1
|
Vieira MPS, Silva OBS, Souza GF, Cavalcante GTS, Souza FMA, Gitaí DLG, Castro OW, Nicácio DCSP, Cofré AHR, Amorós MA, Silva AV, Neto GJDS, Silva AHQ, Correia WBZGB, Junkes JA, Duarte FS, Guedes JS, Nogueira FCS, Meneghetti MR, Duzzioni M. First evaluation of the anxiolytic-like effects of a bromazepam‑palladium complex in mice. J Inorg Biochem 2022; 237:112012. [PMID: 36162209 DOI: 10.1016/j.jinorgbio.2022.112012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
A significant fraction of patients are affected by persistent fear and anxiety. Currently, there are several anxiolytic drug options, however their clinical outcomes do not fully manage the symptoms. Here, we evaluated the effects of a bromazepam‑palladium derivative [2-{(7-bromo-2-oxo-1,3-dihydro-2H-1,4-benzodiazepin-5-il)pyridinyl-κ2-N,N}chloropalladium(II)], [(BMZ)PdCl2], on fear/anxiety and memory-related behavior in mice. For this, female Swiss mice were treated intraperitoneally (i.p.) with saline (NaCl 0.9%) or [(BMZ)PdCl2] (0.5, 5.0, or 50 μg/kg). After 30 min, different tests were performed to evaluate anxiety, locomotion, and memory. We also evaluated the acute toxicity of [(BMZ)PdCl2] using a cell viability assay (neutral red uptake assay), and whether the drugs mechanism of action involves the γ-aminobutyric acid type A (GABAA) receptor complex by pre-treating animals with flumazenil (1.0 mg/kg, i.p., a competitive antagonist of GABAA-binding site). Our results demonstrate that [(BMZ)PdCl2] induces an anxiolytic-like phenotype in the elevated plus-maze test and that this effect can be blocked by flumazenil. Furthermore, there were no behavioral alterations induced by [(BMZ)PdCl2], as evaluated in the light-dark box, open field, and step-down passive avoidance tests. In the acute toxicity assay, [(BMZ)PdCl2] presented IC50 and LD50 values of 218 ± 60 μg/mL and 780 ± 80 mg/kg, respectively, and GSH category 4. Taken together, our results show that the anxiolytic-like effect of acute treatment with [(BMZ)PdCl2] occurs through the modulation of the benzodiazepine site in the GABAA receptor complex. Moreover, we show indications that [(BMZ)PdCl2] does not promote sedation and amnesia and presents the same toxicity as the bromazepam prototype.
Collapse
Affiliation(s)
- Mirella P S Vieira
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Ozileudiane B S Silva
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Gabriela F Souza
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Gabriela T S Cavalcante
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Fernanda M A Souza
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Daniel L G Gitaí
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Olagide W Castro
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Dannyele C S P Nicácio
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Axel H R Cofré
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Mariana A Amorós
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Artur V Silva
- Grupo de Catálise e Reatividade Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Geraldo José da Silva Neto
- Grupo de Catálise e Reatividade Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Allysson H Q Silva
- Grupo de Catálise e Reatividade Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Walleska B Z G B Correia
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil; Grupo de Catálise e Reatividade Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil
| | - Janaína A Junkes
- Instituto de Tecnologia e Pesquisa, Centro Universitário Tiradentes, Avenida Comendador Gustavo Paiva, 5017, Cruz das Almas, Maceió, Alagoas 57038-000, Brazil
| | - Filipe S Duarte
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, S/N, Cidade Universitária, Recife, Pernambuco 50670-420, Brazil
| | - Jéssica S Guedes
- Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos, 149, Cidade Universitária, Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Fábio C S Nogueira
- Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos, 149, Cidade Universitária, Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Mario R Meneghetti
- Grupo de Catálise e Reatividade Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil.
| | - Marcelo Duzzioni
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Avenida Lourival Melo Mota, S/N, Cidade Universitária, Maceió, Alagoas 57072-900, Brazil.
| |
Collapse
|
2
|
Godoy LD, Prizon T, Rossignoli MT, Leite JP, Liberato JL. Parvalbumin Role in Epilepsy and Psychiatric Comorbidities: From Mechanism to Intervention. Front Integr Neurosci 2022; 16:765324. [PMID: 35250498 PMCID: PMC8891758 DOI: 10.3389/fnint.2022.765324] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
Parvalbumin is a calcium-binding protein present in inhibitory interneurons that play an essential role in regulating many physiological processes, such as intracellular signaling and synaptic transmission. Changes in parvalbumin expression are deeply related to epilepsy, which is considered one of the most disabling neuropathologies. Epilepsy is a complex multi-factor group of disorders characterized by periods of hypersynchronous activity and hyperexcitability within brain networks. In this scenario, inhibitory neurotransmission dysfunction in modulating excitatory transmission related to the loss of subsets of parvalbumin-expressing inhibitory interneuron may have a prominent role in disrupted excitability. Some studies also reported that parvalbumin-positive interneurons altered function might contribute to psychiatric comorbidities associated with epilepsy, such as depression, anxiety, and psychosis. Understanding the epileptogenic process and comorbidities associated with epilepsy have significantly advanced through preclinical and clinical investigation. In this review, evidence from parvalbumin altered function in epilepsy and associated psychiatric comorbidities were explored with a translational perspective. Some advances in potential therapeutic interventions are highlighted, from current antiepileptic and neuroprotective drugs to cutting edge modulation of parvalbumin subpopulations using optogenetics, designer receptors exclusively activated by designer drugs (DREADD) techniques, transcranial magnetic stimulation, genome engineering, and cell grafting. Creating new perspectives on mechanisms and therapeutic strategies is valuable for understanding the pathophysiology of epilepsy and its psychiatric comorbidities and improving efficiency in clinical intervention.
Collapse
Affiliation(s)
- Lívea Dornela Godoy
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Tamiris Prizon
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- João Pereira Leite,
| | - José Luiz Liberato
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- *Correspondence: José Luiz Liberato,
| |
Collapse
|
3
|
Ohgomori T, Jinno S. Modulation of neuropathology and cognitive deficits by lipopolysaccharide preconditioning in a mouse pilocarpine model of status epilepticus. Neuropharmacology 2020; 176:108227. [PMID: 32634527 DOI: 10.1016/j.neuropharm.2020.108227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/15/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Recent studies indicate that microglia may play a critical role in epileptogenesis during the early post-status epilepticus (SE) period. In this study, we aimed to elucidate the effects of preconditioning of microglia with lipopolysaccharide (LPS) on neuropathology and cognitive deficits in a mouse pilocarpine model of SE. Mice were treated with an intraperitoneal injection of LPS 24 h before SE induction. The open field test at 13 days after SE showed that LPS preconditioning suppressed SE-induced hyperactivity. The Y-maze test at 14 days after SE showed that LPS preconditioning ameliorated SE-induced working memory impairment. The extent of neuronal damage was decreased by LPS preconditioning in the hippocampus of mice euthanized at 15 days after SE. Gene profile analysis of hippocampal microglia at 15 days after SE showed that the expression level of interleukin-1β was increased by SE induction but decreased by LPS preconditioning. By contrast, SE induction increased the expression levels of phagocytosis-related genes, and LPS preconditioning further enhanced their expression. Interestingly, LPS preconditioning increased the numerical density of hippocampal microglia expressing the 5D4 keratan sulfate epitope, a population of cells known to be involved in phagocytosis. The voxel density of glutamatergic synapses was increased by SE induction but decreased by LPS preconditioning, while GABAergic synapses were not affected by these procedures. Our findings indicate that LPS preconditioning may in part alleviate SE-related abnormal synaptogenesis and cognitive deficits, and also suggest that modulation of microglial activation during the early post-SE period may be a novel strategy for epilepsy treatment.
Collapse
Affiliation(s)
- Tomohiro Ohgomori
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan; Department of Rehabilitation, Faculty of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, 597-0104, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
4
|
Ma T, Li B, Le Y, Xu Y, Wang F, Tian Y, Cai Q, Liu Z, Xiao L, Li H. Demyelination contributes to depression comorbidity in a rat model of chronic epilepsy via dysregulation of Olig2/LINGO-1 and disturbance of calcium homeostasis. Exp Neurol 2019; 321:113034. [PMID: 31415741 DOI: 10.1016/j.expneurol.2019.113034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/30/2019] [Accepted: 08/11/2019] [Indexed: 01/31/2023]
Abstract
Depression is the most common comorbidity among patients with epilepsy. Despite prior assumptions that antiepileptic drugs are to blame, more and more pathological studies have shown that latent neurological alterations associated with white matter injury and demyelination may underlie this link. However, whether disturbances in cerebral myelination contribute to the initiation of depression in epilepsy remains unclear. In the present study, we investigated the connection between demyelination disorders and the development of depression comorbidity in epilepsy. We first induced spontaneous recurrent epilepticus seizure (SRS) in young rats with pilocarpine. We then established depressive behaviors by recurrent forced swimming test and evaluate the depression state by sucrose preference test. The ratio of depression comorbidity in SRS rats was then calculated. Next, myelination in SRS-Depressed (SRS-D) rats was explored via PCR, western blotting, and immunohistochemistry for the key myelin promotion factor, Olig2 and inhibition factor, LINGO-1. Finally, in situ RNA hybridization of NCX3, one of the dominant Ca2+ extrusion proteins in oligodendrocytes (OLs) was performed to explore whether Ca2+ homeostasis of OLs was disturbed in epilepsy-induced hypoxic conditions and involved in the epilepsy-depression comorbidity. Our results revealed that one-quarter of the SRS rats displayed typical depressive behaviors, which were defined as SRS-D rats. In SRS-D rats, severe demyelination was also observed, accompanied with reduced expression of MBP, Olig2, and NCX3 and increased expression of LINGO-1 in the cingulate gyrus. In SRS-Non depressed rats, no significant changes were found from the control animals. This work provides new insights into the demyelination in epilepsy-depression comorbidity, which involves dysregulation of Olig2/LINGO-1 and disturbance of Ca2+ homeostasis.
Collapse
Affiliation(s)
- Teng Ma
- Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Baichuan Li
- Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Yifan Le
- Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Yang Xu
- Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Fei Wang
- Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Yanping Tian
- Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Qiyan Cai
- Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Zhi Liu
- Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Lan Xiao
- Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Hongli Li
- Department of Histology and Embryology, Army Medical University, Chongqing 400038, China..
| |
Collapse
|
5
|
Effects of Chronic Topiramate, Lacosamide, and Levetiracetam Pre-treatment on a Status Epilepticus Model in Rat Pups. NEUROPHYSIOLOGY+ 2019. [DOI: 10.1007/s11062-019-09788-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
6
|
Ramos Costa AP, Levone BR, Gururajan A, Moloney G, Hoeller AA, Lino-de-Oliveira C, Dinan TG, O'Leary OF, Monteiro de Lima TC, Cryan JF. Enduring effects of muscarinic receptor activation on adult hippocampal neurogenesis, microRNA expression and behaviour. Behav Brain Res 2019; 362:188-198. [PMID: 30650342 DOI: 10.1016/j.bbr.2018.12.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/17/2018] [Accepted: 12/22/2018] [Indexed: 12/27/2022]
Abstract
The cholinergic system is one of the most important neurotransmitter systems in the brain with key roles in autonomic control and the regulation of cognitive and emotional responses. However, the precise mechanism by which the cholinergic system influences behaviour is unclear. Adult hippocampal neurogenesis (AHN) is a potential mediator in this context based on evidence, which has identified this process as putative mechanism of antidepressant action. More recently, post-transcriptional regulation by microRNAs is another candidate mechanism based on its involvement in the regulation of AHN and neurotransmission. Taking into account this background, we evaluated the behavioural effects of a non-convulsant dose of pilocarpine - a non-selective muscarinic receptor (mAChR) agonist - in adult Wistar rats. Furthermore, we quantified the expression of different microRNAs implicated in the regulation of AHN. Our results suggests that pilocarpine treatment increases AHN in the granular cell layer but also induced ectopic neurogenesis. Pilocarpine treatment reduced immobility time in forced swimming test but did not affect fear conditioning response, sucrose preference or novelty supressed feeding behaviour. In addition, treatment with pilocarpine down-regulated the expression of 6 microRNAs implicated in the regulation of neurotrophin signalling and axon guidance pathways. Therefore, we suggest that the low-dose stimulation of the cholinergic system is sufficient to alter AHN of rats through post-transcriptional mechanisms, which might contribute to long-lasting behavioural effects.
Collapse
Affiliation(s)
- Ana Paula Ramos Costa
- APC Microbiome Ireland, University College Cork, Ireland; Graduate Program in Medical Sciences, Federal University of Santa Catarina, Brazil
| | | | - Anand Gururajan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Gerard Moloney
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Alexandre A Hoeller
- Graduate Program in Medical Sciences, Federal University of Santa Catarina, Brazil
| | | | | | - Olivia F O'Leary
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland
| | | | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland.
| |
Collapse
|
7
|
Francisco EDS, Guedes RCA. Sub-Convulsing Dose Administration of Pilocarpine Reduces Glycemia, Increases Anxiety-Like Behavior and Decelerates Cortical Spreading Depression in Rats Suckled on Various Litter Sizes. Front Neurosci 2018; 12:897. [PMID: 30559645 PMCID: PMC6287009 DOI: 10.3389/fnins.2018.00897] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022] Open
Abstract
Epilepsy and malnutrition constitute two worldwide health problems affecting behavior and brain function. The cholinergic agonist pilocarpine (300-380 mg/kg; single administration) reproduces the human type of temporal lobe epilepsy in rats. Pilocarpine-induced epilepsy in rodents has been associated with glycemia, learning and memory and anxiety disturbances. Cortical spreading depression (CSD) is a neural response that has been linked to brain excitability disorders and its diseases, and has been shown to be antagonized by acute pilocarpine. This study aimed to further investigate the effect of chronic pilocarpine at a sub-convulsing dose on weight gain, blood glucose levels, anxiety-like behavior and CSD. In addition, we tested whether unfavorable lactation-induced malnutrition could modulate the pilocarpine effects. Wistar rats were suckled under normal size and large size litters (litters with 9 and 15 pups; groups L9 and L15, respectively). From postnatal days (PND) 35-55, these young animals received a daily intraperitoneal injection of pilocarpine (45 mg/kg/day), or vehicle (saline), or no treatment (naïve). On PND58, the animals were behaviorally tested in an open field apparatus. This was immediately followed by 6 h fasting and blood glucose measurement. At PND60-65, CSD was recorded, and its parameters (velocity of propagation, amplitude, and duration) were calculated. Compared to the control groups, pilocarpine-treated animals presented with reduced weight gain and lower glycemia, increased anxiety-like behavior and decelerated CSD propagation. CSD velocity was higher (p < 0.001) in the L15 groups in comparison to the corresponding groups in the L9 condition. The results demonstrate an influence of chronic (21-day) administration of a sub-convulsing, very low dose (45 mg/kg) of pilocarpine on CSD propagation, anxiety-like behavior, glycemia and body weight. Furthermore, data reinforce the hypothesis of a relationship between CSD and brain excitability. The lactation condition seems to differentially modulate these effects.
Collapse
|
8
|
Mazumder AG, Sharma P, Patial V, Singh D. Ginkgo biloba L. attenuates spontaneous recurrent seizures and associated neurological conditions in lithium-pilocarpine rat model of temporal lobe epilepsy through inhibition of mammalian target of rapamycin pathway hyperactivation. JOURNAL OF ETHNOPHARMACOLOGY 2017; 204:8-17. [PMID: 28390940 DOI: 10.1016/j.jep.2017.03.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/19/2017] [Accepted: 03/23/2017] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginkgo biloba L. (Ginkgoaceae) has been widely used in traditional medicine for variety of neurological conditions particularly behavioral and memory impairments. AIM OF THE STUDY The present study was envisaged to explore the effect of a standardized fraction of Ginkgo biloba leaves (GBbf) in rat model of lithium-pilocarpine induced spontaneous recurrent seizures, and associated behavioral impairments and cognitive deficit. MATERIALS AND METHODS Rats showing appearance of spontaneous recurrent seizures following lithium pilocarpine (LiPc)-induced status epilepticus (SE) were treated with different doses of GBbf or vehicle for subsequent 4 weeks. The severity of seizures and aggression in rats were scored following treatment with GBbf. Further, open field, forced swim, novel object recognition and Morris water maze tests were conducted. Histopathological, protein levels and gene expression studies were performed in the isolated brains. RESULTS Treatment with GBbf reduced seizure severity score and aggression in epileptic animals. Improved spatial cognitive functions and recognition memory, along with reduction in anxiety-like behavior were also observed in the treated animals. Histopathological examination by Nissl staining showed reduction in neuronal damage in the hippocampal pyramidal layer. The dentate gyrus and Cornu Ammonis 3 regions of the hippocampus showed reduction in mossy fiber sprouting. GBbf treatment attenuated ribosomal S6 and pS6 proteins, and hippocampal mTOR, Rps6 and Rps6kb1 mRNA levels. CONCLUSIONS The results of present study concluded that GBbf treatment suppressed lithium-pilocarpine induced spontaneous recurrent seizures severity and incidence with improved cognitive functions, reduced anxiety-like behavior and aggression. The effect was found to be due to inhibition of mTOR pathway hyperactivation linked with recurrent seizures.
Collapse
Affiliation(s)
- Arindam Ghosh Mazumder
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Pallavi Sharma
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India.
| |
Collapse
|
9
|
Reis AS, Pinz M, Duarte LFB, Roehrs JA, Alves D, Luchese C, Wilhelm EA. 4-phenylselenyl-7-chloroquinoline, a novel multitarget compound with anxiolytic activity: Contribution of the glutamatergic system. J Psychiatr Res 2017; 84:191-199. [PMID: 27756019 DOI: 10.1016/j.jpsychires.2016.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/12/2016] [Accepted: 10/10/2016] [Indexed: 01/09/2023]
Abstract
A growing body of evidence demonstrates that quinoline compounds have attracted much attention in the field of drug development. Accordingly, 4-phenylselenyl-7-chloroquinoline (4-PSQ) is a new quinoline derivative containing selenium, which showed a potential antioxidant, antinociceptive and anti-inflammatory effect. The present study was undertaken to evaluate the anxiolytic-like properties of 4-PSQ. Mice were orally pretreated with 4-PSQ (5-50 mg/kg) or vehicle, 30 min prior to the elevated plus-maze (EPM), light-dark (LDT) or open field (OFT) tests. A time-response curve was carried out by administration of 4-PSQ (50 mg/kg) at different times before the EPM test. The involvement of glutamate uptake/release and Na+, K+-ATPase activity in the anxiolytic-like effect was investigated in cerebral cortices. In addition, the effectiveness of acute treatment with 4-PSQ was evaluated in a model of kainate (KA)-induced anxiety-related behavior. Finally, acute toxicity of this compound was investigated. 4-PSQ produced an anxiolytic-like action, both in EPM and LDT. In OFT, 4-PSQ did not affect locomotor and exploratory activities. 4-PSQ anxiolytic-like effect started at 0.5 h and remained significant up to 72 h after administration. Treatment with 4-PSQ reduced [3H] glutamate uptake, but the [3H] glutamate release and Na+, K+-ATPase activity were not altered. KA-induced anxiety-related behavior was protected by 4-PSQ pretreatment. Additionally, 4-PSQ exposure did not alter urea levels, aspartate (AST) and alanine aminotrasferase (ALT) activities in plasma. Parameters of oxidative stress in brain and liver of mice were not modified by 4-PSQ. Taken together these data demonstrated that the anxiolytic-like effect caused by 4-PSQ seems to be mediated by involvement of the glutamatergic system.
Collapse
Affiliation(s)
- Angélica S Reis
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, Grupo de Pesquisa em Neurobiotecnologia - GPN, CCQFA Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil
| | - Mikaela Pinz
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, Grupo de Pesquisa em Neurobiotecnologia - GPN, CCQFA Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil
| | - Luis Fernando B Duarte
- Programa de Pós-Graduação em Química, Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brasil
| | - Juliano A Roehrs
- Programa de Pós-Graduação em Química, Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brasil
| | - Diego Alves
- Programa de Pós-Graduação em Química, Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brasil
| | - Cristiane Luchese
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, Grupo de Pesquisa em Neurobiotecnologia - GPN, CCQFA Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil.
| | - Ethel A Wilhelm
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, Grupo de Pesquisa em Neurobiotecnologia - GPN, CCQFA Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil.
| |
Collapse
|
10
|
Abstract
Anxiety disorders are frequent, though probably underdiagnosed, comorbidities in epilepsy. Epilepsy and anxiety may share common neurobiological correlates as shown in animal models and suggested by studies demonstrating anxiety disorders before the manifestation of epilepsy. Comorbid anxiety disorders have a major impact on the affected patients' quality of life and may increase the risk for suicidality. Successful treatment of the epilepsy may alleviate anxiety symptoms. Treatment of anxiety is based on selective serotonin reuptake inhibitors, benzodiazepines (although only as second-line choices), and psychotherapy. Specific AEDs (especially pregabalin) have been shown to have anxiolytic properties. This paper is aimed at reviewing anxiety disorders in patients with epilepsy discussing current scientific evidence about pathophysiology, clinical aspects, and treatment strategies.
Collapse
Affiliation(s)
- Christian Brandt
- Department of General Epileptology, Bethel Epilepsy Centre, Mara Hospital, Maraweg 21, D-33617 Bielefeld, Germany.
| | - Marco Mula
- Atkinson Morley Regional Neuroscience Centre, St. George's University Hospitals NHS Foundation Trust, London, UK; Institute of Medical and Biomedical Sciences, St George's University of London, London, UK.
| |
Collapse
|
11
|
Hoeller AA, Costa APR, Bicca MA, Matheus FC, Lach G, Spiga F, Lightman SL, Walz R, Collingridge GL, Bortolotto ZA, de Lima TCM. The Role of Hippocampal NMDA Receptors in Long-Term Emotional Responses following Muscarinic Receptor Activation. PLoS One 2016; 11:e0147293. [PMID: 26795565 PMCID: PMC4721870 DOI: 10.1371/journal.pone.0147293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 01/01/2016] [Indexed: 01/28/2023] Open
Abstract
Extensive evidence indicates the influence of the cholinergic system on emotional processing. Previous findings provided new insights into the underlying mechanisms of long-term anxiety, showing that rats injected with a single systemic dose of pilocarpine—a muscarinic receptor (mAChR) agonist—displayed persistent anxiogenic-like responses when evaluated in different behavioral tests and time-points (24 h up to 3 months later). Herein, we investigated whether the pilocarpine-induced long-term anxiogenesis modulates the HPA axis function and the putative involvement of NMDA receptors (NMDARs) following mAChRs activation. Accordingly, adult male Wistar rats presented anxiogenic-like behavior in the elevated plus-maze (EPM) after 24 h or 1 month of pilocarpine injection (150 mg/kg, i.p.). In these animals, mAChR activation disrupted HPA axis function inducing a long-term increase of corticosterone release associated with a reduced expression of hippocampal GRs, as well as consistently decreased NMDAR subunits expression. Furthermore, in another group of rats injected with memantine–an NMDARs antagonist (4 mg/kg, i.p.)–prior to pilocarpine, we found inhibition of anxiogenic-like behaviors in the EPM but no further alterations in the pilocarpine-induced NMDARs downregulation. Our data provide evidence that behavioral anxiogenesis induced by mAChR activation effectively yields short- and long-term alterations in hippocampal NMDARs expression associated with impairment of hippocampal inhibitory regulation of HPA axis activity. This is a novel mechanism associated with anxiety-like responses in rats, which comprise a putative target to future translational studies.
Collapse
Affiliation(s)
- Alexandre A. Hoeller
- Postgraduate Program in Medical Sciences, Center of Health Sciences, University Hospital, Federal University of Santa Catarina, Florianópolis, SC, 88040–970, Brazil
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040–970, Brazil
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Dorothy Hodgkin Building, Bristol, BS1 3NY, United Kingdom
- * E-mail: (AAH); (TCML)
| | - Ana Paula R. Costa
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040–970, Brazil
| | - Maíra A. Bicca
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040–970, Brazil
| | - Filipe C. Matheus
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040–970, Brazil
| | - Gilliard Lach
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040–970, Brazil
- Institute of Pharmacology, Innsbruck Medical University, Innsbruck, 6020, Austria
| | - Francesca Spiga
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, BS1 3NY, United Kingdom
| | - Stafford L. Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, BS1 3NY, United Kingdom
| | - Roger Walz
- Postgraduate Program in Medical Sciences, Center of Health Sciences, University Hospital, Federal University of Santa Catarina, Florianópolis, SC, 88040–970, Brazil
- Department of Clinical Medicine, Center of Health Sciences, University Hospital, Federal University of Santa Catarina, Florianópolis, SC, 88040–970, Brazil
| | - Graham L. Collingridge
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Dorothy Hodgkin Building, Bristol, BS1 3NY, United Kingdom
| | - Zuner A. Bortolotto
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Dorothy Hodgkin Building, Bristol, BS1 3NY, United Kingdom
| | - Thereza C. M. de Lima
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040–970, Brazil
- * E-mail: (AAH); (TCML)
| |
Collapse
|
12
|
|
13
|
NK1 receptors antagonism of dorsal hippocampus counteract the anxiogenic-like effects induced by pilocarpine in non-convulsive Wistar rats. Behav Brain Res 2014; 265:53-60. [DOI: 10.1016/j.bbr.2014.01.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 01/28/2014] [Accepted: 01/31/2014] [Indexed: 11/21/2022]
|
14
|
Dihydromyricetin prevents fetal alcohol exposure-induced behavioral and physiological deficits: the roles of GABAA receptors in adolescence. Neurochem Res 2014; 39:1147-61. [PMID: 24676702 DOI: 10.1007/s11064-014-1291-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
Abstract
Fetal alcohol exposure (FAE) can lead to a variety of behavioral and physiological disturbances later in life. Understanding how alcohol (ethanol, EtOH) affects fetal brain development is essential to guide the development of better therapeutics for FAE. One of EtOH's many pharmacological targets is the γ-aminobutyric acid type A receptor (GABAAR), which plays a prominent role in early brain development. Acute EtOH potentiates inhibitory currents carried by certain GABAAR subtypes, whereas chronic EtOH leads to persistent alterations in GABAAR subunit composition, localization and function. We recently introduced a flavonoid compound, dihydromyricetin (DHM), which selectively antagonizes EtOH's intoxicating effects in vivo and in vitro at enhancing GABAAR function as a candidate for alcohol abuse pharmacotherapy. Here, we studied the effect of FAE on physiology, behavior and GABAAR function of early adolescent rats and tested the utility of DHM as a preventative treatment for FAE-induced disturbances. Gavage administration of EtOH (1.5, 2.5, or 5.0 g/kg) to rat dams on day 5, 8, 10, 12, and 15 of pregnancy dose-dependently reduced female/male offspring ratios (largely through decreased numbers of female offspring) and offspring body weights. FAE (2.5 g/kg) rats tested on postnatal days (P) 25-32 also exhibited increased anxiety and reduced pentylenetetrazol (PTZ)-induced seizure threshold. Patch-clamp recordings from dentate gyrus granule cells (DGCs) in hippocampal slices from FAE (2.5 g/kg) rats at P25-35 revealed reduced sensitivity of GABAergic miniature inhibitory postsynaptic currents (mIPSCs) and tonic current (Itonic) to potentiation by zolpidem (0.3 μM). Interestingly, potentiation of mIPSCs by gaboxadol increased, while potentiation of Itonic decreased in DGCs from FAE rats. Co-administration of EtOH (1.5 or 2.5 g/kg) with DHM (1.0 mg/kg) in pregnant dams prevented all of the behavioral, physiological, and pharmacological alterations observed in FAE offspring. DHM administration alone in pregnant rats had no adverse effect on litter size, progeny weight, anxiety level, PTZ seizure threshold, or DGC GABAAR function. Our results indicate that FAE induces long-lasting alterations in physiology, behavior, and hippocampal GABAAR function and that these deficits are prevented by DHM co-treatment of EtOH-exposed dams. The absence of adverse side effects and the ability of DHM to prevent FAE consequences suggest that DHM is an attractive candidate for development as a treatment for prevention of fetal alcohol spectrum disorders.
Collapse
|
15
|
Hoeller AA, Duzzioni M, Duarte FS, Leme LR, Costa APR, Santos ECDS, de Pieri CH, dos Santos AA, Naime AA, Farina M, de Lima TCM. GABA-A receptor modulators alter emotionality and hippocampal theta rhythm in an animal model of long-lasting anxiety. Brain Res 2013; 1532:21-31. [DOI: 10.1016/j.brainres.2013.07.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 07/08/2013] [Accepted: 07/25/2013] [Indexed: 11/26/2022]
|