1
|
Gao Y, Song XN, Zhang N, Liu HH, Hu JZ, Du XZ, Song GH, Liu S. Exploring the diagnostic potential of IL1R1 in depression and its association with lipid metabolism. Front Pharmacol 2025; 16:1519287. [PMID: 40343008 PMCID: PMC12058660 DOI: 10.3389/fphar.2025.1519287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/11/2025] [Indexed: 05/11/2025] Open
Abstract
Background Depression is a complex mental disorder where oxidative stress and lipid metabolism disorders play crucial roles, yet their connection requires further exploration. This study aims to investigate the roles of oxidative stress and lipid metabolism disorders in depression using bioinformatics methods and Mendelian randomization analysis. Methods A differential gene expression analysis was performed on the GSE76826 dataset, followed by identification of the intersection with genes related to OS. Subsequently, support vector machine (SVM) and random forest algorithms were employed to determine the optimal division of feature variables. The diagnostic performance was evaluated using a ROC diagnostic model and Diagnostic Nomogram. Furthermore, Mendelian randomization (MR) analysis was conducted to explore the causal relationship between the gene and depression. The expression patterns of key genes in brain tissue were analyzed using the Human eFP Browser database, while their associations with metabolism-related genes were investigated using the STRING database. Finally, DrugnomeAI was utilized to assess the drug development potential of these genes, and small molecule compounds targeting them were identified through dgidb and ChEMBL databases; molecular docking studies were then conducted to evaluate their binding affinity. Results By conducting a comprehensive analysis of oxidative stress-related genes and depression-related target genes, we have successfully identified 12 overlapping genes. These 12 genes were selected using support vector machine and random forest algorithms. Upon analyzing the diagnostic model, it was revealed that EPAS1 and IL1R1 serve as key biomarkers for OS in depression, with IL1R1 exhibiting the highest diagnostic potential among them. Additionally, MRfen analysis suggests that IL1R1 may play a protective role against depression. Notably, this gene exhibits high expression levels in crucial brain regions such as the olfactory bulb, corpus callosum, and hippocampus. Furthermore, our findings indicate an association between IL1R1 and lipid-related genes PDGFB, PIK3R1, TNFRSFIAA NOD2, and LYN. DrugnomeAI analysis indicated promising medicinal value for ILIRI with BI 639667 demonstrating superior binding affinity among the selected small molecule drugs. Conclusion This study provides novel insights into the association between OS and dyslipidemia metabolism in depression, offering potential therapeutic targets for future drug development.
Collapse
Affiliation(s)
- Yao Gao
- Department of Psychiatry, First Clinical Medical College/First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiao-Na Song
- Department of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
| | - Nan Zhang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Huang-Hui Liu
- Department of Psychiatry, First Clinical Medical College/First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian-Zhen Hu
- Department of Psychiatry, First Clinical Medical College/First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xin-Zhe Du
- Department of Psychiatry, First Clinical Medical College/First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Guo-Hua Song
- Department of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Clinical Medical College/First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Macoveanu J, Zarp J, Vinberg M, Brendstrup-Brix K, Kessing LV, Jørgensen MB, Miskowiak KW. Exploring the effects of erythropoietin treatment on cortical thickness and hippocampal volume in patients with mood disorders undergoing electroconvulsive therapy: A randomized, placebo-controlled trial. J Psychopharmacol 2025; 39:164-170. [PMID: 39609686 DOI: 10.1177/02698811241301224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is a highly effective treatment for severe depression. However, its utilization is limited to the most severely ill patients due to stigma, healthcare provider unfamiliarity, and concerns regarding cognitive side effects. Erythropoietin (EPO) is a promising add-on treatment during ECT due to its potential to increase neuroplasticity and cognition. AIMS To explore the effects of EPO administration on cortical thickness and hippocampal volumes. METHODS In a randomized, double-blinded, placebo-controlled trial, we previously investigated the impact of EPO (40,000 IU) versus placebo (saline) infusions on cognitive side effects of unipolar or bipolar depression patients undergoing eight ECT sessions over 2.5 weeks. This cross-sectional magnetic resonance imaging study explores the effect of EPO on cortical thickness and hippocampal volumes 3 days post-ECT in 37 of the EPO trial patients (EPO n = 21; placebo n = 16). RESULTS Compared to the placebo group, EPO-treated patients displayed thicker cortex in distributed regions of the right hemisphere, predominantly in the parietal and occipital areas. There were no significant group differences in the hippocampal volumes or prefrontal cortex thickness. CONCLUSIONS EPO treatment may produce a selective increase in the right-side occipito-parietal cortical thickness. In contrast, the thickness of other cognition-relevant structures was not significantly affected. This aligns with our previously reported finding that EPO has a selective effect on autobiographical memory and associated right-side parietal activity in the absence of changes in global cognition. It remains to be investigated whether longer EPO treatment and follow-up assessment may be necessary for overt structural changes in cognition-relevant brain networks.
Collapse
Affiliation(s)
- Julian Macoveanu
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Center Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Jeff Zarp
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Center Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Maj Vinberg
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Psychiatric Research Unit, Psychiatric Centre North Zealand, Hillerød, Denmark
| | - Kristoffer Brendstrup-Brix
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Medicine, Hospital of Southern Jutland, Sønderborg, Denmark
| | - Lars V Kessing
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Center Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Martin B Jørgensen
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Center Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kamilla W Miskowiak
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Center Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
- Neurocognition and Emotion in Affective Disorders Centre (NEAD), Department of Psychology, University of Copenhagen, and Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| |
Collapse
|
3
|
Miskowiak KW, Damgaard V, Schandorff JM, Macoveanu J, Knudsen GM, Johansen A, Plaven-Sigray P, Svarer C, Fussing CB, Cramer K, Jørgensen MB, Kessing LV, Ehrenreich H. Effects of cognitive training under hypoxia on cognitive proficiency and neuroplasticity in remitted patients with mood disorders and healthy individuals: ALTIBRAIN study protocol for a randomized controlled trial. Trials 2024; 25:648. [PMID: 39363230 PMCID: PMC11447976 DOI: 10.1186/s13063-024-08463-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Cognitive impairment is prevalent across neuropsychiatric disorders but there is a lack of treatment strategies with robust, enduring effects. Emerging evidence indicates that altitude-like hypoxia cognition training may induce long-lasting neuroplasticity and improve cognition. We will investigate whether repeated cognition training under normobaric hypoxia can improve cognitive functions in healthy individuals and patients with affective disorders and the neurobiological underpinnings of such effects. METHODS In sub-study 1, 120 healthy participants are randomized to one of four treatment arms in a double-blind manner, allowing for examination of separate and combined effects of three-week repeated moderate hypoxia and cognitive training, respectively. In sub-study 2, 60 remitted patients with major depressive disorder or bipolar disorder are randomized to hypoxia with cognition training or treatment as usual. Assessments of cognition, psychosocial functioning, and quality of life are performed at baseline, end-of-treatment, and at 1-month follow-up. Functional magnetic resonance imaging (fMRI) scans are conducted at baseline and 1-month follow-up, and [11C]UCB-J positron emission tomography (PET) scans are performed at end-of-treatment to quantify the synaptic vesicle glycoprotein 2A (SV2A). The primary outcome is a cognitive composite score of attention, verbal memory, and executive functions. Statistical power of ≥ 80% is reached to detect a clinically relevant between-group difference with minimum n = 26 per treatment arm. Behavioral data are analyzed with an intention-to-treat approach using mixed models. fMRI data is analyzed with the FMRIB Software Library, while PET data is quantified using the simplified reference tissue model (SRTM) with centrum semiovale as reference region. DISCUSSION The results will provide novel insights into whether repeated hypoxia cognition training increases cognition and brain plasticity, which can aid future treatment development strategies. TRIAL REGISTRATION ClinicalTrials.gov, NCT06121206 . Registered on 31 October 2023.
Collapse
Affiliation(s)
- Kamilla Woznica Miskowiak
- NEAD Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Psychiatric Centre Copenhagen, Mental Health Services, Hovedvejen 17, Frederiksberg, Capital Region of Denmark, DK-2000, Denmark.
- Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, Copenhagen, DK-1353, Denmark.
| | - Viktoria Damgaard
- NEAD Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Psychiatric Centre Copenhagen, Mental Health Services, Hovedvejen 17, Frederiksberg, Capital Region of Denmark, DK-2000, Denmark
- Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, Copenhagen, DK-1353, Denmark
| | - Johanna Mariegaard Schandorff
- NEAD Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Psychiatric Centre Copenhagen, Mental Health Services, Hovedvejen 17, Frederiksberg, Capital Region of Denmark, DK-2000, Denmark
- Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, Copenhagen, DK-1353, Denmark
| | - Julian Macoveanu
- NEAD Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Psychiatric Centre Copenhagen, Mental Health Services, Hovedvejen 17, Frederiksberg, Capital Region of Denmark, DK-2000, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Annette Johansen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Pontus Plaven-Sigray
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Claus Svarer
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Caroline Bruun Fussing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Psychiatric Centre Copenhagen, Mental Health Services, Frederiksberg, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Cramer
- NEAD Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Psychiatric Centre Copenhagen, Mental Health Services, Hovedvejen 17, Frederiksberg, Capital Region of Denmark, DK-2000, Denmark
| | - Martin Balslev Jørgensen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Psychiatric Centre Copenhagen, Mental Health Services, Frederiksberg, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Psychiatric Centre Copenhagen, Mental Health Services, Frederiksberg, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max-Planck-Institute of Experimental Medicine, City Campus, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
4
|
Miskowiak KW, Petersen JZ, Macoveanu J, Ysbæk-Nielsen AT, Lindegaard IA, Cramer K, Mogensen MB, Hammershøj LG, Stougaard ME, Jørgensen JL, Schmidt LS, Vinberg M, Ehrenreich H, Hageman I, Videbech P, Gbyl K, Kellner CH, Kessing LV, Jørgensen MB. Effect of erythropoietin on cognitive side-effects of electroconvulsive therapy in depression: A randomized, double-blind, placebo-controlled trial. Eur Neuropsychopharmacol 2024; 79:38-48. [PMID: 38128460 DOI: 10.1016/j.euroneuro.2023.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Electroconvulsive therapy (ECT) is one of the most effective and rapid-acting treatment for severe depression but is associated with cognitive side-effects. Identification of add-on treatments that counteract these side-effects would be very helpful. This randomized, double-blinded, placebo-controlled, parallel-group study investigated the effects of four add-on erythropoietin (EPO; 40,000 IU/ml) or saline (placebo) infusions over 2.5 weeks of ECT (eight ECT sessions) in severely depressed patients with unipolar or bipolar depression. Neuropsychological assessments were conducted pre-ECT, three days after the eighth ECT (week 4), and at a 3-month follow-up. Further, functional magnetic resonance imaging (fMRI) was conducted after the eighth ECT. The primary outcome was change from pre- to post-ECT in a 'speed of complex cognitive processing' composite. Secondary outcomes were verbal and autobiographical memory. Of sixty randomized patients, one dropped out before baseline. Data were thus analysed for 59 patients (EPO, n = 33; saline, n = 26), of whom 28 had fMRI data. No ECT-related decline occurred in the primary global cognition measure (ps≥0.1), and no effect of EPO versus saline was observed on this outcome (ps≥0.3). However post-ECT, EPO-treated patients exhibited faster autobiographical memory recall than saline-treated patients (p = 0.02), which was accompanied by lower memory-related parietal cortex activity. The absence of global cognition changes with ECT and EPO, coupled with the specific impact of EPO on autobiographical memory recall speed and memory-related parietal cortex activity, suggests that assessing autobiographical memory may provide increased sensitivity in evaluating and potentially preventing cognitive side-effects of ECT. TRIAL REGISTRATIONS: ClinicalTrials.gov: NCT03339596, EudraCT no.: 2016-002326-36.
Collapse
Affiliation(s)
- Kamilla W Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark; Neurocognition and Emotion in Affective Disorders Centre (NEAD), Department of Psychology, University of Copenhagen, and Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark.
| | - Jeff Z Petersen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Julian Macoveanu
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Alexander T Ysbæk-Nielsen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark; Neurocognition and Emotion in Affective Disorders Centre (NEAD), Department of Psychology, University of Copenhagen, and Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Ida A Lindegaard
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark; Neurocognition and Emotion in Affective Disorders Centre (NEAD), Department of Psychology, University of Copenhagen, and Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Katrine Cramer
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Madel B Mogensen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Lisa G Hammershøj
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Marie E Stougaard
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Josefine L Jørgensen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Lejla Sjanic Schmidt
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Maj Vinberg
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; The Early Multimodular Prevention and Intervention Research Institution (EMPIRI), Mental Health Centre, Northern Zealand, Copenhagen University Hospital, Mental Health Services, Capital Region of Denmark, Denmark
| | - Hannelore Ehrenreich
- Clincial Neuroscience, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ida Hageman
- Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Poul Videbech
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Psychiatric Centre Glostrup, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Krzysztof Gbyl
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Psychiatric Centre Glostrup, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Charles H Kellner
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Lars V Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Martin B Jørgensen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Miskowiak KW, Simonsen AH, Meyer M, Poulsen HE, Wilkan M, Forman J, Hasselbalch SG, Kessing LV, Knorr U. Cerebrospinal fluid erythropoietin, oxidative stress, and cognitive functions in patients with bipolar disorder and healthy control participants: A longitudinal case-control study. J Psychiatr Res 2023; 163:240-246. [PMID: 37244061 DOI: 10.1016/j.jpsychires.2023.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/31/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
Persistent cognitive impairments occur in a large proportion of patients with bipolar disorder (BD) but their underlying pathological cellular processes are unclear. The aims of this longitudinal study of BD and healthy control (HC) participants were to investigate (i) the association of brain erythropoietin (EPO) and oxidative stress with cognitive functions and (ii) the changes in brain EPO during and after affective episodes. Participants underwent neurocognitive testing, lumbar punctures for cerebrospinal fluid (CSF) sampling and provided urine spot tests at baseline (all), after an affective episode (patients) and after one year (all). EPO was assayed in the CSF and oxidative stress metabolites related to RNA and DNA damage (8-dihydroguanosine [8-oxo-Guo], 8-hydroxy-2-deoxyguanosine [8-oxo-dG]) were assayed in the CSF and spot urine. Data was available for analyses for 60 BD and 37 HC participants. In unadjusted primary analyses, verbal memory decreased with increasing concentrations of CSF EPO and oxidative stress. In unadjusted explorative analyses, poorer verbal memory and psychomotor speed were associated with higher levels of oxidative stress. However, no associations between cognitive functions and CSF levels of EPO or oxidative stress were observed after adjustment for multiple testing. CSF EPO concentrations were unchanged during and after affective episodes. While CSF EPO correlated negatively with CSF DNA damage marker 8-oxo-dG, this association rendered non-significant after adjusting for multiple testing. In conclusion, EPO and oxidative stress do not seem to be robustly related to cognitive status in BD. Further insight into the cellular processes involved in cognitive impairments in BD is necessary to pave the way for novel therapeutic strategies to improve patients' cognitive outcomes.
Collapse
Affiliation(s)
- Kamilla W Miskowiak
- Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Copenhagen, Denmark.
| | - Anja H Simonsen
- Department of Neurology, The Neuroscience Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Morten Meyer
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Henrik Enghusen Poulsen
- Department of Endocrinology I, Bispebjerg Frederiksberg Hospital, Frederiksberg, Denmark; Department of Cardiology, Nordsjællands Hospital Hillerød, Hillerød, Denmark; Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mira Wilkan
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Julie Forman
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Steen G Hasselbalch
- Danish Dementia Research Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lars V Kessing
- Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Knorr
- Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Ayerdem G, Bosma MJ, Vinke JSJ, Ziengs AL, Potgieser ARE, Gansevoort RT, Bakker SJL, De Borst MH, Eisenga MF. Association of Endogenous Erythropoietin Levels and Iron Status With Cognitive Functioning in the General Population. Front Aging Neurosci 2022; 14:862856. [PMID: 35462689 PMCID: PMC9024369 DOI: 10.3389/fnagi.2022.862856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundEmerging data suggest that erythropoietin (EPO) promotes neural plasticity and that iron homeostasis is needed to maintain normal physiological brain function. Cognitive functioning could therefore be influenced by endogenous EPO levels and disturbances in iron status.ObjectiveTo determine whether endogenous EPO levels and disturbances in iron status are associated with alterations in cognitive functioning in the general population.Materials and MethodsCommunity-dwelling individuals from the Prevention of Renal and Vascular End-Stage Disease (PREVEND) study, a general population-based cohort in Groningen, Netherlands, were surveyed between 2003 and 2006. Additionally, endogenous EPO levels and iron status, consisting of serum iron, transferrin, ferritin, and transferrin saturation were analyzed. Cognitive function was assessed by scores on the Ruff Figural Fluency Test (RFFT), as a reflection of executive function, and the Visual Association Test (VAT), as a reflection of associative memory.ResultsAmong 851 participants (57% males; mean age 60 ± 13 years), higher endogenous EPO levels were independently associated with an improved cognitive function, reflected by RFFT scores (ß = 0.09, P = 0.008). In multivariable backward linear regression analysis, EPO levels were among the most important modifiable determinants of RFFT scores (ß = 0.09, P = 0.002), but not of VAT scores. Of the iron status parameters, only serum ferritin levels were inversely associated with cognitive function, reflected by VAT scores, in multivariable logistic regression analysis (odds ratio, 0.77; 95% confidence interval 0.63–0.95; P = 0.02 for high performance on VAT, i.e., ≥11 points). No association between iron status parameters and RFFT scores was identified.ConclusionThe findings suggest that endogenous EPO levels and serum ferritin levels are associated with specific cognitive functioning tests in the general population. Higher EPO levels are associated with better RFFT scores, implying better executive function. Serum ferritin levels, but not other iron status parameters, were inversely associated with high performance on the VAT score, implying a reduced ability to create new memories and recall recent past. Further research is warranted to unravel underlying mechanisms and possible benefits of therapeutic interventions.
Collapse
Affiliation(s)
- Gizem Ayerdem
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Matthijs J. Bosma
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joanna Sophia J. Vinke
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Aaltje L. Ziengs
- Department of Neuropsychology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan R. E. Potgieser
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ron T. Gansevoort
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Stephan J. L. Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Martin H. De Borst
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Michele F. Eisenga
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Michele F. Eisenga,
| |
Collapse
|
7
|
Maia Oliveira IC, Vasconcelos Mallmann AS, Adelvane de Paula Rodrigues F, Teodorio Vidal LM, Lopes Sales IS, Rodrigues GC, Ferreira de Oliveira N, de Castro Chaves R, Cavalcanti Capibaribe VC, Rodrigues de Carvalho AM, Maria de França Fonteles M, Chavez Gutierrez SJ, Barbosa-Filho JM, Florenço de Sousa FC. Neuroprotective and Antioxidant Effects of Riparin I in a Model of Depression Induced by Corticosterone in Female Mice. Neuropsychobiology 2022; 81:28-38. [PMID: 33915549 DOI: 10.1159/000515929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 03/15/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Depression is a common, chronic, and often recurrent serious mood disorder. Conventional antidepressants present limitations that stimulate the search for new drugs. Antioxidant and neuroprotective substances are potential antidepressant agents. In this context, riparin I (RIP I) has presented promising results, emerging as a potential source of a new therapeutic drug. In this study, the antidepressant effect of RIP I was evaluated in an animal model of depression induced by corticosterone (CORT). The involvement of neuroprotective and antioxidant mechanisms in the generation of this effect was also assessed. METHODS Female mice were submitted to CORT for 21 days and treated with RIP I in the last 7 days. Behavioral and neurochemical analyses were performed. RESULTS The administration of RIP I reversed the depressive and psychotic-like behavior, as well as the cognitive impairment caused by CORT, in addition to regulating oxidative stress parameters and BDNF levels in depression-related brain areas. CONCLUSION These findings suggest that RIP I can be a strong candidate for drugs in the treatment of depression.
Collapse
Affiliation(s)
- Iris Cristina Maia Oliveira
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Auriana Serra Vasconcelos Mallmann
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Francisco Adelvane de Paula Rodrigues
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Laura Maria Teodorio Vidal
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Iardja Stéfane Lopes Sales
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil,
| | - Gabriel Carvalho Rodrigues
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Natalia Ferreira de Oliveira
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Raquell de Castro Chaves
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Victor Celso Cavalcanti Capibaribe
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Alyne Mara Rodrigues de Carvalho
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | | | - José Maria Barbosa-Filho
- Department of Pharmacy, Laboratory of Pharmaceutical Technology, Federal University of Paraiba, João Pessoa, Brazil
| | - Francisca Cléa Florenço de Sousa
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
8
|
Lee BH, Park YM, Hwang JA, Kim YK. Variable alterations in plasma erythropoietin and brain-derived neurotrophic factor levels in patients with major depressive disorder with and without a history of suicide attempt. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110324. [PMID: 33857523 DOI: 10.1016/j.pnpbp.2021.110324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/27/2021] [Accepted: 04/08/2021] [Indexed: 01/09/2023]
Abstract
It is hypothesized that major depression disorder (MDD) is associated with impaired neuronal plasticity, and that antidepressant treatments restore neuroplasticity. Brain-derived neurotrophic factor (BDNF) and erythropoietin (Epo) show neurotrophic and neuroprotective effects. We evaluated plasma Epo and BDNF levels in 50 MDD inpatients before treatment and in 50 healthy controls. The MDD inpatients consisted of 20 MDD patients without and 30 MDD patients with a recent suicide attempt. The plasma Epo level was significantly higher in nonsuicidal and suicidal MDD patients than in healthy controls (p ≤ 0.001), while the plasma BDNF level was significantly lower in suicidal MDD than in nonsuicidal MDD patients and healthy controls (p ≤ 0.001). When classifying study participants into low-Epo and high-Epo and low-BDNF and high-BDNF subgroups based on the cutoff of Epo or BDNF calculated using receiver operating characteristics (ROC) curve analysis, logistic regression analysis revealed that high-Epo and low-BDNF status correlated with a respective significant odds ratio of 7.367 (p = 0.015) and 33.123 (p ≤ 0.001) for suicidal MDD. In conclusion, plasma BDNF level was decreased in untreated MDD patients, which was presumed to be a dysfunctional effect of the onset of MDD. However, an increase in plasma Epo was observed in MDD in connection with a recent suicide attempt, indicating that this triggers hypoxic stress to induce a compensatory increase in Epo.
Collapse
Affiliation(s)
- Bun-Hee Lee
- Department of Psychiatry, Maum & Maum Psychiatric Clinic, Seoul 02566, Republic of Korea
| | - Young-Min Park
- Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Goyang 10380, Republic of Korea
| | - Jung-A Hwang
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea.
| |
Collapse
|
9
|
Lin PY, Li LC, Wang LJ, Yang YH, Hsu CW. Lack of association between erythropoietin treatment and risk of depression in patients with end-stage kidney disease on maintenance dialysis: a nationwide database study in Taiwan. Ther Adv Chronic Dis 2021; 12:2040622321995690. [PMID: 33747426 PMCID: PMC7940772 DOI: 10.1177/2040622321995690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/08/2021] [Indexed: 11/17/2022] Open
Abstract
Background Patients with end-stage kidney disease (ESKD), have been associated with higher risk of developing depression. Erythropoietin (EPO), frequently used for the treatment of anemia in ESKD patients, has been shown to have neuroprotective and antidepressant effects. In this study, we examined whether EPO treatment changed the risk of depression in ESKD patients. Methods In a nationwide population-based cohort in Taiwan from 1998 to 2013, patients with a diagnosis of ESKD on maintenance dialysis and aged greater than 18 years were classified into EPO treatment group or non-EPO treatment group. All patients were followed up until the diagnosis of depressive disorder or the end of the study period. Results In this cohort (13,067 patients in the EPO and 67,258 patients in the non-EPO group), 5569 patients were diagnosed as depressive disorder in the follow-up period. We found the risk of depression in EPO group was not significantly different from that in non-EPO group (adjusted hazard ratio = 0.98, 95% confidence interval 0.92-1.04, p = 0.499) after adjusting for sex, age, certification year of catastrophic illness for ESKD, physical co-morbidities, and use of benzodiazepines. Conclusion In summary, using the nationwide reimbursement data in Taiwan, we found that EPO treatment in ESKD patients was not associated with their general risk of developing depression.
Collapse
Affiliation(s)
- Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Lung-Chih Li
- Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Yao-Hsu Yang
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Road, Niaosong District, Kaohsiung City 833
| |
Collapse
|
10
|
Effect of risperidone treatment on insulin-like growth factor-1 and interleukin-17 in drug naïve first-episode schizophrenia. Psychiatry Res 2021; 297:113717. [PMID: 33503523 DOI: 10.1016/j.psychres.2021.113717] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/09/2021] [Indexed: 12/26/2022]
Abstract
Increasing evidence suggests that the inflammatory system is activated in schizophrenia and antipsychotics may affect cytokines levels. we conducted a cross-sectional and prospective study.One hundred and thirteen patients and 58 normal subjects matched by gender, age were enrolled in the study. All the patients had risperidonemonotherapy and undertook a 10-week follow-up. Serum levels of IL-17 and IGF-1 were examined using the enzyme-linked immunosorbent assay and the Positive and Negative Symptoms Scale (PANSS) was applied to estimate the clinical symptoms in patients with schizophrenia. All procedures were repeated at the 10 weeks for patients group.The serum levels of IL-17 and IGF-1 in patients were significantly higher than in normal people. After treatment, IGF-1 levels in patients decreased significantly, whereas the IL-17 serum levels had no significant change compared to their baseline concentration. IGF-1 levels at the baseline were negatively associated with the reduction in negative symptoms score after controlling for age, gender distribution, education, smoking status, and WHR. Additionally, the magnitude of IGF-1 change was negatively correlated with negative symptoms score change after controlling for potential confounding variables. Results suggested that the inflammatory system is activated and serum IGF-1 may contribute to the pathophysiology of the negative symptoms of schizophrenia.
Collapse
|
11
|
Pekas NJ, Petersen JL, Sathyanesan M, Newton SS. Design and Development of a Behaviorally Active Recombinant Neurotrophic Factor. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5393-5403. [PMID: 33304094 PMCID: PMC7723032 DOI: 10.2147/dddt.s274308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Introduction Carbamoylated erythropoietin (CEPO) is a chemically engineered, nonhematopoietic derivative of erythropoietin (EPO) that retains its antidepressant and pro-cognitive effects, which are attributed to the increased expression of neurotrophic factors like brain derived neurotrophic factor (BDNF), in the central nervous system. However, the chemical modification process which produces CEPO from erythropoietin (EPO) requires pure EPO as raw material, is challenging to scale-up and can also cause batch-to-batch variability. To address these key limitations while retaining its behavioral effects, we designed, expressed and analyzed a triple, glutamine, substitution recombinant mimetic of CEPO, named QPO. Methods and Materials We employ a combination of computational structural biology, molecular, cellular and behavioral assays to design, produce, purify and test QPO. Results QPO was shown to be a nonhematopoietic polypeptide with significant antidepressant-like and pro-cognitive behavioral effects in rodent assays while significantly upregulating BDNF expression in-vitro and in-vivo. The in-silico binding affinity analysis of QPO bound to the EPOR/EPOR homodimer receptor shows significantly decreased binding to Active Site 2, but not Active Site 1, of EPOR. Discussion The results of the behavioral and gene expression analysis imply that QPO is a successful CEPO mimetic protein and potentially acts via a similar neurotrophic mechanism, making it a drug development target for psychiatric disorders. The decreased binding to Active Site 2 could imply that this active site is not involved in neuroactive signaling and could allow the development of a functional innate repair receptor (IRR) model. Substituting the three glutamine substitution residues with arginine (RPO) resulted in the loss of behavioral activity, indicating the importance of glutamine residues at those positions.
Collapse
Affiliation(s)
- Nicholas J Pekas
- Department of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermilion, SD, USA
| | - Jason L Petersen
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA.,Department of Internal Medicine, University of South Dakota Sanford School of Medicine, Vermillion, SD, USA
| | - Monica Sathyanesan
- Department of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermilion, SD, USA.,Sioux Falls VA Health Care System, Sioux Falls, SD, USA
| | - Samuel S Newton
- Department of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermilion, SD, USA.,Sioux Falls VA Health Care System, Sioux Falls, SD, USA
| |
Collapse
|
12
|
Haider T, Diaz V, Albert J, Alvarez-Sanchez M, Thiersch M, Maggiorini M, Hilty MP, Spengler CM, Gassmann M. A Single 60.000 IU Dose of Erythropoietin Does Not Improve Short-Term Aerobic Exercise Performance in Healthy Subjects: A Randomized, Double-Blind, Placebo-Controlled Crossover Trial. Front Physiol 2020; 11:537389. [PMID: 33117187 PMCID: PMC7550763 DOI: 10.3389/fphys.2020.537389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/26/2020] [Indexed: 01/13/2023] Open
Abstract
Erythropoietin (EPO) boosts exercise performance through increase in oxygen transport capacity following regular administration of EPO but preclinical study results suggest that single high dose of EPO also may improve exercise capacity. Twenty-nine healthy subjects (14 males/15 females; age: 25 ± 3 years) were included in a randomized, double-blind, placebo-controlled crossover study to assess peak work load and cardiopulmonary variables during submaximal and maximal cycling tests following a single dose of 60.000 IU of recombinant erythropoietin (EPO) or placebo (PLA). Submaximal exercise at 40%/60% of peak work load revealed no main effect of EPO on oxygen uptake (27.9 ± 8.7 ml min–1⋅kg–1/ 37.1 ± 13.2 ml min–1⋅kg–1) versus PLA (25.2 ± 3.7 ml min–1⋅kg–1/ 33.1 ± 5.3 ml min–1⋅kg–1) condition (p = 0.447/p = 0.756). During maximal exercise peak work load (PLA: 3.5 ± 0.6 W⋅kg–1 vs. EPO: 3.5 ± 0.6 W kg–1, p = 0.892) and peak oxygen uptake (PLA: 45.1 ± 10.4 ml⋅min–1 kg–1 vs. EPO: 46.1 ± 14.2 ml⋅min–1 kg–1, p = 0.344) reached comparable values in the two treatment conditions. Other cardiopulmonary variables (ventilation, cardiac output, heart rate) also reached similar levels in the two treatment conditions. An interaction effect was found between treatment condition and sex resulting in higher peak oxygen consumption (p = 0.048) and ventilation (p = 0.044) in EPO-treated males. In conclusion, in a carefully conducted study using placebo-controlled design the present data failed to support the hypothesis that a single high dose of EPO has a measurable impact on work capacity in healthy subjects.
Collapse
Affiliation(s)
- Thomas Haider
- Institute for Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland.,Department of Cardiology, University Hospital Zürich, Zurich, Switzerland
| | - Victor Diaz
- Institute for Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Jamie Albert
- Institute of Human Movement Science and Sport, ETH Zürich, Zurich, Switzerland
| | - Maria Alvarez-Sanchez
- Institute for Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Markus Thiersch
- Institute for Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marco Maggiorini
- Institute of Intensive Care Medicine, University Hospital of Zürich, Zurich, Switzerland
| | - Matthias P Hilty
- Institute of Intensive Care Medicine, University Hospital of Zürich, Zurich, Switzerland
| | - Christina M Spengler
- Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland.,Institute of Human Movement Science and Sport, ETH Zürich, Zurich, Switzerland
| | - Max Gassmann
- Institute for Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland
| |
Collapse
|
13
|
Kjær K, Jørgensen MB, Hageman I, Miskowiak KW, Wörtwein G. The effect of erythropoietin on electroconvulsive stimulation induced cognitive impairment in rats. Behav Brain Res 2020; 382:112484. [PMID: 31954736 DOI: 10.1016/j.bbr.2020.112484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 01/01/2023]
Abstract
Electroconvulsive therapy (ECT) is the most effective and fast-acting treatment for severe depression but associated with troublesome cognitive side-effects. Systemically administered erythropoietin (EPO) crosses the blood-brain-barrier and is a promising treatment for cognitive dysfunction in a wide array of neuropsychiatric and neurological disorders. In this study we trained rats to locate a submerged platform in a water maze and then subjected them to electroconvulsive stimulations (ECS, the rodent equivalent to ECT) and EPO treatment. We then analysed their ability to remember and relearn the location of the platform. In addition, we examined "wall-clinging" (thigmotaxis), a behavioural indicator of stress. ECS caused significant deficit in a probe trial administered after three weeks (nine stimulations) as well as one week (six stimulations) of treatment, indicative of induction of retrograde amnesia. ECS had no effect on relearning of the water maze task or performance in a subsequent probe trial. EPO treatment did not ameliorate the ECS-induced retrograde amnesia, but after nine ECS stimulations the animals that had received EPO relearned the position of the hidden platform faster than the animals that had not. We also found EPO to decrease "wall-clinging" behaviour, suggesting an effect of EPO on the stress response in rats. Thus, we establish the Morris Water Maze as a suitable model for ECS-induced memory loss in rats and provide some evidence for potential beneficial effects of EPO.
Collapse
Affiliation(s)
- Kristian Kjær
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Rigshospitalet, 2100, Copenhagen, Denmark
| | | | - Ida Hageman
- Department O, Psychiatric Centre Copenhagen, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Kamilla Woznica Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Rigshospitalet, 2100 Copenhagen, Denmark; Department of Psychology, University of Copenhagen, 1353, Copenhagen, Denmark
| | - Gitta Wörtwein
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Rigshospitalet, 2100, Copenhagen, Denmark; Department of Public Health, University of Copenhagen, 1014, Copenhagen, Denmark.
| |
Collapse
|
14
|
Schneider F, Horowitz A, Lesch KP, Dandekar T. Delaying memory decline: different options and emerging solutions. Transl Psychiatry 2020; 10:13. [PMID: 32066684 PMCID: PMC7026464 DOI: 10.1038/s41398-020-0697-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 11/28/2019] [Accepted: 12/08/2019] [Indexed: 12/13/2022] Open
Abstract
Memory decline can be a devastating disease and increases in aging Western populations. Memory enhancement technologies hold promise for this and other conditions. Approaches include stem cell transplantation, which improved memory in several animal studies as well as vaccination against Alzheimer´s disease (AD) by β-amyloid antibodies. For a positive clinical effect, the vaccine should probably be administered over a long period of time and before amyloid pathologies manifest in the brain. Different drugs, such as erythropoietin or antiplatelet therapy, improve memory in neuropsychiatric diseases or AD or at least in animal studies. Omega-3 polyunsaturated fatty acid-rich diets improve memory through the gut-brain axis by altering the gut flora through probiotics. Sports, dancing, and memory techniques (e.g., Method of Loci) utilize behavioral approaches for memory enhancement, and were effective in several studies. Augmented reality (AR) is an auspicious way for enhancing memory in real time. Future approaches may include memory prosthesis for head-injured patients and light therapy for restoring memory in AD. Memory enhancement in humans in health and disease holds big promises for the future. Memory training helps only in mild or no impairment. Clinical application requires further investigation.
Collapse
Affiliation(s)
- Felicitas Schneider
- grid.8379.50000 0001 1958 8658Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Alan Horowitz
- grid.8379.50000 0001 1958 8658Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Klaus-Peter Lesch
- grid.8379.50000 0001 1958 8658Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, University of Würzburg, Würzburg, Germany ,grid.448878.f0000 0001 2288 8774Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia ,grid.5012.60000 0001 0481 6099Department of Psychiatry and Psychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074, Würzburg, Germany. .,EMBL, Computational Biology and Structures Program, 69117, Heidelberg, Germany.
| |
Collapse
|
15
|
Sampath D, McWhirt J, Sathyanesan M, Newton SS. Carbamoylated erythropoietin produces antidepressant-like effects in male and female mice. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109754. [PMID: 31454554 PMCID: PMC6816335 DOI: 10.1016/j.pnpbp.2019.109754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/25/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Abstract
UNLABELLED Major depressive disorder and related illnesses are globally prevalent, with a significant risk for suicidality if untreated. Antidepressant drugs that are currently prescribed do not benefit 30% of treated individuals. Furthermore, there is a delay of 3 or more weeks before a reduction in symptoms. Results from preclinical studies have indicated an important role for trophic factors in regulating behavior. Erythropoietin (Epo), which is widely prescribed for anemia, has been shown to produce robust neurotrophic actions in the CNS. Although Epo's antidepressant activity has been successfully demonstrated in multiple clinical trials, the inherent ability to elevate RBC counts and other hematological parameters preclude its development as a mainstream CNS drug. A chemically engineered derivative, carbamoylated Epo (Cepo) has no hematological activity, but retains the neurotrophic actions of Epo. Cepo is therefore an attractive candidate to be tested as an antidepressant. OBJECTIVE To evaluate the antidepressant properties of Cepo in established antidepressant-responsive rodent behavioral assays. METHODS Adult male and female BALB/c mice were used for this study. Cepo (30 μgrams/ kg BWT) or vehicle (PBS) was administered intraperitoneally for 4 days before the test of novelty induced hypophagia and subsequently at five hours before testing in forced swim test (FST), tail suspension test (TST) and open field test (OFT). To obtain mechanistic insight we examined the phosphorylation of the transcription factor cAMP response element binding protein (CREB). RESULTS Administration of Cepo at 30 μgrams/ kg BWT, for 4 days produced significant reduction in latency to consume a palatable drink in a novel environment in male and female mice. Male BALB/c mice had a significant reduction in immobility in both tail suspension and forced swim tests, and female mice exhibited lower immobility in the forced swim test.
Collapse
Affiliation(s)
- Dayalan Sampath
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, United States of America; Sioux Falls VA Healthcare System, Sioux Falls, SD 57105, United States of America.
| | - Joshua McWhirt
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, United States of America.
| | - Monica Sathyanesan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, United States of America; Sioux Falls VA Healthcare System, Sioux Falls, SD 57105, United States of America.
| | - Samuel S Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, United States of America; Sioux Falls VA Healthcare System, Sioux Falls, SD 57105, United States of America.
| |
Collapse
|
16
|
Dmytriyeva O, Belmeguenai A, Bezin L, Soud K, Drucker Woldbye DP, Gøtzsche CR, Pankratova S. Short erythropoietin-derived peptide enhances memory, improves long-term potentiation, and counteracts amyloid beta–induced pathology. Neurobiol Aging 2019; 81:88-101. [DOI: 10.1016/j.neurobiolaging.2019.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 03/27/2019] [Accepted: 05/06/2019] [Indexed: 12/23/2022]
|
17
|
Schiller RM, Tibboel D. Neurocognitive Outcome After Treatment With(out) ECMO for Neonatal Critical Respiratory or Cardiac Failure. Front Pediatr 2019; 7:494. [PMID: 31850291 PMCID: PMC6902043 DOI: 10.3389/fped.2019.00494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/13/2019] [Indexed: 01/11/2023] Open
Abstract
Over the years, it has become clear that children growing up after neonatal critical illness are at high risk of long-term neurocognitive deficits that impact their school performance and daily life activities. Although the pathophysiological mechanisms remain largely unknown, emerging evidence seems to suggest that long-term neuropsychological deficits following neonatal critical illness are not associated with the type of treatment, such as extracorporeal membrane oxygenation (ECMO), but rather with underlying disease processes. In this review, neurocognitive outcome and brain pathology following neonatal critical respiratory and cardiac illness, either treated with or without ECMO, are described and compared in order to gain insight into potential underlying pathophysiological mechanisms. Putting these findings together, it becomes apparent that both children with complex congenital heart disease and children who survived severe respiratory failure are at risk of neurocognitive deficits later in life. Neurorehabilitation strategies, such as Cogmed working-memory training, are discussed. While prevention of neurocognitive deficits altogether should be strived for in the future, this is not realistic at this moment. It is therefore of great importance that children growing up after neonatal critical illness receive long-term care that includes psychoeducation and personalized practical tools that can be used to improve their daily life activities.
Collapse
Affiliation(s)
- Raisa M Schiller
- Department of Pediatric Surgery/IC Children and Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery/IC Children and Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| |
Collapse
|
18
|
Effects of recombinant human erythropoietin on cognition and neural activity in remitted patients with mood disorders and first-degree relatives of patients with psychiatric disorders: a study protocol for a randomized controlled trial. Trials 2018; 19:611. [PMID: 30400939 PMCID: PMC6220567 DOI: 10.1186/s13063-018-2995-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 10/16/2018] [Indexed: 12/24/2022] Open
Abstract
Background Bipolar disorder (BD) and unipolar disorder (UD) are associated with cognitive deficits and abnormal neural activity in a “cognitive control network.” There is an increased prevalence of cognitive dysfunction in psychiatric patients’ first-degree relatives, which constitutes a risk factor for psychiatric illness onset. However, there is no treatment with enduring pro-cognitive efficacy. We found preliminary evidence for beneficial effects of eight weekly doses of recombinant human erythropoietin (EPO) on cognition in BD in a recent randomized controlled trial (RCT). The present RCT consists of two sub-studies that extend our previous work by investigating important novel aspects: (1) the effects of 12 weekly doses of EPO on cognition in first-degree relatives of patients with BD, UD, or schizophrenia; and (2) the effects of extending the treatment schedule from 8 to 12 weeks in remitted patients with BD or UD; and (3) assessment of early treatment-associated neural activity changes that may predict cognitive improvement. Methods The trial comprises two parallel sub-studies with randomized, controlled, double-blinded, parallel group designs. First-degree relatives (sub-study 1; n = 52) and partially or fully remitted patients with BD or UD (sub-study 2; n = 52) with objectively verified cognitive dysfunction are randomized to receive weekly high-dose EPO (40,000 IU/mL) or placebo (saline) infusions for 12 weeks. Assessments of cognition and mood are conducted at baseline, after two weeks of treatment, after treatment completion, and at six-month follow-up. Functional magnetic resonance imaging (fMRI) is conducted at baseline and after two weeks of treatment. Psychosocial function is assessed at baseline, after treatment completion and six-month follow-up. The primary outcome is change in a cognitive composite score of attention, verbal memory, and executive functions. Statistical power of ≥ 80% is reached to detect a clinically relevant between-group difference by including 52 first-degree relatives and 52 patients with BD or UD, respectively. Behavioral data are analyzed with an intention-to-treat approach using mixed models. fMRI data are analyzed with the FMRIB Software Library. Discussion If this trial reveals pro-cognitive effects of EPO, this may influence future treatment of mood disorders and/or preventive strategies in at-risk populations. The fMRI analyses may unravel key neurobiological targets for pro-cognitive treatment. Trial registration ClinicalTrials.gov, NCT03315897. Registered on 20 October 2017. Electronic supplementary material The online version of this article (10.1186/s13063-018-2995-7) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Riparin II ameliorates corticosterone-induced depressive-like behavior in mice: Role of antioxidant and neurotrophic mechanisms. Neurochem Int 2018; 120:33-42. [DOI: 10.1016/j.neuint.2018.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 07/15/2018] [Accepted: 07/21/2018] [Indexed: 02/06/2023]
|
20
|
Schmidt LS, Petersen JZ, Vinberg M, Hageman I, Olsen NV, Kessing LV, Jørgensen MB, Miskowiak KW. Erythropoietin as an add-on treatment for cognitive side effects of electroconvulsive therapy: a study protocol for a randomized controlled trial. Trials 2018; 19:234. [PMID: 29673379 PMCID: PMC5909268 DOI: 10.1186/s13063-018-2627-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/03/2018] [Indexed: 02/08/2023] Open
Abstract
Background Electroconvulsive therapy (ECT) is the most effective treatment for severe depression, but its use is impeded by its cognitive side effects. Novel treatments that can counteract these side effects may therefore improve current treatment strategies for depression. The present randomized trial investigates (1) whether short-term add-on treatment with erythropoietin (EPO) can reduce the cognitive side -effects of ECT and (2) whether such effects are long-lasting. Further, structural and functional magnetic resonance imaging (MRI) will be used to explore the neural underpinnings of such beneficial effects of EPO. Finally, the trial examines whether potential protective effects of EPO on cognition are accompanied by changes in markers of oxidative stress, inflammation, and neuroplasticity. Methods/design The trial has a double-blind, randomized, placebo-controlled, parallel group design. Patients with unipolar or bipolar disorder with current moderate to severe depression referred to ECT (N = 52) are randomized to receive four high-dose infusions of EPO (40,000 IU/ml) or placebo (saline). The first EPO/saline infusion is administered within 24 h before the first ECT. The following three infusions are administered at weekly intervals immediately after ECT sessions 1, 4, and 7. Cognition assessments are conducted at baseline, after the final EPO/saline infusion (3 days after eight ECT sessions), and at a 3 months follow-up after ECT treatment completion. The neuronal substrates for potential cognitive benefits of EPO are investigated with structural and functional MRI after the final EPO/saline infusion. The primary outcome is change from baseline to after EPO treatment (3 days after eight ECT sessions) in a cognitive composite score spanning attention, psychomotor speed, and executive functions. With a sample size of N = 52 (n = 26 per group), we have ≥ 80% power to detect a clinically relevant between-group difference in the primary outcome measure at an alpha level of 5% (two-sided test). Behavioral, mood, and blood-biomarker data will be analyzed using repeated measures analysis of covariance. Functional MRI data will be preprocessed and analyzed using the FMRIB Software Library. Discussion If EPO is found to reduce the cognitive side effects of ECT, this could have important implications for future treatment strategies for depression and for the scientific understanding of the neurobiological etiology of cognitive dysfunction in patients treated with ECT. Trial registration ClinicalTrials.gov, NCT03339596. Registered on 10 November 2017. Electronic supplementary material The online version of this article (10.1186/s13063-018-2627-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lejla Sjanic Schmidt
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Center Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder Research Center, Psychiatric Center Copenhagen, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Jeff Zarp Petersen
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Center Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, DK-1353, Copenhagen, Denmark
| | - Maj Vinberg
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Center Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ida Hageman
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Center Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Vidiendal Olsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Neuroanaesthesia, The Neuroscience Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Center Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Balslev Jørgensen
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Center Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kamilla Woznica Miskowiak
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Center Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark. .,Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, DK-1353, Copenhagen, Denmark. .,Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder Research Center, Psychiatric Center Copenhagen, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
21
|
Zuckerman H, Pan Z, Park C, Brietzke E, Musial N, Shariq AS, Iacobucci M, Yim SJ, Lui LMW, Rong C, McIntyre RS. Recognition and Treatment of Cognitive Dysfunction in Major Depressive Disorder. Front Psychiatry 2018; 9:655. [PMID: 30564155 PMCID: PMC6288549 DOI: 10.3389/fpsyt.2018.00655] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022] Open
Abstract
Major Depressive Disorder (MDD) is a prevalent, chronic, disabling, and multidimensional mental disorder. Cognitive dysfunction represents a core diagnostic and symptomatic criterion of MDD, and is a principal determinant of functional non-recovery. Cognitive impairment has been observed to persist despite remission of mood symptoms, suggesting dissociability of mood and cognitive symptoms in MDD. Recurrent impairments in several domains including, but not limited to, executive function, learning and memory, processing speed, and attention and concentration, are associated with poor psychosocial and occupational outcomes. Attempts to restore premorbid functioning in individuals with MDD requires regular screenings and assessment of objective and subjective measures of cognition by clinicians. Easily accessible and cost-effective tools such as the THINC-integrated tool (THINC-it) are suitable for use in a busy clinical environment and appear to be promising for routine usage in clinical settings. However, antidepressant treatments targeting specific cognitive domains in MDD have been insufficiently studied. While select antidepressants, e.g., vortioxetine, have been demonstrated to have direct and independent pro-cognitive effects in adults with MDD, research on additional agents remains nascent. A comprehensive clinical approach to cognitive impairments in MDD is required. The current narrative review aims to delineate the importance and relevance of cognitive dysfunction as a symptomatic target for prevention and treatment in the phenomenology of MDD.
Collapse
Affiliation(s)
- Hannah Zuckerman
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Zihang Pan
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Caroline Park
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Elisa Brietzke
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada.,Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Natalie Musial
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Aisha S Shariq
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Michelle Iacobucci
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Samantha J Yim
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Leanna M W Lui
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Carola Rong
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| |
Collapse
|
22
|
Ottesen NM, Meluken I, Scheike T, Kessing LV, Miskowiak KW, Vinberg M. Clinical Characteristics, Life Adversities and Personality Traits in Monozygotic Twins With, at Risk of and Without Affective Disorders. Front Psychiatry 2018; 9:401. [PMID: 30233425 PMCID: PMC6127629 DOI: 10.3389/fpsyt.2018.00401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 08/09/2018] [Indexed: 12/29/2022] Open
Abstract
Background: Affective disorders have a long-term impact on psychiatric health and are caused by multiple interacting factors including familial risk, childhood adversity, life events and personality traits. Methods: In this study, monozygotic twins (MZ) at familial risk (indexed by affective disorder in their co-twin; high-risk group), affected MZ twins (indexed by a diagnosis with affective disorder) and MZ twins with no family history of affective disorder (low-risk group) were identified through cross-linking of nation-wide Danish registers. In total, 204 MZ twins were included and psychopathology, personality traits and life adversity were evaluated by semi-structured interviews and questionnaires. Results: Affected MZ twins presented with more subclinical affective symptoms and were functionally impaired as evidenced by higher unemployment rates and reduced functional status. The affected and the high-risk groups reported more childhood adversity and had experienced more stressful life events than the low-risk group. A direct comparison within the discordant twin pairs showed that the high-risk twins presented fewer affective symptoms, better functional status, more extraversion and lower neuroticism scores than their affected co-twins although they had equal levels of life adversity as their affected co-twins. Conclusion: These findings add to the evidence indicating that patients experience higher neuroticism, persistent subclinical symptoms and reduced socio-occupational function after affective episodes. Additionally, neuroticism and extraversion seem capable of moderating the sensitivity to exposure from the environment.
Collapse
Affiliation(s)
- Ninja M Ottesen
- Copenhagen Affective Disorder Research Centre, Copenhagen University Hospital, Copenhagen, Denmark
| | - Iselin Meluken
- Copenhagen Affective Disorder Research Centre, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas Scheike
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark.,Institute of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Lars V Kessing
- Copenhagen Affective Disorder Research Centre, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kamilla W Miskowiak
- Copenhagen Affective Disorder Research Centre, Copenhagen University Hospital, Copenhagen, Denmark.,Institute of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Maj Vinberg
- Copenhagen Affective Disorder Research Centre, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
23
|
Abstract
Affect and emotion are defined as “an essential part of the process of an organism's interaction with stimuli.” Similar to affect, the immune response is the “tool” the body uses to interact with the external environment. Thanks to the emotional and immunological response, we learn to distinguish between what we like and what we do not like, to counteract a broad range of challenges, and to adjust to the environment we are living in. Recent compelling evidence has shown that the emotional and immunological systems share more than a similarity of functions. This review article will discuss the crosstalk between these two systems and the need for a new scientific area of research called affective immunology. Research in this field will allow a better understanding and appreciation of the immunological basis of mental disorders and the emotional side of immune diseases.
Collapse
Affiliation(s)
- Fulvio D'Acquisto
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
24
|
Aalling N, Hageman I, Miskowiak K, Orlowski D, Wegener G, Wortwein G. Erythropoietin prevents the effect of chronic restraint stress on the number of hippocampal CA3c dendritic terminals-relation to expression of genes involved in synaptic plasticity, angiogenesis, inflammation, and oxidative stress in male rats. J Neurosci Res 2017; 96:103-116. [PMID: 28752903 DOI: 10.1002/jnr.24107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/19/2017] [Accepted: 06/08/2017] [Indexed: 11/09/2022]
Abstract
Stress-induced allostatic load affects a variety of biological processes including synaptic plasticity, angiogenesis, oxidative stress, and inflammation in the brain, especially in the hippocampus. Erythropoietin (EPO) is a pleiotropic cytokine that has shown promising neuroprotective effects. Recombinant human EPO is currently highlighted as a new candidate treatment for cognitive impairment in neuropsychiatric disorders. Because EPO enhances synaptic plasticity, attenuates oxidative stress, and inhibits generation of proinflammatory cytokines, EPO may be able to modulate the effects of stress-induced allostatic load at the molecular level. The aim of this study was therefore to investigate how EPO and repeated restraint stress, separately and combined, influence (i) behavior in the novelty-suppressed feeding test of depression/anxiety-related behavior; (ii) mRNA levels of genes encoding proteins involved in synaptic plasticity, angiogenesis, oxidative stress, and inflammation; and (iii) remodeling of the dendritic structure of the CA3c area of the hippocampus in male rats. As expected, chronic restraint stress lowered the number of CA3c apical dendritic terminals, and EPO treatment reversed this effect. Interestingly, these effects seemed to be mechanistically distinct, as stress and EPO had differential effects on gene expression. While chronic restraint stress lowered the expression of spinophilin, tumor necrosis factor α, and heat shock protein 72, EPO increased expression of hypoxia-inducible factor-2α and lowered the expression of vascular endothelial growth factor in hippocampus. These findings indicate that the effects of treatment with EPO follow different molecular pathways and do not directly counteract the effects of stress in the hippocampus.
Collapse
Affiliation(s)
- Nadia Aalling
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Rigshospitalet and Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ida Hageman
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Rigshospitalet and Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kamilla Miskowiak
- Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Dariusz Orlowski
- Center for Experimental Neuroscience (Cense), Department of Clinical Medicine, University of Aarhus, Aarhus, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, University of Aarhus, Aarhus, Denmark.,Center of Excellence for Pharmaceutical Sciences, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - Gitta Wortwein
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Rigshospitalet and Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Miskowiak KW, Ott CV, Petersen JZ, Kessing LV. Systematic review of randomized controlled trials of candidate treatments for cognitive impairment in depression and methodological challenges in the field. Eur Neuropsychopharmacol 2016; 26:1845-1867. [PMID: 27745932 DOI: 10.1016/j.euroneuro.2016.09.641] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/19/2016] [Accepted: 09/24/2016] [Indexed: 01/28/2023]
Abstract
Cognitive impairment is a core feature of Major Depressive Disorder (MDD) but treatments targeting cognition are lacking. Numerous pre-clinical and clinical studies have investigated potential cognition treatments, but overall the evidence is conflicting. We conducted a systematic search following the PRISMA guidelines on PubMed and PsychInfo to evaluate the extant evidence and methodological challenges in randomized controlled trials (RCTs) of biological, psychological and behavioural candidate treatments targeting cognition in MDD. Inclusion criteria were RCTs with a placebo control assessing potential pro-cognitive effects of candidate treatments in MDD. Two independent authors reviewed the studies and assessed their risk of bias with the Cochrane Collaboration׳s Risk of Bias tool. Twenty-eight eligible studies (24 biological and four psychological or behavioural studies) were identified. Cognition was the primary treatment target in ten (36%) trials and an additional treatment outcome together with mood symptoms in 18 (64%) trials. The risk of bias was high or unclear in 93% of trials due to potential selective outcome reporting or 'pseudospecificity' (unspecific cognitive improvement due to reduced depression severity), and/or insufficient details on how the allocation sequence was generated or how blinding was maintained. Several promising treatments were identified, including vortioxetine, erythropoietin, transcranial direct current stimulation and cognitive remediation. However, several common methodological challenges may impede advances in the field. In particular, future trials should select one cognitive composite score as primary outcome, screen for cognitive impairment before inclusion of participants and address 'pseudospecificity' issues. Together, these strategies may improve the success of future cognition trials in MDD.
Collapse
Affiliation(s)
- K W Miskowiak
- Copenhagen Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Denmark.
| | - C V Ott
- Copenhagen Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Denmark.
| | - J Z Petersen
- Copenhagen Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Denmark.
| | - L V Kessing
- Copenhagen Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Denmark.
| |
Collapse
|
26
|
Epobis is a Nonerythropoietic and Neuroprotective Agonist of the Erythropoietin Receptor with Anti-Inflammatory and Memory Enhancing Effects. Mediators Inflamm 2016; 2016:1346390. [PMID: 27990061 PMCID: PMC5136666 DOI: 10.1155/2016/1346390] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/26/2016] [Accepted: 09/15/2016] [Indexed: 12/12/2022] Open
Abstract
The cytokine erythropoietin (EPO) stimulates proliferation and differentiation of erythroid progenitor cells. Moreover, EPO has neuroprotective, anti-inflammatory, and antioxidative effects, but the use of EPO as a neuroprotective agent is hampered by its erythropoietic activity. We have recently designed the synthetic, dendrimeric peptide, Epobis, derived from the sequence of human EPO. This peptide binds the EPO receptor and promotes neuritogenesis and neuronal cell survival. Here we demonstrate that Epobis in vitro promotes neuritogenesis in primary motoneurons and has anti-inflammatory effects as demonstrated by its ability to decrease TNF release from activated AMJ2-C8 macrophages and rat primary microglia. When administered systemically Epobis is detectable in both plasma and cerebrospinal fluid, demonstrating that the peptide crosses the blood-brain barrier. Importantly, Epobis is not erythropoietic, but systemic administration of Epobis in rats delays the clinical signs of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, and the peptide has long-term, but not short-term, effects on working memory, detected as an improved social memory 3 days after administration. These data reveal Epobis to be a nonerythropoietic and neuroprotective EPO receptor agonist with anti-inflammatory and memory enhancing properties.
Collapse
|
27
|
Nekoui A, Blaise G. Erythropoietin and Nonhematopoietic Effects. Am J Med Sci 2016; 353:76-81. [PMID: 28104107 DOI: 10.1016/j.amjms.2016.10.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 01/21/2023]
Abstract
Erythropoietin (EPO) is the main regulator of red blood cell production. Since the 1990s, EPO has been used for the treatment of anemia associated with end-stage renal failure and chemotherapy. The erythropoietin receptors were found on other organs such as the brain, spinal cord, heart and skin. In addition, it has been shown that many tissues produce and locally release EPO in response to hypoxic, biochemical and physical stress. In cellular, animal and clinical studies, EPO protects tissues from ischemia and reperfusion injury, has antiapoptotic effects and improves regeneration after injury. In this article, we mainly review the nonhematopoietic effects and new possible clinical indications for EPO.
Collapse
Affiliation(s)
| | - Gilbert Blaise
- Department of Anesthesiology, Faculty of Medicine, Universite de Montreal, Quebec, Canada
| |
Collapse
|
28
|
Miskowiak KW, Carvalho AF, Vieta E, Kessing LV. Cognitive enhancement treatments for bipolar disorder: A systematic review and methodological recommendations. Eur Neuropsychopharmacol 2016; 26:1541-61. [PMID: 27593623 DOI: 10.1016/j.euroneuro.2016.08.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/09/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Cognitive dysfunction is an emerging treatment target in bipolar disorder (BD). Several trials have assessed the efficacy of novel pharmacological and psychological treatments on cognition in BD but the findings are contradictory and unclear. A systematic search following the PRISMA guidelines was conducted on PubMed and PsychInfo. Eligible articles reported randomized, controlled or open-label trials investigating pharmacological or psychological treatments targeting cognitive dysfunction in BD. The quality of the identified randomized controlled trials (RCTs) was evaluated with the Cochrane Collaboration's Risk of Bias tool. We identified 19 eligible studies of which 13 were RCTs and six were open-label or non-randomized studies. The findings regarding efficacy on cognition were overall disappointing or preliminary, possibly due to several methodological challenges. For the RCTs, the risk of bias was high in nine cases, unclear in one case and low in three cases. Key reasons for the high risk of bias were lack of details on the randomization process, suboptimal handling of missing data and lack of a priori priority between cognition outcomes. Other challenges were the lack of consensus on whether and how to screen for cognitive impairment and on how to assess efficacy on cognition. In conclusion, methodological problems are likely to impede the success rates of cognition trials in BD. We recommend adherence to the CONSORT guidelines for RCTs, screening for cognitive impairment before inclusion of trial participants and selection of one primary cognition outcome. Future implementation of a 'neurocircuitry-based' biomarker model to evaluate neural target engagement is warranted.
Collapse
Affiliation(s)
- Kamilla W Miskowiak
- Copenhagen Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Denmark.
| | - André F Carvalho
- Translational Psychiatry Research Group and Department of Clinical Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
| | - Eduard Vieta
- Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Villarroel 170, Barcelona 08036, Catalonia, Spain.
| | - Lars V Kessing
- Copenhagen Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Denmark.
| |
Collapse
|
29
|
Growth factors as clinical biomarkers of prognosis and diagnosis in psychiatric disorders. Cytokine Growth Factor Rev 2016; 32:85-96. [PMID: 27618303 DOI: 10.1016/j.cytogfr.2016.08.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/19/2016] [Accepted: 08/25/2016] [Indexed: 12/21/2022]
Abstract
The psychiatric disorders are one of the most disabling illnesses in the world and represent a major problem for public health. These disorders are characterized by neuroanatomical or biochemical changes and it has been suggested that such changes may be due to inadequate neurodevelopment. Diverse alterations in the gene expression and/or serum level of specific growth factors have been implicated in the etiology, symptoms and progression of some psychiatric disorders. Herein, we summarize the latest information regarding the role of brain-derived neurotrophic factor (BDNF), epidermal growth factor (EGF), fibroblast growth factor (FGF), Insulin-like growth factor (IGF-1), neuroregulin-1 (NGR-1), erythropoietin (EPO), vascular growth factor (VEGF), transforming growth factor beta (TGF-β), nerve growth factor (NGF) and others cytokines in the pathogenesis of schizophrenia, depression, bipolar and anxiety disorders. Focusing on the role of these growth factors and their relationship with the main impairments (cognitive, emotional and social) of these pathologies. Some of these signaling molecules may be suitable biological markers for diagnosis and prognosis in cognitive, mood and social disabilities across different mental disorders.
Collapse
|
30
|
Miskowiak KW, Macoveanu J, Vinberg M, Assentoft E, Randers L, Harmer CJ, Ehrenreich H, Paulson OB, Knudsen GM, Siebner HR, Kessing LV. Effects of erythropoietin on memory-relevant neurocircuitry activity and recall in mood disorders. Acta Psychiatr Scand 2016; 134:249-59. [PMID: 27259062 DOI: 10.1111/acps.12597] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Erythropoietin (EPO) improves verbal memory and reverses subfield hippocampal volume loss across depression and bipolar disorder (BD). This study aimed to investigate with functional magnetic resonance imaging (fMRI) whether these effects were accompanied by functional changes in memory-relevant neuro-circuits in this cohort. METHOD Eighty-four patients with treatment-resistant unipolar depression who were moderately depressed or BD in remission were randomized to eight weekly EPO (40 000 IU) or saline infusions in a double-blind, parallel-group design. Participants underwent whole-brain fMRI at 3T, mood ratings, and blood tests at baseline and week 14. During fMRI, participants performed a picture encoding task followed by postscan recall. RESULTS Sixty-two patients had complete data (EPO: N = 32, saline: N = 30). EPO improved picture recall and increased encoding-related activity in dorsolateral prefrontal cortex (dlPFC) and temporo-parietal regions, but not in hippocampus. Recall correlated with activity in the identified dlPFC and temporo-parietal regions at baseline, and change in recall correlated with activity change in these regions from baseline to follow-up across the entire cohort. The effects of EPO were not correlated with change in mood, red blood cells, blood pressure, or medication. CONCLUSION The findings highlight enhanced encoding-related dlPFC and temporo-parietal activity as key neuronal underpinnings of EPO-associated memory improvement.
Collapse
Affiliation(s)
- K W Miskowiak
- Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - J Macoveanu
- Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark
| | - M Vinberg
- Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - E Assentoft
- Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - L Randers
- Psychiatric Centre Copenhagen, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - C J Harmer
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - H Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - O B Paulson
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark.,Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - G M Knudsen
- Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark.,Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - H R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - L V Kessing
- Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
31
|
Ott CV, Vinberg M, Kessing LV, Miskowiak KW. The effect of erythropoietin on cognition in affective disorders - Associations with baseline deficits and change in subjective cognitive complaints. Eur Neuropsychopharmacol 2016; 26:1264-73. [PMID: 27349944 DOI: 10.1016/j.euroneuro.2016.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/02/2016] [Accepted: 05/08/2016] [Indexed: 11/29/2022]
Abstract
This is a secondary data analysis from our erythropoietin (EPO) trials. We examine (I) whether EPO improves speed of complex cognitive processing across bipolar and unipolar disorder, (II) if objective and subjective baseline cognitive impairment increases patients׳ chances of treatment-efficacy and (III) if cognitive improvement correlates with better subjective cognitive function, quality of life and socio-occupational capacity. Patients with unipolar or bipolar disorder were randomized to eight weekly EPO (N=40) or saline (N=39) infusions. Cognition, mood, quality of life and socio-occupational capacity were assessed at baseline (week 1), after treatment completion (week 9) and at follow-up (week 14). We used repeated measures analysis of covariance to investigate the effect of EPO on speed of complex cognitive processing. With logistic regression, we examined whether baseline cognitive impairment predicted treatment-efficacy. Pearson correlations were used to assess associations between objective and subjective cognition, quality of life and socio-occupational capacity. EPO improved speed of complex cognitive processing across affective disorders at weeks 9 and 14 (p≤0.05). In EPO-treated patients, baseline cognitive impairment increased the odds of treatment-efficacy on cognition at weeks 9 and 14 by a factor 9.7 (95% CI:1.2-81.1) and 9.9 (95% CI:1.1-88.4), respectively (p≤0.04). Subjective cognitive complaints did not affect chances of treatment-efficacy (p≥0.45). EPO-associated cognitive improvement correlated with reduced cognitive complaints but not with quality of life or socio-occupational function. As the analyses were performed post-hoc, findings are only hypothesis-generating. In conclusion, pro-cognitive effects of EPO occurred across affective disorders. Neuropsychological screening for cognitive dysfunction may be warranted in future cognition trials.
Collapse
Affiliation(s)
- Caroline Vintergaard Ott
- Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet Dep. 6233, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | - Maj Vinberg
- Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet Dep. 6233, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | - Lars V Kessing
- Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet Dep. 6233, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | - Kamilla W Miskowiak
- Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet Dep. 6233, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
32
|
Miskowiak KW, Vinberg M, Glerup L, Paulson OB, Knudsen GM, Ehrenreich H, Harmer CJ, Kessing LV, Siebner HR, Macoveanu J. Neural correlates of improved executive function following erythropoietin treatment in mood disorders. Psychol Med 2016; 46:1679-1691. [PMID: 26996196 DOI: 10.1017/s0033291716000209] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Cognitive dysfunction in depression and bipolar disorder (BD) is insufficiently targeted by available treatments. Erythropoietin (EPO) increases neuroplasticity and may improve cognition in mood disorders, but the neuronal mechanisms of these effects are unknown. This functional magnetic resonance imaging (fMRI) study investigated the effects of EPO on neural circuitry activity during working memory (WM) performance. METHOD Patients with treatment-resistant major depression, who were moderately depressed, or with BD in partial remission, were randomized to eight weekly infusions of EPO (40 000 IU) (N = 30) or saline (N = 26) in a double-blind, parallel-group design. Patients underwent fMRI, mood ratings and blood tests at baseline and week 14. During fMRI patients performed an n-back WM task. RESULTS EPO improved WM accuracy compared with saline (p = 0.045). Whole-brain analyses revealed that EPO increased WM load-related activity in the right superior frontal gyrus (SFG) compared with saline (p = 0.01). There was also enhanced WM load-related deactivation of the left hippocampus in EPO-treated compared to saline-treated patients (p = 0.03). Across the entire sample, baseline to follow-up changes in WM performance correlated positively with changes in WM-related SFG activity and negatively with hippocampal response (r = 0.28-0.30, p < 0.05). The effects of EPO were not associated with changes in mood or red blood cells (p ⩾0.08). CONCLUSIONS The present findings associate changes in WM-load related activity in the right SFG and left hippocampus with improved executive function in EPO-treated patients. CLINICAL TRIAL REGISTRATION clinicaltrials.gov: NCT00916552.
Collapse
Affiliation(s)
- K W Miskowiak
- Psychiatric Centre Copenhagen,Copenhagen University Hospital,Rigshospitalet,Copenhagen,Denmark
| | - M Vinberg
- Psychiatric Centre Copenhagen,Copenhagen University Hospital,Rigshospitalet,Copenhagen,Denmark
| | - L Glerup
- Psychiatric Centre Copenhagen,Copenhagen University Hospital,Rigshospitalet,Copenhagen,Denmark
| | - O B Paulson
- Danish Research Centre for Magnetic Resonance (DRCMR),Centre for Functional and Diagnostic Imaging and Research,Hvidovre Hospital, University of Copenhagen,Copenhagen,Denmark
| | - G M Knudsen
- Center for Integrated Molecular Brain Imaging,Rigshospitalet,Copenhagen,Denmark
| | - H Ehrenreich
- Division of Clinical Neuroscience,Max Planck Institute of Experimental Medicine,Göttingen,Germany
| | - C J Harmer
- Department of Psychiatry,University of Oxford,Oxford,UK
| | - L V Kessing
- Psychiatric Centre Copenhagen,Copenhagen University Hospital,Rigshospitalet,Copenhagen,Denmark
| | - H R Siebner
- Danish Research Centre for Magnetic Resonance (DRCMR),Centre for Functional and Diagnostic Imaging and Research,Hvidovre Hospital, University of Copenhagen,Copenhagen,Denmark
| | - J Macoveanu
- Psychiatric Centre Copenhagen,Copenhagen University Hospital,Rigshospitalet,Copenhagen,Denmark
| |
Collapse
|
33
|
Erythropoietin Pathway: A Potential Target for the Treatment of Depression. Int J Mol Sci 2016; 17:ijms17050677. [PMID: 27164096 PMCID: PMC4881503 DOI: 10.3390/ijms17050677] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/05/2016] [Accepted: 04/27/2016] [Indexed: 12/21/2022] Open
Abstract
During the past decade, accumulating evidence from both clinical and experimental studies has indicated that erythropoietin may have antidepressant effects. In addition to the kidney and liver, many organs have been identified as secretory tissues for erythropoietin, including the brain. Its receptor is expressed in cerebral and spinal cord neurons, the hypothalamus, hippocampus, neocortex, dorsal root ganglia, nerve axons, and Schwann cells. These findings may highlight new functions for erythropoietin, which was originally considered to play a crucial role in the progress of erythroid differentiation. Erythropoietin and its receptor signaling through JAK2 activate multiple downstream signaling pathways including STAT5, PI3K/Akt, NF-κB, and MAPK. These factors may play an important role in inflammation and neuroprogression in the nervous system. This is particularly true for the hippocampus, which is possibly related to learning, memory, neurocognitive deficits and mood alterations. Thus, the influence of erythropoietin on the downstream pathways known to be involved in the treatment of depression makes the erythropoietin-related pathway an attractive target for the development of new therapeutic approaches. Focusing on erythropoietin may help us understand the pathogenic mechanisms of depression and the molecular basis of its treatment.
Collapse
|
34
|
Pichon A, Jeton F, El Hasnaoui-Saadani R, Hagström L, Launay T, Beaudry M, Marchant D, Quidu P, Macarlupu JL, Favret F, Richalet JP, Voituron N. Erythropoietin and the use of a transgenic model of erythropoietin-deficient mice. HYPOXIA 2016; 4:29-39. [PMID: 27800506 PMCID: PMC5085313 DOI: 10.2147/hp.s83540] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Despite its well-known role in red blood cell production, it is now accepted that erythropoietin (Epo) has other physiological functions. Epo and its receptors are expressed in many tissues, such as the brain and heart. The presence of Epo/Epo receptors in these organs suggests other roles than those usually assigned to this protein. Thus, the aim of this review is to describe the effects of Epo deficiency on adaptation to normoxic and hypoxic environments and to suggest a key role of Epo on main physiological adaptive functions. Our original model of Epo-deficient (Epo-TAgh) mice allowed us to improve our knowledge of the possible role of Epo in O2 homeostasis. The use of anemic transgenic mice revealed Epo as a crucial component of adaptation to hypoxia. Epo-TAgh mice survive well in hypoxic conditions despite low hematocrit. Furthermore, Epo plays a key role in neural control of ventilatory acclimatization and response to hypoxia, in deformability of red blood cells, in cerebral and cardiac angiogenesis, and in neuro- and cardioprotection.
Collapse
Affiliation(s)
- Aurélien Pichon
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex; Laboratory of Excellence GR-Ex, Paris; Laboratory MOVE EA 6314, FSS, Poitiers University, Poitiers, France
| | - Florine Jeton
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex; Laboratory of Excellence GR-Ex, Paris
| | | | - Luciana Hagström
- Laboratório Interdisciplinar de Biociências, Universidade de Brasília, Brasília, Brazil
| | - Thierry Launay
- Unité de Biologie Intégrative des Adaptations à l'Exercice, University Paris Saclay and Genopole , University Sorbonne-Paris-Cité, Paris, France
| | - Michèle Beaudry
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex
| | - Dominique Marchant
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex
| | - Patricia Quidu
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex
| | - Jose-Luis Macarlupu
- High Altitude Unit, Laboratories for Research and Development, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Fabrice Favret
- Laboratory "Mitochondrie, Stress Oxydant et Protection Musculaire" EA 3072, University of Strasbourg, Strasbourg, France
| | - Jean-Paul Richalet
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex; Laboratory of Excellence GR-Ex, Paris
| | - Nicolas Voituron
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex; Laboratory of Excellence GR-Ex, Paris
| |
Collapse
|
35
|
Ott C, Martens H, Hassouna I, Oliveira B, Erck C, Zafeiriou MP, Peteri UK, Hesse D, Gerhart S, Altas B, Kolbow T, Stadler H, Kawabe H, Zimmermann WH, Nave KA, Schulz-Schaeffer W, Jahn O, Ehrenreich H. Widespread Expression of Erythropoietin Receptor in Brain and Its Induction by Injury. Mol Med 2015; 21:803-815. [PMID: 26349059 DOI: 10.2119/molmed.2015.00192] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 09/01/2015] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin (EPO) exerts potent neuroprotective, neuroregenerative and procognitive functions. However, unequivocal demonstration of erythropoietin receptor (EPOR) expression in brain cells has remained difficult since previously available anti-EPOR antibodies (EPOR-AB) were unspecific. We report here a new, highly specific, polyclonal rabbit EPOR-AB directed against different epitopes in the cytoplasmic tail of human and murine EPOR and its characterization by mass spectrometric analysis of immuno-precipitated endogenous EPOR, Western blotting, immunostaining and flow cytometry. Among others, we applied genetic strategies including overexpression, Lentivirus-mediated conditional knockout of EpoR and tagged proteins, both on cultured cells and tissue sections, as well as intracortical implantation of EPOR-transduced cells to verify specificity. We show examples of EPOR expression in neurons, oligodendroglia, astrocytes and microglia. Employing this new EPOR-AB with double-labeling strategies, we demonstrate membrane expression of EPOR as well as its localization in intracellular compartments such as the Golgi apparatus. Moreover, we show injury-induced expression of EPOR. In mice, a stereotactically applied stab wound to the motor cortex leads to distinct EpoR expression by reactive GFAP-expressing cells in the lesion vicinity. In a patient suffering from epilepsy, neurons and oligodendrocytes of the hippocampus strongly express EPOR. To conclude, this new analytical tool will allow neuroscientists to pinpoint EPOR expression in cells of the nervous system and to better understand its role in healthy conditions, including brain development, as well as under pathological circumstances, such as upregulation upon distress and injury.
Collapse
Affiliation(s)
- Christoph Ott
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | - Imam Hassouna
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Physiology Unit, Zoology Department, Faculty of Science, Menoufia University, Egypt
| | - Bárbara Oliveira
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | | | - Ulla-Kaisa Peteri
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Dörte Hesse
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Simone Gerhart
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Bekir Altas
- Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | | | - Hiroshi Kawabe
- Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | - Klaus-Armin Nave
- Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | | | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|
36
|
Miskowiak KW, Vinberg M, Macoveanu J, Ehrenreich H, Køster N, Inkster B, Paulson OB, Kessing LV, Skimminge A, Siebner HR. Effects of Erythropoietin on Hippocampal Volume and Memory in Mood Disorders. Biol Psychiatry 2015; 78:270-7. [PMID: 25641635 DOI: 10.1016/j.biopsych.2014.12.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND Persistent cognitive dysfunction in depression and bipolar disorder (BD) impedes patients' functional recovery. Erythropoietin (EPO) increases neuroplasticity and reduces cognitive difficulties in treatment-resistant depression (TRD) and remitted BD. This magnetic resonance imaging study assessed the neuroanatomical basis for these effects. METHODS Patients with TRD who were moderately depressed or BD in partial remission were randomized to 8 weekly EPO (40,000 IU) or saline infusions in a double-blind, parallel-group design. Patients underwent magnetic resonance imaging, memory assessment with the Rey Auditory Verbal Learning Test, and mood ratings with the Beck Depression Inventory, Hamilton Depression Rating Scale, and Young Mania Rating Scale at baseline and week 14. Hippocampus segmentation and analysis of hippocampal volume, shape, and gray matter density were conducted with FMRIB Software Library tools. Memory change was analyzed with repeated-measures analysis of covariance adjusted for depression symptoms, diagnosis, age, and gender. RESULTS Eighty-four patients were randomized; 1 patient withdrew and data collection was incomplete for 14 patients; data were thus analyzed for 69 patients (EPO: n = 35, saline: n = 34). Compared with saline, EPO was associated with mood-independent memory improvement and reversal of brain matter loss in the left hippocampal cornu ammonis 1 to cornu ammonis 3 and subiculum. Using the entire sample, memory improvement was associated with subfield hippocampal volume increase independent of mood change. CONCLUSIONS EPO-associated memory improvement in TRD and BD may be mediated by reversal of brain matter loss in a subfield of the left hippocampus. EPO may provide a therapeutic option for patients with mood disorders who have impaired neuroplasticity and cognition.
Collapse
Affiliation(s)
- Kamilla W Miskowiak
- Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Maj Vinberg
- Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Julian Macoveanu
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Nicolai Køster
- Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Becky Inkster
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Olaf B Paulson
- Neurobiological Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lars V Kessing
- Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Arnold Skimminge
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| |
Collapse
|
37
|
Solé B, Jiménez E, Martinez-Aran A, Vieta E. Cognition as a target in major depression: new developments. Eur Neuropsychopharmacol 2015; 25:231-47. [PMID: 25640673 DOI: 10.1016/j.euroneuro.2014.12.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/03/2014] [Accepted: 12/23/2014] [Indexed: 01/01/2023]
Abstract
Major depressive disorder (MDD) is a highly prevalent and disabling psychiatric illness often accompanied of cognitive dysfunction which may persist even when patients achieve clinical remission. Currently, cognitive deficits emerge as a potential target because they compromise the functional outcome of depressed patients. The aim of this study was to review data for several potential pharmacological treatments targeting cognition in MDD, resulting from monotherapy or adjunctive treatment. An extensive and systematic Pubmed/Medline search of the published literature until March 2014 was conducted using a variety of search term to find relevant articles. Bibliographies of retrieved papers were further examined for publications of interest. Searches were limited to articles available in English language. We describe studies using modafinil, lisdexamfetamine, ketamine, lanicemine, memantine, galantamine, donepezil, vortioxetine, intranasal oxytocin, omega-3, s-adenosyl-methionine, scopolamine and erythropoietin. From these articles, we determined that there are a number of promising new therapies, pharmacological agents or complementary medicines, but data are just emerging. Drugs and therapies targeting cognitive dysfunction in MDD should prove effective in improving specific cognitive domains and functioning, while ruling out pseudospecificity.
Collapse
Affiliation(s)
- Brisa Solé
- Barcelona Bipolar Disorders Program, Institute of Neurosciences, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Esther Jiménez
- Barcelona Bipolar Disorders Program, Institute of Neurosciences, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Anabel Martinez-Aran
- Barcelona Bipolar Disorders Program, Institute of Neurosciences, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Eduard Vieta
- Barcelona Bipolar Disorders Program, Institute of Neurosciences, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain.
| |
Collapse
|
38
|
Rosenblat C, McIntyre RS, Alves GS, Fountoulakis KN, Carvalho AF. Beyond Monoamines-Novel Targets for Treatment-Resistant Depression: A Comprehensive Review. Curr Neuropharmacol 2015; 13:636-55. [PMID: 26467412 PMCID: PMC4761634 DOI: 10.2174/1570159x13666150630175044] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/06/2014] [Accepted: 11/20/2014] [Indexed: 12/12/2022] Open
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide. Current first line therapies target modulation of the monoamine system. A large variety of agents are currently available that effectively alter monoamine levels; however, approximately one third of MDD patients remain treatment refractory after adequate trials of multiple monoamine based therapies. Therefore, patients with treatment-resistant depression (TRD) may require modulation of pathways outside of the classic monoamine system. The purpose of this review was thus to discuss novel targets for TRD, to describe their potential mechanisms of action, the available clinical evidence for these targets, the limitations of available evidence as well as future research directions. Several alternate pathways involved in the patho-etiology of TRD have been uncovered including the following: inflammatory pathways, the oxidative stress pathway, the hypothalamic-pituitary-adrenal (HPA) axis, the metabolic and bioenergetics system, neurotrophic pathways, the glutamate system, the opioid system and the cholinergic system. For each of these systems, several targets have been assessed in preclinical and clinical models. Preclinical models strongly implicate these pathways in the patho-etiology of MDD. Clinical trials for TRD have been conducted for several novel targets; however, most of the trials discussed are small and several are uncontrolled. Therefore, further clinical trials are required to assess the true efficacy of these targets for TRD. As well, several promising novel agents have been clinically tested in MDD populations, but have yet to be assessed specifically for TRD. Thus, their applicability to TRD remains unknown.
Collapse
Affiliation(s)
- Christian Rosenblat
- Mood Disorder Psychopharmacology Unit, University Health Network, Department of Psychiatry,
University of Toronto, ON, Canada
| | - Roger S. McIntyre
- Mood Disorder Psychopharmacology Unit, University Health Network, Department of Psychiatry,
University of Toronto, ON, Canada
- Departments of Psychiatry and Pharmacology, University of
Toronto, Toronto, ON, Canada
| | - Gilberto S. Alves
- Translational Psychiatry Research Group and Department of
Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - André F. Carvalho
- Translational Psychiatry Research Group and Department of
Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
39
|
Dale EA, Ben Mabrouk F, Mitchell GS. Unexpected benefits of intermittent hypoxia: enhanced respiratory and nonrespiratory motor function. Physiology (Bethesda) 2014; 29:39-48. [PMID: 24382870 DOI: 10.1152/physiol.00012.2013] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Intermittent hypoxia (IH) is most often thought of for its role in morbidity associated with sleep-disordered breathing, including central nervous system pathology. However, recent evidence suggests that the nervous system fights back in an attempt to minimize pathology by increasing the expression of growth/trophic factors that confer neuroprotection and neuroplasticity. For example, even modest ("low dose") IH elicits respiratory motor plasticity, increasing the strength of respiratory contractions and breathing. These low IH doses upregulate hypoxia-sensitive growth/trophic factors within respiratory motoneurons but do not elicit detectable pathologies such as hippocampal cell death, neuroinflammation, or systemic hypertension. Recent advances have been made toward understanding cellular mechanisms giving rise to IH-induced respiratory plasticity, and attempts have been made to harness the benefits of low-dose IH to treat respiratory insufficiency after cervical spinal injury. Our recent realization that IH also upregulates growth/trophic factors in nonrespiratory motoneurons and improves limb (or leg) function after incomplete chronic spinal injuries suggests that IH-induced plasticity is a general feature of motor systems. Collectively, available evidence suggests that low-dose IH may represent a safe and effective treatment to restore lost motor function in diverse clinical disorders that impair motor function.
Collapse
Affiliation(s)
- E A Dale
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin
| | | | | |
Collapse
|
40
|
Zheng G, Cox T, Tribbey L, Wang GZ, Iacoban P, Booher ME, Gabriel GJ, Zhou L, Bae N, Rowles J, He C, Olsen MJ. Synthesis of a FTO inhibitor with anticonvulsant activity. ACS Chem Neurosci 2014; 5:658-65. [PMID: 24834807 DOI: 10.1021/cn500042t] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We describe the rationale for and the synthesis of a new class of compounds utilizing a modular approach that are designed to mimic ascorbic acid and to inhibit 2-oxoglutarate-dependent hydroxylases. Preliminary characterization of one of these compounds indicates in vivo anticonvulsant activity (6 Hz mouse model) at nontoxic doses, inhibition of the 2-oxoglutarate-dependent hydroxylase FTO, and expected increase in cellular N(6)-methyladenosine. This compound is also able to modulate various microRNA, an interesting result in light of the recent view that modulation of microRNAs may be useful for the treatment of CNS disease.
Collapse
Affiliation(s)
- Guanqun Zheng
- Department
of Chemistry, University of Chicago, 929 E. 57th St., Chicago, Illinois 60637, United States
| | | | | | - Gloria Z. Wang
- Department
of Chemistry, University of Chicago, 929 E. 57th St., Chicago, Illinois 60637, United States
| | | | - Matthew E. Booher
- Department
of Chemistry and Biochemistry, Kennesaw State University, 1000
Chastain Rd., Box 1203, Kennesaw, Georgia 30144, United States
| | - Gregory J. Gabriel
- Department
of Chemistry and Biochemistry, Kennesaw State University, 1000
Chastain Rd., Box 1203, Kennesaw, Georgia 30144, United States
| | - Lu Zhou
- School
of Pharmacy, Fudan University, 826 Zhangheng Rd., Shanghai 201203, P. R. China
| | | | | | - Chuan He
- Department
of Chemistry, University of Chicago, 929 E. 57th St., Chicago, Illinois 60637, United States
| | | |
Collapse
|
41
|
Zhang Y, Wang L, Dey S, Alnaeeli M, Suresh S, Rogers H, Teng R, Noguchi CT. Erythropoietin action in stress response, tissue maintenance and metabolism. Int J Mol Sci 2014; 15:10296-333. [PMID: 24918289 PMCID: PMC4100153 DOI: 10.3390/ijms150610296] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 12/20/2022] Open
Abstract
Erythropoietin (EPO) regulation of red blood cell production and its induction at reduced oxygen tension provides for the important erythropoietic response to ischemic stress. The cloning and production of recombinant human EPO has led to its clinical use in patients with anemia for two and half decades and has facilitated studies of EPO action. Reports of animal and cell models of ischemic stress in vitro and injury suggest potential EPO benefit beyond red blood cell production including vascular endothelial response to increase nitric oxide production, which facilitates oxygen delivery to brain, heart and other non-hematopoietic tissues. This review discusses these and other reports of EPO action beyond red blood cell production, including EPO response affecting metabolism and obesity in animal models. Observations of EPO activity in cell and animal model systems, including mice with tissue specific deletion of EPO receptor (EpoR), suggest the potential for EPO response in metabolism and disease.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Li Wang
- Faculty of Health Sciences, University of Macau, Macau SAR, China.
| | - Soumyadeep Dey
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Mawadda Alnaeeli
- Department of Biological Sciences, Ohio University, Zanesville, OH 43701, USA.
| | - Sukanya Suresh
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Heather Rogers
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Ruifeng Teng
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Constance Tom Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
42
|
Miskowiak KW, Vinberg M, Christensen EM, Bukh JD, Harmer CJ, Ehrenreich H, Kessing LV. Recombinant human erythropoietin for treating treatment-resistant depression: a double-blind, randomized, placebo-controlled phase 2 trial. Neuropsychopharmacology 2014; 39:1399-408. [PMID: 24322509 PMCID: PMC3988543 DOI: 10.1038/npp.2013.335] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/28/2013] [Accepted: 12/04/2013] [Indexed: 12/28/2022]
Abstract
Pharmacological treatments for depression have insufficient efficacy in 30-40% of patients and fail to reverse cognitive deficits. Erythropoietin (EPO) has neurotrophic actions and aids neurocognitive function. The aim of this exploratory study was to determine whether recombinant human EPO improves mood and memory in treatment-resistant depression. Forty treatment-resistant depressed unipolar patients with Hamilton Depression Rating Scale-17 (HDRS-17) score ≥ 17 were randomized to eight weekly EPO (Eprex; 40,000 IU) or saline infusions in a double-blind, placebo-controlled, parallel-group design. Patients were assessed at baseline and at weeks 5, 9, and 14. Primary outcome was reduction in HDRS-17 score. Global assessment of function (GAF) was reported in addition. Secondary outcome was remission rate, and tertiary outcomes were changes in Rey Auditory Verbal Learning Test (RAVLT), Beck Depression Inventory-21 (BDI-21), and World Health Organization Quality of life-BREF (WHOQOL-BREF). Exploratory outcomes were depression and cognition composite scores. HDRS-17, GAF, and remission rates showed no effects of EPO over saline at week 9 (P-value ≥ 0.09). However, EPO improved BDI (P=0.02) and WHOQOL-BREF (P=0.01), and this was maintained at follow-up week 14 (P-values ≤ 0.04). EPO enhanced verbal recall (P=0.02) and recognition (P=0.03), which was sustained at follow-up (P-values ≤ 0.04). Exploratory analysis in patients fulfilling depression severity criteria at trial start revealed ameliorated HDRS-17 in EPO (N=14) vs saline groups (N=17), which was sustained at week 14 (P-values ≤ 0.05). Exploratory analysis in the complete cohort showed that EPO reduced depression composite at weeks 9 and 14 (P-values=0.02). The findings of this exploratory study highlight EPO as an interesting compound for treatment-resistant depression, which deserves further investigation.
Collapse
Affiliation(s)
- Kamilla W Miskowiak
- Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark,Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark, Tel: +45 3864 7087, Fax: +45 3864 7077,E-mail:
| | - Maj Vinberg
- Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ellen M Christensen
- Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens D Bukh
- Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Lars V Kessing
- Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
43
|
Choi M, Ko SY, Lee IY, Wang SE, Lee SH, Oh DH, Kim YS, Son H. Carbamylated erythropoietin promotes neurite outgrowth and neuronal spine formation in association with CBP/p300. Biochem Biophys Res Commun 2014; 446:79-84. [PMID: 24607903 DOI: 10.1016/j.bbrc.2014.02.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 02/12/2014] [Indexed: 11/29/2022]
Abstract
Both erythropoietin (EPO) and carbamylated EPO (cEPO) have been shown to increase the length of neurites and spine density in neurons. However, the molecular mechanism underlying the EPO- and cEPO-induced neuronal differentiation has yet to be investigated. To address this issue, we investigated epigenetic modifications that regulate gene expression in neurons. Neurons treated with EPO or cEPO display an upregulation of E1A-binding protein (p300) and p300-mediated p53 acetylation, possibly increasing the transactivation activity of p53 on growth-associated protein 43 (GAP43). Treatment of cells with cEPO markedly increases spine formation and potentiates p300-mediated transactivation of PSD95, Shank2 and 3 compared to EPO. These results demonstrate that cEPO controls neuronal differentiation via acetylation of transcription factors and subsequent transactivation of target genes. These findings have important medical implications because cEPO is of interest in the development of therapeutic agents against neuropsychiatric disorders.
Collapse
Affiliation(s)
- Miyeon Choi
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Republic of Korea
| | - Seung Yeon Ko
- Graduate School of Biomedical Science and Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Republic of Korea
| | - In Young Lee
- Graduate School of Biomedical Science and Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Republic of Korea
| | - Sung Eun Wang
- Graduate School of Biomedical Science and Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Republic of Korea
| | - Seung Hoon Lee
- Graduate School of Biomedical Science and Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Republic of Korea
| | - Dong Hoon Oh
- Department of Psychiatry, College of Medicine and Institute of Mental Health, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Republic of Korea
| | - Yong-Seok Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Republic of Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Republic of Korea
| | - Hyeon Son
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Republic of Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Republic of Korea.
| |
Collapse
|
44
|
Bloom J, Al-Abed Y. MIF: mood improving/inhibiting factor? J Neuroinflammation 2014; 11:11. [PMID: 24447830 PMCID: PMC3901340 DOI: 10.1186/1742-2094-11-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/07/2014] [Indexed: 01/09/2023] Open
Abstract
Although major depressive disorder imposes a serious public health burden and affects nearly one in six individuals in developed countries over their lifetimes, there is still no consensus on its pathophysiology. Inflammation and cytokines have emerged as a promising new avenue in depression research, and, in particular, macrophage migration inhibitory factor (MIF) has been shown to be significant in depression physiology. In this review we summarize current research on MIF and depression. We highlight the arguments for MIF as a pro- and antidepressant species and discuss the potential implications for therapeutics.
Collapse
Affiliation(s)
- Joshua Bloom
- Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549, USA.
| | | |
Collapse
|
45
|
Miljus N, Heibeck S, Jarrar M, Micke M, Ostrowski D, Ehrenreich H, Heinrich R. Erythropoietin-mediated protection of insect brain neurons involves JAK and STAT but not PI3K transduction pathways. Neuroscience 2013; 258:218-27. [PMID: 24269933 DOI: 10.1016/j.neuroscience.2013.11.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/06/2013] [Accepted: 11/08/2013] [Indexed: 02/08/2023]
Abstract
The cytokine erythropoietin (Epo) initiates adaptive cellular responses to both moderate environmental challenges and tissue damaging insults in various non-hematopoietic mammalian tissues including the nervous system. Neuroprotective and neuroregenerative functions of Epo in mammals are mediated through receptor-associated Janus kinase 2 and intracellular signaling cascades that modify the transcription of Epo-regulated genes. Signal transducers and activators of transcription (STAT) and phosphoinositol-3-kinase (PI3K) represent key components of two important Epo-induced transduction pathways. Our previous study on insects revealed neuroprotective and regenerative functions of recombinant human Epo (rhEpo) similar to those in mammalian nervous tissues. Here we demonstrate that rhEpo effectively rescues primary cultured locust brain neurons from apoptotic cell death induced by hypoxia or the chemical compound H-7. The Janus kinase inhibitor AG-490 and the STAT inhibitor sc-355797 abolished protective effects of rhEpo on locust brain neurons. In contrast, inhibition of PI3K with LY294002 had no effect on rhEpo-mediated neuroprotection. The results indicate that rhEpo mediates the protection of locust brain neurons through interference with apoptotic pathways by the activation of a Janus kinase-associated receptor and STAT transcription factor(s). The involvement of similar transduction pathways in mammals and insects for the mediation of neuroprotection and support of neural regeneration by Epo indicates that an Epo/Epo receptor-like signaling system with high structural and functional similarity exists in both groups of animals. Epo-like signaling involved in tissue protection appears to be an ancient beneficial function shared by vertebrates and invertebrates.
Collapse
Affiliation(s)
- N Miljus
- Department of Cellular Neurobiology, Institute for Zoology, Georg-August-University Göttingen, Göttingen, Germany
| | - S Heibeck
- Department of Cellular Neurobiology, Institute for Zoology, Georg-August-University Göttingen, Göttingen, Germany
| | - M Jarrar
- Department of Cellular Neurobiology, Institute for Zoology, Georg-August-University Göttingen, Göttingen, Germany
| | - M Micke
- Department of Cellular Neurobiology, Institute for Zoology, Georg-August-University Göttingen, Göttingen, Germany
| | - D Ostrowski
- Department of Cellular Neurobiology, Institute for Zoology, Georg-August-University Göttingen, Göttingen, Germany; Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - H Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany; DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - R Heinrich
- Department of Cellular Neurobiology, Institute for Zoology, Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
46
|
Hayley S, Litteljohn D. Neuroplasticity and the next wave of antidepressant strategies. Front Cell Neurosci 2013; 7:218. [PMID: 24312008 PMCID: PMC3834236 DOI: 10.3389/fncel.2013.00218] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 10/29/2013] [Indexed: 12/13/2022] Open
Abstract
Depression is a common chronic psychiatric disorder that is also often co-morbid with numerous neurological and immune diseases. Accumulating evidence indicates that disturbances of neuroplasticity occur with depression, including reductions of hippocampal neurogenesis and cortical synaptogenesis. Improper trophic support stemming from stressor-induced reductions of growth factors, most notably brain derived neurotrophic factor (BDNF), likely drives such aberrant neuroplasticity. We posit that psychological and immune stressors can interact upon a vulnerable genetic background to promote depression by disturbing BDNF and neuroplastic processes. Furthermore, the chronic and commonly relapsing nature of depression is suggested to stem from "faulty wiring" of emotional circuits driven by neuroplastic aberrations. The present review considers depression in such terms and attempts to integrate the available evidence indicating that the efficacy of current and "next wave" antidepressant treatments, whether used alone or in combination, is at least partially tied to their ability to modulate neuroplasticity. We particularly focus on the N-methyl-D-aspartate (NMDA) antagonist, ketamine, which already has well documented rapid antidepressant effects, and the trophic cytokine, erythropoietin (EPO), which we propose as a potential adjunctive antidepressant agent.
Collapse
Affiliation(s)
- Shawn Hayley
- Department of Neuroscience, Carleton University Ottawa, ON, Canada
| | | |
Collapse
|
47
|
Jang W, Park J, Shin KJ, Kim JS, Kim JS, Youn J, Cho JW, Oh E, Ahn JY, Oh KW, Kim HT. Safety and efficacy of recombinant human erythropoietin treatment of non-motor symptoms in Parkinson's disease. J Neurol Sci 2013; 337:47-54. [PMID: 24289887 DOI: 10.1016/j.jns.2013.11.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/21/2013] [Accepted: 11/11/2013] [Indexed: 01/25/2023]
Abstract
BACKGROUND Numerous animal studies and clinical trials have demonstrated that erythropoietin (EPO) has therapeutic effects in ischemic and degenerative diseases. However, few clinical trials have investigated the effect of EPO in Parkinson's disease (PD) patients. This study was an exploratory pilot study to investigate the effects of recombinant human EPO (rhEPO) on motor and non-motor symptoms (NMS) in PD patients. METHODS A total of 26 PD patients at the Hanyang University Hospital were enrolled in the study. The participants were randomly assigned to rhEPO and placebo groups. The rhEPO group was infused intravenously (40,000 IU each) twice a week for 5 weeks. Clinical improvement was estimated using the Unified Parkinson's Disease Rating Scale-III (UPDRS-III), the NMS Scale (NMSS) and the 39-Item Parkinson's Disease Questionnaire (PDQ-39). [(18)F] N-(3-fluoropropyl)-2β-carbon ethoxy-3β-(4-iodophenyl) nortropane (FP-CIT) photon emission tomography (PET) scanning was performed on each participant at baseline and again after 12 months. RESULTS The rhEPO administration significantly improved the NMSS and PDQ-39 scores at 12 months. The UPDRS-III, which reflects motor function, did not change significantly after the rhEPO treatment. With the NMSS, the domains of cardiovascular autonomic function, sleep/fatigue, mood/cognition and attention/memory showed significant changes. None of the participants experienced any serious adverse effects. DISCUSSION We found that rhEPO had beneficial effects on NMS but not on motor function. Dopaminergic refractory NMS, such as cardiovascular autonomic dysfunction and cognition, showed improvement after the administration of rhEPO. Our results suggest that rhEPO might be a good candidate for the treatment of NMS in PD patients.
Collapse
Affiliation(s)
- Wooyoung Jang
- Department of Neurology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Republic of Korea; Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Jinse Park
- Department of Neurology, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea
| | - Kyung Jin Shin
- Department of Neurology, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea
| | - Joong-Seok Kim
- Department of Neurology, The Catholic University College of Medicine, Seoul, Republic of Korea
| | - Ji Sun Kim
- Department of Neurology, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Jinyoung Youn
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin Whan Cho
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eungseok Oh
- Department of Neurology, Chungnam National University Hospital, College of Medicine, Daejeon, Republic of Korea
| | - Jin Young Ahn
- Department of Neurology, Seoul Medical Center, Seoul, Republic of Korea
| | - Ki-Wook Oh
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hee-Tae Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
48
|
Osborn M, Rustom N, Clarke M, Litteljohn D, Rudyk C, Anisman H, Hayley S. Antidepressant-like effects of erythropoietin: a focus on behavioural and hippocampal processes. PLoS One 2013; 8:e72813. [PMID: 24019878 PMCID: PMC3760922 DOI: 10.1371/journal.pone.0072813] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 07/19/2013] [Indexed: 12/11/2022] Open
Abstract
Depression is a chronic and debilitating condition with a significant degree of relapse and treatment resistance that could stem, at least in part, from disturbances of neuroplasticity. This has led to an increased focus on treatment strategies that target brain derived neurotrophic factor (BDNF), synaptic plasticity and adult neurogenesis. In the current study we aimed to assess whether erythropoietin (EPO) would have antidepressant-like effects given its already established pro-trophic actions. In particular, we assessed whether EPO would diminish the deleterious effects of a social stressor in mice. Indeed, EPO induced anxiolytic and antidepressant-like responses in a forced swim test, open field, elevated-plus maze, and a novelty test, and appeared to blunt some of the negative behavioural effects of a social stressor. Furthermore, EPO promoted adult hippocampal neurogenesis, an important feature of effective antidepressants. Finally, a separate study using the mTOR inhibitor rapamycin revealed that antagonizing this pathway prevented the impact of EPO upon forced swim performance. These data are consistent with previous findings showing that the mTOR pathway and its neurogenic and synaptogenic effects might mediate the behavioral consequences of antidepressant agents. Our findings further highlight EPO as a possible adjunct treatment for affective disorders, as well as other stressor associated disorders of impaired neuroplasticity.
Collapse
Affiliation(s)
- Meagan Osborn
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Nazneen Rustom
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Melanie Clarke
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Darcy Litteljohn
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Chris Rudyk
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Hymie Anisman
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
49
|
Affiliation(s)
- Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, Ont., Canada
| | - Hymie Anisman
- Department of Neuroscience, Carleton University, Ottawa, Ont., Canada
| |
Collapse
|
50
|
Audet MC, Anisman H. Interplay between pro-inflammatory cytokines and growth factors in depressive illnesses. Front Cell Neurosci 2013; 7:68. [PMID: 23675319 PMCID: PMC3650474 DOI: 10.3389/fncel.2013.00068] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/22/2013] [Indexed: 01/18/2023] Open
Abstract
The development of depressive disorders had long been attributed to monoamine variations, and pharmacological treatment strategies likewise focused on methods of altering monoamine availability. However, the limited success achieved by treatments that altered these processes spurred the search for alternative mechanisms and treatments. Here we provide a brief overview concerning a possible role for pro-inflammatory cytokines and growth factors in major depression, as well as the possibility of targeting these factors in treating this disorder. The data suggest that focusing on one or another cytokine or growth factor might be counterproductive, especially as these factors may act sequentially or in parallel in affecting depressive disorders. It is also suggested that cytokines and growth factors might be useful biomarkers for individualized treatments of depressive illnesses.
Collapse
|