12; Pavia; 27100; Italy
| |
Collapse
|
8
|
Cocaine withdrawal causes delayed dysregulation of stress genes in the hippocampus. PLoS One 2012; 7:e42092. [PMID: 22860061 PMCID: PMC3408429 DOI: 10.1371/journal.pone.0042092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/03/2012] [Indexed: 01/20/2023] Open
Abstract
Relapse, even following an extended period of withdrawal, is a major challenge in substance abuse management. Delayed neurobiological effects of the drug during prolonged withdrawal likely contribute to sustained vulnerability to relapse. Stress is a major trigger of relapse, and the hippocampus regulates the magnitude and duration of stress responses. Recent work has implicated hippocampal plasticity in various aspects of substance abuse. We asked whether changes in stress regulatory mechanisms in the hippocampus may participate in the neuroadaptations that occur during prolonged withdrawal. We therefore examined changes in the rat stress system during the course of withdrawal from extended daily access (5-hours) of cocaine self-administration, an animal model of addiction. Tissue was collected at 1, 14 and 28 days of withdrawal. Plasma corticosterone levels were determined and corticosteroid receptors (GR, MR, MR/GR mRNA ratios) and expression of other stress-related molecules (HSP90AA1 and HSP90AB1 mRNA) were measured in hippocampal subfields using in situ hybridization. Results showed a delayed emergence of dysregulation of stress genes in the posterior hippocampus following 28 days of cocaine withdrawal. This included increased GR mRNA in DG and CA3, increased MR and HSP90AA1 mRNA in DG, and decreased MR/GR mRNA ratio in DG and CA1. Corticosterone levels progressively decreased during the course of withdrawal, were normalized following 28 days of withdrawal, and were correlated negatively with GR and positively with MR/GR mRNA ratio in DG. These results suggest a role for the posterior hippocampus in the neuroadaptations that occur during prolonged withdrawal, and point to a signaling partner of GR, HSP90AA1, as a novel dysregulated target during cocaine withdrawal. These delayed neurobiological effects of extended cocaine exposure likely contribute to sustained vulnerability to relapse.
Collapse
|