1
|
Epigenetics of addiction. Neurochem Int 2021; 147:105069. [PMID: 33992741 DOI: 10.1016/j.neuint.2021.105069] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/16/2021] [Accepted: 05/09/2021] [Indexed: 11/22/2022]
Abstract
Substance use disorders are complex biopsychosocial disorders that have substantial negative neurocognitive impact in various patient populations. These diseases involve the compulsive use of licit or illicit substances despite adverse medicolegal consequences and appear to be secondary to long-lasting epigenetic and transcriptional adaptations in brain reward and non-reward circuits. The accumulated evidence supports the notion that repeated drug use causes changes in post-translational histone modifications and in DNA methylation/hydroxymethylation processes in several brain regions. This review provides an overview of epigenetic changes reported in models of cocaine, methamphetamine, and opioid use disorders. The accumulated data suggest that future therapeutic interventions should focus on the development of epigenetic drugs against addictive diseases.
Collapse
|
2
|
Pagliaroli L, Widomska J, Nespoli E, Hildebrandt T, Barta C, Glennon J, Hengerer B, Poelmans G. Riluzole Attenuates L-DOPA-Induced Abnormal Involuntary Movements Through Decreasing CREB1 Activity: Insights from a Rat Model. Mol Neurobiol 2019; 56:5111-5121. [PMID: 30484112 PMCID: PMC6647536 DOI: 10.1007/s12035-018-1433-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/15/2018] [Indexed: 12/17/2022]
Abstract
Chronic administration of L-DOPA, the first-line treatment of dystonic symptoms in childhood or in Parkinson's disease, often leads to the development of abnormal involuntary movements (AIMs), which represent an important clinical problem. Although it is known that Riluzole attenuates L-DOPA-induced AIMs, the molecular mechanisms underlying this effect are not understood. Therefore, we studied the behavior and performed RNA sequencing of the striatum in three groups of rats that all received a unilateral lesion with 6-hydroxydopamine in their medial forebrain bundle, followed by the administration of saline, L-DOPA, or L-DOPA combined with Riluzole. First, we provide evidence that Riluzole attenuates AIMs in this rat model. Subsequently, analysis of the transcriptomics data revealed that Riluzole is predicted to reduce the activity of CREB1, a transcription factor that regulates the expression of multiple proteins that interact in a molecular landscape involved in apoptosis. Although this mechanism underlying the beneficial effect of Riluzole on AIMs needs to be confirmed, it provides clues towards novel or existing compounds for the treatment of AIMs that modulate the activity of CREB1 and, hence, its downstream targets.
Collapse
Affiliation(s)
- Luca Pagliaroli
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Joanna Widomska
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ester Nespoli
- CNS Department, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- Department of Child and Adolescent Psychiatry/Psychotherapy, University of Ulm, Ulm, Germany
| | - Tobias Hildebrandt
- Target Discovery, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Csaba Barta
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Jeffrey Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastian Hengerer
- CNS Department, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Geert Poelmans
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Chen SJ, Liao DL, Chen CH, Wang TY, Chen KC. Construction and Analysis of Protein-Protein Interaction Network of Heroin Use Disorder. Sci Rep 2019; 9:4980. [PMID: 30899073 PMCID: PMC6428805 DOI: 10.1038/s41598-019-41552-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Heroin use disorder (HUD) is a complex disease resulting from interactions among genetic and other factors (e.g., environmental factors). The mechanism of HUD development remains unknown. Newly developed network medicine tools provide a platform for exploring complex diseases at the system level. This study proposes that protein–protein interactions (PPIs), particularly those among proteins encoded by casual or susceptibility genes, are extremely crucial for HUD development. The giant component of our constructed PPI network comprised 111 nodes with 553 edges, including 16 proteins with large degree (k) or high betweenness centrality (BC), which were further identified as the backbone of the network. JUN with the largest degree was suggested to be central to the PPI network associated with HUD. Moreover, PCK1 with the highest BC and MAPK14 with the secondary largest degree and 9th highest BC might be involved in the development HUD and other substance diseases.
Collapse
Affiliation(s)
- Shaw-Ji Chen
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Department of Psychiatry, Mackay Memorial Hospital, Taitung Branch, Taiwan
| | - Ding-Lieh Liao
- Bali Psychiatric Center, Department of Health, Executive Yuan, New Taipei, Taiwan
| | - Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou and Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Tse-Yi Wang
- Department of Medical Informatics, Tzu Chi University, Hualien, Taiwan
| | - Kuang-Chi Chen
- Department of Medical Informatics, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
4
|
Ajonijebu DC, Abboussi O, Russell VA, Mabandla MV, Daniels WMU. Epigenetics: a link between addiction and social environment. Cell Mol Life Sci 2017; 74:2735-2747. [PMID: 28255755 PMCID: PMC11107568 DOI: 10.1007/s00018-017-2493-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 01/14/2023]
Abstract
The detrimental effects of drug abuse are apparently not limited to individuals but may also impact the vulnerability of their progenies to develop addictive behaviours. Epigenetic signatures, early life experience and environmental factors, converge to influence gene expression patterns in addiction phenotypes and consequently may serve as mediators of behavioural trait transmission between generations. The majority of studies investigating the role of epigenetics in addiction do not consider the influence of social interactions. This shortcoming in current experimental approaches necessitates developing social models that reflect the addictive behaviour in a free-living social environment. Furthermore, this review also reports on the advancement of interventions for drug addiction and takes into account the emerging roles of histone deacetylase (HDAC) inhibitors in the etiology of drug addiction and that HDAC may be a potential therapeutic target at nucleosomal level to improve treatment outcomes.
Collapse
Affiliation(s)
- Duyilemi C Ajonijebu
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Oualid Abboussi
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa.
| | - Vivienne A Russell
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Musa V Mabandla
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - William M U Daniels
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
- School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
5
|
Lud Cadet J. Dysregulation of Acetylation Enzymes Inanimal Models of Psychostimulant use Disorders: Evolving Stories. Curr Neuropharmacol 2016; 14:10-6. [PMID: 26813118 PMCID: PMC4787278 DOI: 10.2174/1570159x13666150121230133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/01/2015] [Accepted: 01/20/2015] [Indexed: 01/22/2023] Open
Abstract
Substance use disorders are neuropsychiatric illnesses that have substantial negative biopsychosocial impact. These diseases are defined as compulsive abuse of licit or illicit substances despite adverse medicolegal consequences. Although much research has been conducted to elucidate the pathobiological bases of these disorders, much remains to be done to develop an overarching neurobiological understanding that might be translatable to beneficial pharmacological therapies. Recent advances in epigenetics promise to lead to such an elucidation. Here I provide a brief overview of observations obtained using some models of psychostimulant administration in rodents. The review identifies CREB binding protein (CBP), HDAC1, HDAC2, HADC3, HDAC4, and HDAC5 as important players in the acetylation and deacetylation processes that occur after contingent or non-contingent administration of psychostimulants. These observations are discussed within a framework that suggests a need for better animal models of addiction in order to bring these epigenetic advances to bear on the pharmacological treatment of human addicts.
Collapse
Affiliation(s)
- Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224.
| |
Collapse
|
6
|
Etiological theories of addiction: A comprehensive update on neurobiological, genetic and behavioural vulnerability. Pharmacol Biochem Behav 2016; 148:59-68. [PMID: 27306332 DOI: 10.1016/j.pbb.2016.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 06/01/2016] [Accepted: 06/10/2016] [Indexed: 12/21/2022]
Abstract
Currently, about 246 million people around the world have used an illicit drug. The reasons for this use are multiple: e.g. to augment the sensation of pleasure or to reduce the withdrawal and other aversive effects of a given substance. This raises the problem of addiction, which remains a disease of modern society. This review offers a comprehensive update of the different theories about the etiology of addictive behaviors with emphasis on the neurobiological, environmental, psychopathological, behavioural and genetic aspects of addictions, discussed from an evolutionary perspective. The main conclusion of this review is that vulnerability to drug addiction suggests an interaction between many brain systems (including the reward, decision-making, serotonergic, oxytocin, interoceptive insula, CRF, norepinephrine, dynorphin/KOR, orexin and vasopressin systems), genetic predisposition, sociocultural context, impulsivity and drugs types. Further advances in biological and psychological science are needed to address the problems of addiction at its roots.
Collapse
|
7
|
Zhu L, Chen X, Kong X, Cai YD. Investigation of the roles of trace elements during hepatitis C virus infection using protein-protein interactions and a shortest path algorithm. Biochim Biophys Acta Gen Subj 2016; 1860:2756-68. [PMID: 27208424 DOI: 10.1016/j.bbagen.2016.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/05/2016] [Accepted: 05/13/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hepatitis is a type of infectious disease that induces inflammation of the liver without pinpointing a particular pathogen or pathogenesis. Type C hepatitis, as a type of hepatitis, has been reported to induce cirrhosis and hepatocellular carcinoma within a very short amount of time. It is a great threat to human health. Some studies have revealed that trace elements are associated with infection with and immune rejection against hepatitis C virus (HCV). However, the mechanism underlying this phenomenon is still unclear. METHODS In this study, we aimed to expand our knowledge of this phenomenon by designing a computational method to identify genes that may be related to both HCV and trace element metabolic processes. The searching procedure included three stages. First, a shortest path algorithm was applied to a large network, constructed by protein-protein interactions, to identify potential genes of interest. Second, a permutation test was executed to exclude false discoveries. Finally, some rules based on the betweenness and associations between candidate genes and HCV and trace elements were built to select core genes among the remaining genes. RESULTS 12 lists of genes, corresponding to 12 types of trace elements, were obtained. These genes are deemed to be associated with HCV infection and trace elements metabolism. CONCLUSIONS The analyses indicate that some genes may be related to both HCV and trace element metabolic processes, further confirming the associations between HCV and trace elements. The method was further tested on another set of HCV genes, the results indicate that this method is quite robustness. GENERAL SIGNIFICANCE The newly found genes may partially reveal unknown mechanisms between HCV infection and trace element metabolism. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
Affiliation(s)
- LiuCun Zhu
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - XiJia Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Xiangyin Kong
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, People's Republic of China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China.
| |
Collapse
|
8
|
Cadet JL, McCoy MT, Jayanthi S. Epigenetics and addiction. Clin Pharmacol Ther 2016; 99:502-11. [PMID: 26841306 DOI: 10.1002/cpt.345] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/18/2016] [Accepted: 01/26/2016] [Indexed: 12/13/2022]
Abstract
Addictions are public health menaces. However, despite advances in addiction research, the cellular or molecular mechanisms that cause transition from recreational use to addiction remain to be elucidated. We have recently suggested that addiction may be secondary to long-term epigenetic modifications that determine the clinical course of substance use disorders. A better understanding of epigenetic mechanisms in animal models that mimic human conditions should help to usher in a new area of drug development against addiction.
Collapse
Affiliation(s)
- J L Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - M T McCoy
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - S Jayanthi
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Abstract
One of the major challenges of cocaine addiction is the high rate of relapse to drug use after periods of withdrawal. During the first few weeks of withdrawal, cue-induced cocaine craving intensifies, or "incubates," and persists over extended periods of time. Although several brain regions and molecular mechanisms were found to be involved in this process, the underlying epigenetic mechanisms are still unknown. Herein, we used a rat model of incubation of cocaine craving, in which rats were trained to self-administer cocaine (0.75 mg/kg, 6 h/d, 10 d), and cue-induced cocaine-seeking was examined in an extinction test after 1 or 30 d of withdrawal. We show that the withdrawal periods, as well as cue-induced cocaine seeking, are associated with broad, time-dependent enhancement of DNA methylation alterations in the nucleus accumbens (NAc). These gene methylation alterations were partly negatively correlated with gene expression changes. Furthermore, intra-NAc injections of a DNA methyltransferase inhibitor (RG108, 100 μm) abolished cue-induced cocaine seeking on day 30, an effect that persisted 1 month, whereas the methyl donor S-adenosylmethionine (500 μm) had an opposite effect on cocaine seeking. We then targeted two proteins whose genes were demethylated by RG108-estrogen receptor 1 (ESR1) and cyclin-dependent kinase 5 (CDK5). Treatment with an intra-NAc injection of the ESR1 agonist propyl pyrazole triol (10 nm) or the CDK5 inhibitor roscovitine (28 μm) on day 30 of withdrawal significantly decreased cue-induced cocaine seeking. These results demonstrate a role for NAc DNA methylation, and downstream targets of DNA demethylation, in incubation of cocaine craving.
Collapse
|
10
|
Madsen HB, Koghar HS, Pooters T, Massalas JS, Drago J, Lawrence AJ. Role of α4- and α6-containing nicotinic receptors in the acquisition and maintenance of nicotine self-administration. Addict Biol 2015; 20:500-12. [PMID: 24750355 DOI: 10.1111/adb.12148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tobacco smoking is a major cause of death and disease and as such there is a critical need for the development of new therapeutic approaches to treat nicotine addiction. Here, we utilize genetic and pharmacological tools to further investigate the nicotinic acetylcholine receptor (nAChR) subtypes that support intravenous self-administration of nicotine. α4-S248F mice contain a point mutation within the α4 nAChR subunit which confers increased sensitivity to nicotine and resistance to mecamylamine. Here, we show that acute administration of mecamylamine (2 mg/kg, i.p.) reduces established nicotine self-administration (0.05 mg/kg/infusion) in wild-type (WT), but not in α4-S248F heterozygous mice, demonstrating a role for α4* nAChRs in the modulation of ongoing nicotine self-administration. Administration of N,N-decane-1,10-diyl-bis-3-picolinium diiodide (bPiDI), a selective α6β2* nAChR antagonist, dose dependently (5 and 10 mg/kg, i.p.) impairs the acquisition of nicotine self-administration and reduces established nicotine self-administration in WT mice when administered acutely (10 mg/kg, i.p.). This was not due to a general reduction in locomotor activity and the same dose of bPiDI did not affect operant responding for sucrose. bPiDI treatment (10 mg/kg, i.p.) also impaired both the acquisition and maintenance of nicotine self-administration in α4-S248F heterozygous mice. This provides further evidence for the involvement of α6β2* nAChRs in the reinforcing effects of nicotine that underlies its ability to support ongoing self-administration. Taken together, selective targeting of α6β2* or α4α6β2* nAChRs may prove to be an effective strategy for the development of smoking cessation therapies.
Collapse
Affiliation(s)
- Heather B. Madsen
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Australia
| | - Harcharan S. Koghar
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Australia
| | - Tine Pooters
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Australia
- Laboratory of Biological Psychology; University of Leuven; Belgium
| | - Jim S. Massalas
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Australia
| | - John Drago
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Australia
| | - Andrew J. Lawrence
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Australia
| |
Collapse
|
11
|
Bilbao A, Rieker C, Cannella N, Parlato R, Golda S, Piechota M, Korostynski M, Engblom D, Przewlocki R, Schütz G, Spanagel R, Parkitna JR. CREB activity in dopamine D1 receptor expressing neurons regulates cocaine-induced behavioral effects. Front Behav Neurosci 2014; 8:212. [PMID: 24966820 PMCID: PMC4052973 DOI: 10.3389/fnbeh.2014.00212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/26/2014] [Indexed: 12/19/2022] Open
Abstract
It is suggested that striatal cAMP responsive element binding protein (CREB) regulates sensitivity to psychostimulants. To test the cell-specificity of this hypothesis we examined the effects of a dominant-negative CREB protein variant expressed in dopamine receptor D1 (D1R) neurons on cocaine-induced behaviors. A transgenic mouse strain was generated by pronuclear injection of a BAC-derived transgene harboring the A-CREB sequence under the control of the D1R gene promoter. Compared to wild-type, drug-naïve mutants showed moderate alterations in gene expression, especially a reduction in basal levels of activity-regulated transcripts such as Arc and Egr2. The behavioral responses to cocaine were elevated in mutant mice. Locomotor activity after acute treatment, psychomotor sensitization after intermittent drug injections and the conditioned locomotion after saline treatment were increased compared to wild-type littermates. Transgenic mice had significantly higher cocaine conditioned place preference, displayed normal extinction of the conditioned preference, but showed an augmented cocaine-seeking response following priming-induced reinstatement. This enhanced cocaine-seeking response was associated with increased levels of activity-regulated transcripts and prodynorphin. The primary reinforcing effects of cocaine were not altered in the mutant mice as they did not differ from wild-type in cocaine self-administration under a fixed ratio schedule at the training dose. Collectively, our data indicate that expression of a dominant-negative CREB variant exclusively in neurons expressing D1R is sufficient to recapitulate the previously reported behavioral phenotypes associated with virally expressed dominant-negative CREB.
Collapse
Affiliation(s)
- Ainhoa Bilbao
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg Heidelberg, Germany
| | - Claus Rieker
- Department of Molecular Biology of the Cell I, DKFZ-ZMBH Alliance, German Cancer Research Center Heidelberg, Germany
| | - Nazzareno Cannella
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg Heidelberg, Germany
| | - Rosanna Parlato
- Department of Molecular Biology of the Cell I, DKFZ-ZMBH Alliance, German Cancer Research Center Heidelberg, Germany ; Institute of Applied Physiology, University of Ulm Ulm, Germany ; Department of Medical Biology, Institute of Anatomy and Cell Biology, University of Heidelberg Heidelberg, Germany
| | - Slawomir Golda
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences Krakow, Poland
| | - Marcin Piechota
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences Krakow, Poland
| | - Michal Korostynski
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences Krakow, Poland
| | - David Engblom
- Department of Molecular Biology of the Cell I, DKFZ-ZMBH Alliance, German Cancer Research Center Heidelberg, Germany
| | - Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences Krakow, Poland
| | - Günther Schütz
- Department of Molecular Biology of the Cell I, DKFZ-ZMBH Alliance, German Cancer Research Center Heidelberg, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg Heidelberg, Germany
| | - Jan R Parkitna
- Department of Molecular Biology of the Cell I, DKFZ-ZMBH Alliance, German Cancer Research Center Heidelberg, Germany ; Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences Krakow, Poland
| |
Collapse
|
12
|
Wide distribution of CREM immunoreactivity in adult and fetal human brain, with an increased expression in dentate gyrus neurons of Alzheimer's as compared to normal aging brains. Amino Acids 2013; 45:1373-83. [PMID: 24100545 DOI: 10.1007/s00726-013-1601-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/23/2013] [Indexed: 12/12/2022]
Abstract
Human cyclic AMP response modulator proteins (CREMs) are encoded by the CREM gene, which generates 30 or more different CREM protein isoforms. They are members of the leucine zipper protein superfamily of nuclear transcription factors. CREM proteins are known to be implicated in a plethora of important cellular processes within the CNS. Amazingly, little is known about their cellular and regional distribution in the brain, however. Therefore, we studied by means of immunohistochemistry and Western blotting the expression patterns of CREM in developing and adult human brain, as well as in brains of Alzheimer's disease patients. CREM immunoreactivity was found to be widely but unevenly distributed in the adult human brain. Its localization was confined to neurons. In immature human brains, CREM multiple neuroblasts and radial glia cells expressed CREM. In Alzheimer's brain, we found an increased cellular expression of CREM in dentate gyrus neurons as compared to controls. We discuss our results with regard to the putative roles of CREM in brain development and in cognition.
Collapse
|
13
|
Legastelois R, Botia B, Naassila M. Blockade of ethanol-induced behavioral sensitization by sodium butyrate: descriptive analysis of gene regulations in the striatum. Alcohol Clin Exp Res 2013; 37:1143-53. [PMID: 23488934 DOI: 10.1111/acer.12088] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/19/2012] [Indexed: 12/15/2022]
Abstract
BACKGROUND Behavioral sensitization induced by repeated ethanol (EtOH) exposure may play a critical role in the development of alcohol dependence. Because recent data demonstrate that histone deacetylase inhibitor (HDACi) may be of interest in the treatment of addiction, we explored the effect of the HDACi sodium butyrate (NaB) on EtOH-induced behavioral sensitization (EIBS) in DBA/2J mice. We also investigated gene regulations in the striatum of sensitized mice using epigenetic- and signal transduction-related PCR arrays. METHODS Mice were injected with saline or EtOH (0.5 to 2.5 g/kg) once a day for 10 days. Mice received NaB (200 to 600 mg/kg) 30 minutes before each injection (prevention protocol) or once daily between days 11 and 16 (reversal protocol). At day 17, brains were removed 30 minutes after a saline or EtOH challenge to assess gene and proteins levels. RESULTS Only the intermediate EtOH doses (1.0 and 2.0 g/kg) were effective in inducing EIBS, and both doses were associated with specific gene regulations in the striatum. The induction of sensitization by 1.0 g/kg (but not 2.0 g/kg) EtOH was dose-dependently prevented or reversed by NaB. Among the 168 studied genes, EIBS blockade was associated with specific gene regulations (bcl-2, bdnf, hdac4, pak1, penk, tacr1, vip…) and changes in brain-derived neurotrophic factor in both striatum and prefrontal cortex. CONCLUSIONS These results indicate that EIBS is associated with specific gene regulations in the striatum depending on the EtOH dose and that NaB can be useful in blocking some long-lasting neuro-adaptations to repeated EtOH administrations.
Collapse
Affiliation(s)
- Rémi Legastelois
- INSERM ERI 24, Groupe de Recherche sur l'Alcool et les Pharmacodépendances (GRAP), UFR de Pharmacie, Structure Fédérative de Recherche CAP-Santé, Université de Picardie Jules Verne, Amiens, France
| | | | | |
Collapse
|
14
|
Madsen HB, Brown RM, Lawrence AJ. Neuroplasticity in addiction: cellular and transcriptional perspectives. Front Mol Neurosci 2012; 5:99. [PMID: 23162427 PMCID: PMC3495339 DOI: 10.3389/fnmol.2012.00099] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 10/20/2012] [Indexed: 12/17/2022] Open
Abstract
Drug addiction is a chronic, relapsing brain disorder which consists of compulsive patterns of drug-seeking and taking that occurs at the expense of other activities. The transition from casual to compulsive drug use and the enduring propensity to relapse is thought to be underpinned by long-lasting neuroadaptations in specific brain circuitry, analogous to those that underlie long-term memory formation. Research spanning the last two decades has made great progress in identifying cellular and molecular mechanisms that contribute to drug-induced changes in plasticity and behavior. Alterations in synaptic transmission within the mesocorticolimbic and corticostriatal pathways, and changes in the transcriptional potential of cells by epigenetic mechanisms are two important means by which drugs of abuse can induce lasting changes in behavior. In this review we provide a summary of more recent research that has furthered our understanding of drug-induced neuroplastic changes both at the level of the synapse, and on a transcriptional level, and how these changes may relate to the human disease of addiction.
Collapse
Affiliation(s)
- Heather B Madsen
- Addiction Neuroscience Laboratory, Florey Institute of Neuroscience and Mental Health Parkville, VIC, Australia
| | | | | |
Collapse
|
15
|
Duncan JR. Current perspectives on the neurobiology of drug addiction: a focus on genetics and factors regulating gene expression. ISRN NEUROLOGY 2012; 2012:972607. [PMID: 23097719 PMCID: PMC3477671 DOI: 10.5402/2012/972607] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022]
Abstract
Drug addiction is a chronic, relapsing disorder defined by cyclic patterns of compulsive drug seeking and taking interspersed with episodes of abstinence. While genetic variability may increase the risk of addictive behaviours in an individual, exposure to a drug results in neuroadaptations in interconnected brain circuits which, in susceptible individuals, are believed to underlie the transition to, and maintenance of, an addicted state. These adaptations can occur at the cellular, molecular, or (epi)genetic level and are associated with synaptic plasticity and altered gene expression, the latter being mediated via both factors affecting translation (epigenetics) and transcription (non coding microRNAs) of the DNA or RNA itself. New advances using techniques such as optogenetics have the potential to increase our understanding of the microcircuitry mediating addictive behaviours. However, the processes leading to addiction are complex and multifactorial and thus we face a major contemporary challenge to elucidate the factors implicated in the development and maintenance of an addicted state.
Collapse
Affiliation(s)
- Jhodie R Duncan
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia ; Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|