1
|
Bojesen KB, Rostrup E, Sigvard AK, Mikkelsen M, Edden RAE, Ebdrup BH, Glenthøj B. The Trajectory of Prefrontal GABA Levels in Initially Antipsychotic-Naïve Patients With Psychosis During 2 Years of Treatment and Associations With Striatal Cerebral Blood Flow and Outcome. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:703-713. [PMID: 38145706 DOI: 10.1016/j.bpsc.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/03/2023] [Accepted: 12/15/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND GABAergic (gamma-aminobutyric acidergic) function in the prefrontal cortex seems dysfunctional in patients with first-episode psychosis, but the impact of longer-term treatment and relationship to clinical outcomes and striatal activity are unknown. METHODS A longitudinal study of 39 antipsychotic-naïve and benzodiazepine-free patients with psychosis (22.4 ± 5.4 years, 64% women) and 54 matched healthy control participants (HCs) (22.2 ± 4.3 years, 61% women) who were followed up after 6 weeks (28 patients, 51 HCs), 6 months (17 patients, 47 HCs), and 2 years (21 patients, 43 HCs) was completed. GABA levels in the dorsal anterior cingulate cortex and striatal resting cerebral blood flow were assessed on a 3T magnetic resonance scanner at all visits. RESULTS GABA levels in the dorsal anterior cingulate cortex were significantly lower in patients at baseline and after 6 weeks but not after 6 months or 2 years. Analyses of groups separately revealed decreased GABA levels after 2 years in HCs but stable levels in patients. Treatment increased striatal resting cerebral blood flow after 6 weeks and 6 months but not after 2 years. GABA levels were negatively associated with striatal resting cerebral blood flow in both groups at all visits. Last, lower baseline GABA levels in patients were related to less functional improvement after 2 years. CONCLUSIONS The findings suggest a different trajectory of GABA levels and striatal perfusion in first-episode patients over 2 years of antipsychotic treatment compared with HCs and indicate a downregulatory role of prefrontal GABAergic function on the striatum. Moreover, abnormally low prefrontal GABA level at illness onset may be a marker for a more severe prognosis.
Collapse
Affiliation(s)
- Kirsten Borup Bojesen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark.
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark; Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Anne Korning Sigvard
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Mark Mikkelsen
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland; F.M. Kirby Research Center for Functional Brain Imaging, Baltimore, Maryland
| | - Bjørn Hylsebeck Ebdrup
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birte Glenthøj
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Bojesen KB, Glenthøj BY, Sigvard AK, Tangmose K, Raghava JM, Ebdrup BH, Rostrup E. Cerebral blood flow in striatum is increased by partial dopamine agonism in initially antipsychotic-naïve patients with psychosis. Psychol Med 2023; 53:6691-6701. [PMID: 36754993 PMCID: PMC10600821 DOI: 10.1017/s0033291723000144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Resting cerebral blood flow (rCBF) in striatum and thalamus is increased in medicated patients with psychosis, but whether this is caused by treatment or illness pathology is unclear. Specifically, effects of partial dopamine agonism, sex, and clinical correlates on rCBF are sparsely investigated. We therefore assessed rCBF in antipsychotic-naïve psychosis patients before and after aripiprazole monotherapy and related findings to sex and symptom improvement. METHODS We assessed rCBF with the pseudo-Continuous Arterial Spin Labeling (PCASL) sequence in 49 first-episode patients (22.6 ± 5.2 years, 58% females) and 50 healthy controls (HCs) (22.3 ± 4.4 years, 63% females) at baseline and in 29 patients and 49 HCs after six weeks. RCBF in striatum and thalamus was estimated with a region-of-interest (ROI) approach. Psychopathology was assessed with the positive and negative syndrome scale. RESULTS Baseline rCBF in striatum and thalamus was not altered in the combined patient group compared with HCs, but female patients had lower striatal rCBF compared with male patients (p = 0.009). Treatment with a partial dopamine agonist increased rCBF significantly in striatum (p = 0.006) in the whole patient group, but not significantly in thalamus. Baseline rCBF in nucleus accumbens was negatively associated with improvement in positive symptoms (p = 0.046), but baseline perfusion in whole striatum and thalamus was not related to treatment outcome. CONCLUSIONS The findings suggest that striatal perfusion is increased by partial dopamine agonism and decreased in female patients prior to first treatment. This underlines the importance of treatment effects and sex differences when investigating the neurobiology of psychosis.
Collapse
Affiliation(s)
- Kirsten Borup Bojesen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Birte Yding Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Korning Sigvard
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karen Tangmose
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jayachandra Mitta Raghava
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Bjørn Hylsebeck Ebdrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
3
|
Selvaggi P, Jauhar S, Kotoula V, Pepper F, Veronese M, Santangelo B, Zelaya F, Turkheimer FE, Mehta MA, Howes OD. Reduced cortical cerebral blood flow in antipsychotic-free first-episode psychosis and relationship to treatment response. Psychol Med 2023; 53:5235-5245. [PMID: 36004510 PMCID: PMC10476071 DOI: 10.1017/s0033291722002288] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Altered cerebral blood flow (CBF) has been found in people at risk for psychosis, with first-episode psychosis (FEP) and with chronic schizophrenia (SCZ). Studies using arterial spin labelling (ASL) have shown reduction of cortical CBF and increased subcortical CBF in SCZ. Previous studies have investigated CBF using ASL in FEP, reporting increased CBF in striatum and reduced CBF in frontal cortex. However, as these people were taking antipsychotics, it is unclear whether these changes are related to the disorder or antipsychotic treatment and how they relate to treatment response. METHODS We examined CBF in FEP free from antipsychotic medication (N = 21), compared to healthy controls (N = 22). Both absolute and relative-to-global CBF were assessed. We also investigated the association between baseline CBF and treatment response in a partially nested follow-up study (N = 14). RESULTS There was significantly lower absolute CBF in frontal cortex (Cohen's d = 0.84, p = 0.009) and no differences in striatum or hippocampus. Whole brain voxel-wise analysis revealed widespread cortical reductions in absolute CBF in large cortical clusters that encompassed occipital, parietal and frontal cortices (Threshold-Free Cluster Enhancement (TFCE)-corrected <0.05). No differences were found in relative-to-global CBF in the selected region of interests and in voxel-wise analysis. Relative-to-global frontal CBF was correlated with percentage change in total Positive and Negative Syndrome Scale after antipsychotic treatment (r = 0.67, p = 0.008). CONCLUSIONS These results show lower cortical absolute perfusion in FEP prior to starting antipsychotic treatment and suggest relative-to-global frontal CBF as assessed with magnetic resonance imaging could potentially serve as a biomarker for antipsychotic response.
Collapse
Affiliation(s)
- Pierluigi Selvaggi
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Early Intervention Psychosis Clinical Academic Group, South London & Maudsley NHS Foundation Trust, London, UK
| | - Vasileia Kotoula
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fiona Pepper
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Barbara Santangelo
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E. Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mitul A. Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Oliver D. Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
4
|
Disentangling the roles of dopamine and noradrenaline in the exploration-exploitation tradeoff during human decision-making. Neuropsychopharmacology 2022; 48:1078-1086. [PMID: 36522404 PMCID: PMC10209107 DOI: 10.1038/s41386-022-01517-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
Balancing the exploration of new options and the exploitation of known options is a fundamental challenge in decision-making, yet the mechanisms involved in this balance are not fully understood. Here, we aimed to elucidate the distinct roles of dopamine and noradrenaline in the exploration-exploitation tradeoff during human choice. To this end, we used a double-blind, placebo-controlled design in which participants received either a placebo, 400 mg of the D2/D3 receptor antagonist amisulpride, or 40 mg of the β-adrenergic receptor antagonist propranolol before they completed a virtual patch-foraging task probing exploration and exploitation. We systematically varied the rewards associated with choice options, the rate by which rewards decreased over time, and the opportunity costs it took to switch to the next option to disentangle the contributions of dopamine and noradrenaline to specific choice aspects. Our data show that amisulpride increased the sensitivity to all of these three critical choice features, whereas propranolol was associated with a reduced tendency to use value information. Our findings provide novel insights into the specific roles of dopamine and noradrenaline in the regulation of human choice behavior, suggesting a critical involvement of dopamine in directed exploration and a role of noradrenaline in more random exploration.
Collapse
|
5
|
Juurlink DN. Antiemetics, stroke, and the limits of observational epidemiology. BMJ 2022; 377:o924. [PMID: 35396322 DOI: 10.1136/bmj.o924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- David N Juurlink
- Clinical Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Liu Y, Admon R, Mellem MS, Belleau EL, Kaiser RH, Clegg R, Beltzer M, Goer F, Vitaliano G, Ahammad P, Pizzagalli DA. Machine Learning Identifies Large-Scale Reward-Related Activity Modulated by Dopaminergic Enhancement in Major Depression. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 5:163-172. [PMID: 31784354 DOI: 10.1016/j.bpsc.2019.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Theoretical models have emphasized systems-level abnormalities in major depressive disorder (MDD). For unbiased yet rigorous evaluations of pathophysiological mechanisms underlying MDD, it is critically important to develop data-driven approaches that harness whole-brain data to classify MDD and evaluate possible normalizing effects of targeted interventions. Here, using an experimental therapeutics approach coupled with machine learning, we investigated the effect of a pharmacological challenge aiming to enhance dopaminergic signaling on whole-brain response to reward-related stimuli in MDD. METHODS Using a double-blind, placebo-controlled design, we analyzed functional magnetic resonance imaging data from 31 unmedicated MDD participants receiving a single dose of 50 mg amisulpride (MDDAmisulpride), 26 MDD participants receiving placebo (MDDPlacebo), and 28 healthy control subjects receiving placebo (HCPlacebo) recruited through two independent studies. An importance-guided machine learning technique for model selection was used on whole-brain functional magnetic resonance imaging data probing reward anticipation and consumption to identify features linked to MDD (MDDPlacebo vs. HCPlacebo) and dopaminergic enhancement (MDDAmisulpride vs. MDDPlacebo). RESULTS Highly predictive classification models emerged that distinguished MDDPlacebo from HCPlacebo (area under the curve = 0.87) and MDDPlacebo from MDDAmisulpride (area under the curve = 0.89). Although reward-related striatal activation and connectivity were among the most predictive features, the best truncated models based on whole-brain features were significantly better relative to models trained using striatal features only. CONCLUSIONS Results indicate that in MDD, enhanced dopaminergic signaling restores abnormal activation and connectivity in a widespread network of regions. These findings provide new insights into the pathophysiology of MDD and pharmacological mechanism of antidepressants at the system level in addressing reward processing deficits among depressed individuals.
Collapse
Affiliation(s)
- Yuelu Liu
- BlackThorn Therapeutics, San Francisco, California
| | - Roee Admon
- Department of Psychology, University of Haifa, Haifa, Israel
| | | | - Emily L Belleau
- McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Roselinde H Kaiser
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | | | | | | | - Gordana Vitaliano
- McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | | | - Diego A Pizzagalli
- McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
7
|
Selvaggi P, Hawkins PC, Dipasquale O, Rizzo G, Bertolino A, Dukart J, Sambataro F, Pergola G, Williams SC, Turkheimer F, Zelaya F, Veronese M, Mehta MA. Increased cerebral blood flow after single dose of antipsychotics in healthy volunteers depends on dopamine D2 receptor density profiles. Neuroimage 2019; 188:774-784. [DOI: 10.1016/j.neuroimage.2018.12.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022] Open
|
8
|
Anhøj S, Ødegaard Nielsen M, Jensen MH, Ford K, Fagerlund B, Williamson P, Glenthøj B, Rostrup E. Alterations of Intrinsic Connectivity Networks in Antipsychotic-Naïve First-Episode Schizophrenia. Schizophr Bull 2018; 44:1332-1340. [PMID: 29373756 PMCID: PMC6192505 DOI: 10.1093/schbul/sbx171] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The investigation of large-scale intrinsic connectivity networks in antipsychotic-naïve first-episode schizophrenia increases our understanding of system-level cerebral dysfunction in schizophrenia while enabling control of confounding effects of medication and disease progression. Reports on functional connectivity in antipsychotic-naïve patients have been mixed and the relation between network alterations, psychopathology and cognition is unclear. METHODS A total number of 47 patients with first-episode schizophrenia who had never received antipsychotic medication and 47 healthy controls were scanned with functional magnetic resonance imaging under resting conditions. Main outcome measures were differences in functional connectivity between groups and the relationship between network alterations, psychopathology and cognition. RESULTS Altered connectivity was found between right central executive network (CEN) and right ventral attention network (VAN) (patients > controls, P = .001), left CEN and left VAN (P = .002), and between posterior default mode network and auditory network (P = .006). Association between network connectivity and clinical characteristics was found as interactions between the effects of group and sustained attention (P = .005) and between group and processing speed (P = .007) on the connectivity between right CEN and right VAN. CONCLUSIONS Our findings suggest that the early phase of schizophrenia is characterized by increased connectivity between fronto-parietal networks suggested to be involved in the control of cognitive and sensory functions. Moreover, the present study suggests that the problem of not disengaging the VAN leads to difficulties with attention and possibly subjective awareness.
Collapse
Affiliation(s)
- Simon Anhøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Denmark,Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Glostrup, Denmark,To whom correspondence should be addressed; Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Nordre Ringvej 29-67, 2600 Glostrup, Denmark; tel: 4523-837-790, fax: 0045 38640443 e-mail:
| | - Mette Ødegaard Nielsen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Denmark
| | - Maria Høj Jensen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Denmark
| | - Kristin Ford
- Division of Neuropsychiatry, Department of Psychiatry, Schulich School of Medicine & Dentistry, Western University, London Health Science Centre, University Hospital, Canada
| | - Birgitte Fagerlund
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Denmark
| | - Peter Williamson
- Division of Neuropsychiatry, Department of Psychiatry, Schulich School of Medicine & Dentistry, Western University, London Health Science Centre, University Hospital, Canada
| | - Birte Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Denmark
| | - Egill Rostrup
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Glostrup, Denmark
| |
Collapse
|
9
|
Hawkins PCT, Wood TC, Vernon AC, Bertolino A, Sambataro F, Dukart J, Merlo-Pich E, Risterucci C, Silber-Baumann H, Walsh E, Mazibuko N, Zelaya FO, Mehta MA. An investigation of regional cerebral blood flow and tissue structure changes after acute administration of antipsychotics in healthy male volunteers. Hum Brain Mapp 2017; 39:319-331. [PMID: 29058358 DOI: 10.1002/hbm.23844] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/13/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023] Open
Abstract
Chronic administration of antipsychotic drugs has been linked to structural brain changes observed in patients with schizophrenia. Recent MRI studies have shown rapid changes in regional brain volume following just a single dose of these drugs. However, it is not clear if these changes represent real volume changes or are artefacts ("apparent" volume changes) due to drug-induced physiological changes, such as increased cerebral blood flow (CBF). To address this, we examined the effects of a single, clinical dose of three commonly prescribed antipsychotics on quantitative measures of T1 and regional blood flow of the healthy human brain. Males (n = 42) were randomly assigned to one of two parallel groups in a double-blind, placebo-controlled, randomized, three-period cross-over study design. One group received a single oral dose of either 0.5 or 2 mg of risperidone or placebo during each visit. The other received olanzapine (7.5 mg), haloperidol (3 mg), or placebo. MR measures of quantitative T1, CBF, and T1-weighted images were acquired at the estimated peak plasma concentration of the drug. All three drugs caused localized increases in striatal blood flow, although drug and region specific effects were also apparent. In contrast, all assessments of T1 and brain volume remained stable across sessions, even in those areas experiencing large changes in CBF. This illustrates that a single clinically relevant oral dose of an antipsychotic has no detectable acute effect on T1 in healthy volunteers. We further provide a methodology for applying quantitative imaging methods to assess the acute effects of other compounds on structural MRI metrics. Hum Brain Mapp 39:319-331, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter C T Hawkins
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Tobias C Wood
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari BA, Italy
| | - Fabio Sambataro
- Department of Experimental and Clinical Medical Sciences, University of Udine, Udine, Italy
| | - Juergen Dukart
- Translational Medicine Neuroscience and Biomarkers, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Emilio Merlo-Pich
- CNS Therapeutic Area Unit, Takeda Development Centre Europe, London, United Kingdom
| | - Celine Risterucci
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Hanna Silber-Baumann
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Eamonn Walsh
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Ndabezinhle Mazibuko
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Fernando O Zelaya
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Mitul A Mehta
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
10
|
Presynaptic Dopamine Synthesis Capacity in Schizophrenia and Striatal Blood Flow Change During Antipsychotic Treatment and Medication-Free Conditions. Neuropsychopharmacology 2017; 42:2232-2241. [PMID: 28387222 PMCID: PMC5603816 DOI: 10.1038/npp.2017.67] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 02/03/2023]
Abstract
Standard-of-care biological treatment of schizophrenia remains dependent upon antipsychotic medications, which demonstrate D2 receptor affinity and elicit variable, partial clinical responses via neural mechanisms that are not entirely understood. In the striatum, where D2 receptors are abundant, antipsychotic medications may affect neural function in studies of animals, healthy volunteers, and patients, yet the relevance of this to pharmacotherapeutic actions remains unresolved. In this same brain region, some individuals with schizophrenia may demonstrate phenotypes consistent with exaggerated dopaminergic signaling, including alterations in dopamine synthesis capacity; however, the hypothesis that dopamine system characteristics underlie variance in medication-induced regional blood flow changes has not been directly tested. We therefore studied a cohort of 30 individuals with schizophrenia using longitudinal, multi-session [15O]-water and [18F]-FDOPA positron emission tomography to determine striatal blood flow during active atypical antipsychotic medication treatment and after at least 3 weeks of placebo treatment, along with presynaptic dopamine synthesis capacity (ie, DOPA decarboxylase activity). Regional striatal blood flow was significantly higher during active treatment than during the placebo condition. Furthermore, medication-related increases in ventral striatal blood flow were associated with more robust amelioration of excited factor symptoms during active medication and with higher dopamine synthesis capacity. These data indicate that atypical medications enact measureable physiological alterations in limbic striatal circuitry that vary as a function of dopaminergic tone and may have relevance to aspects of therapeutic responses.
Collapse
|
11
|
Bosch OG, Esposito F, Havranek MM, Dornbierer D, von Rotz R, Staempfli P, Quednow BB, Seifritz E. Gamma-Hydroxybutyrate Increases Resting-State Limbic Perfusion and Body and Emotion Awareness in Humans. Neuropsychopharmacology 2017; 42:2141-2151. [PMID: 28561068 PMCID: PMC5603804 DOI: 10.1038/npp.2017.110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/04/2017] [Accepted: 05/25/2017] [Indexed: 12/15/2022]
Abstract
Gamma-hydroxybutyrate (GHB) is a GHB-/GABA-B receptor agonist inducing a broad spectrum of subjective effects including euphoria, disinhibition, and enhanced vitality. It is used as treatment for neuropsychiatric disorders including narcolepsy and alcohol withdrawal, but is also a drug of abuse. Non-medical users report enhancement of body and emotion awareness during intoxication. However, the neuronal underpinnings of such awareness alterations under GHB are unknown so far. The assessment of regional cerebral blood flow (rCBF) by pharmacological magnetic resonance imaging (phMRI) enables the elucidation of drug-induced functional brain alterations. Thus, we assessed the effects of GHB (35 mg/kg p.o.) in 17 healthy males on rCBF and subjective drug effects, using a placebo-controlled, double-blind, randomized, cross-over design employing arterial spin labeling phMRI. Compared to placebo, GHB increased subjective ratings for body and emotion awareness, and for dizziness (p<0.01-0.001, Bonferroni-corrected). A whole-brain analysis showed increased rCBF in the bilateral anterior cingulate cortex (ACC) and the right anterior insula under GHB (p<0.05, cluster-corrected). ACC and insula rCBF are correlated with relaxation, and body and emotion awareness (p<0.05-0.001, uncorrected). Interaction analyses revealed that GHB-induced increase of body awareness was accompanied by increased rCBF in ACC, whereas relaxation under GHB was accompanied by elevated rCBF in right anterior insula (p<0.05, uncorrected). In conclusion, enhancement of emotion and body awareness, and increased perfusion of insula and ACC bears implications both for the properties of GHB as a drug of abuse as well as for its putative personalized potential for specific therapeutic indications in affective disorders.
Collapse
Affiliation(s)
- Oliver G Bosch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland,Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland,Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, Zurich CH-8032, Switzerland, Tel: +41 44 384 2357, Fax: +41 44 383 4456, E-mail:
| | - Fabrizio Esposito
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Baronissi, Italy
| | - Michael M Havranek
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Dario Dornbierer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland,Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Robin von Rotz
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Philipp Staempfli
- MR-Center of the Department of Psychiatry, Psychotherapy and Psychosomatics and the Department of Child and Adolescent Psychiatry, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland,Neuroscience Center Zurich, Research Group Disorders of the Nervous System, University and ETH Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland,Neuroscience Center Zurich, Research Group Disorders of the Nervous System, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Michels L, Scherpiet S, Stämpfli P, Herwig U, Brühl AB. Baseline Perfusion Alterations Due to Acute Application of Quetiapine and Pramipexole in Healthy Adults. Int J Neuropsychopharmacol 2016; 19:pyw067. [PMID: 27466220 PMCID: PMC5137281 DOI: 10.1093/ijnp/pyw067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 07/01/2016] [Accepted: 07/22/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The dopaminergic system is implicated in many mental processes and neuropsychiatric disorders. Pharmacologically, drugs with dopamine receptor antagonistic and agonistic effects are used, but their effects on functional brain metabolism are not well known. METHODS In this randomized crossover, placebo-controlled, and rater-blinded study, 25 healthy adults received an acute dose placebo substance (starch), quetiapine (dopamine receptor antagonist), or pramipexole (dopamine agonist of the nonergoline class) 1 hour before the experiment. Background-suppressed 2D pseudo-continuous arterial spin labeling was used to examine whole-brain baseline cerebral blood flow differences induced by the 3 substances. RESULTS We found that quetiapine reduced perfusion in the occipital (early visual areas) and bilateral cerebellar cortex relative to placebo. In contrast, quetiapine enhanced cerebral blood flow (relative to placebo) in the striatal system (putamen and caudate nucleus) but also in the supplementary motor area, insular-, prefrontal- as well as in the pre- and postcentral cortex. Pramipexole increased cerebral blood flow compared with placebo in the caudate nucleus, putamen, middle frontal, supplementary motor area, and brainstem (substantia nigra), but reduced cerebral blood flow in the posterior thalamus, cerebellum, and visual areas. Pramipexole administration resulted in stronger cerebral blood flow relative to quetiapine in the hypothalamus, cerebellum, and substantia nigra. CONCLUSIONS Our results indicate that quetiapine and pramipexole differentially modulate regional baseline cerebral blood flow. Both substances act on the dopaminergic system, although they affect distinct regions. Quetiapine altered dopaminergic function in frontal, striatal, and motor regions. In contrast, pramipexole affected cerebral blood flow of the nigrostriatal (striatum and substantia nigra) dopaminergic, but less the fronto-insular system.
Collapse
Affiliation(s)
- Lars Michels
- Institute of Neuroradiology, University Hospital Zurich, Zurich, Switzerland (Dr Michels); MR-Center, University Children's Hospital Zurich, Zurich, Switzerland (Dr Michels); Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland (Drs Scherpiet, Stämpfli, Herwig, and Brühl); Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Dr Brühl). .,L.M. and S.S. are shared first authors.
| | | | | | | | | |
Collapse
|
13
|
Metzger CD, Wiegers M, Walter M, Abler B, Graf H. Local and Global Resting State Activity in the Noradrenergic and Dopaminergic Pathway Modulated by Reboxetine and Amisulpride in Healthy Subjects. Int J Neuropsychopharmacol 2015; 19:pyv080. [PMID: 26209860 PMCID: PMC4772816 DOI: 10.1093/ijnp/pyv080] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Various psychiatric populations are currently investigated with resting state fMRI, with the aim of individualizing diagnostics and treatment options and improving treatment outcomes. Many of these studies are conducted in large naturalistic samples, providing rich insights regarding disease-related neural alterations, but with the common psychopharmacological medication limiting interpretations of the results. We therefore investigated the effects of common noradrenergic and anti-dopaminergic medications on local and global resting state activity (rs-activity) in healthy volunteers to further the understanding of the respective effects independent from disease-related alterations. METHODS Within a randomized, double-blind, placebo-controlled crossover design, we investigated 19 healthy male subjects by resting state fMRI after the intake of reboxetine (4 mg/d), amisulpride (200mg/d), and placebo for 7 days each. Treatment-related differences in local and global rs-activity were measured by the fractional amplitude of low frequency fluctuations (fALFF) and resting state functional connectivity (rs-FC). RESULTS fALFF revealed alterations of local rs-activity within regions of the core noradrenergic pathway, including the locus coeruleus under reboxetine, correlated with its plasma levels. Moreover, reboxetine led to increased rs-FC between regions within this pathway, i.e. the locus coeruleus, tectum, thalamus, and amygdala. Amisulpride modulated local rs-activity of regions within the dopaminergic pathway, with the altered signal in the putamen correlating with amisulpride plasma levels. Correspondingly, amisulpride increased rs-FC between regions of the dopaminergic pathway comprising the substantia nigra and putamen. CONCLUSION Our data provide evidence of how psychopharmacological agents alter local and global rs-activity within the respective neuroanatomical pathways in healthy subjects, which may help with interpreting data in psychiatric populations.
Collapse
Affiliation(s)
- Coraline D Metzger
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany (Drs Metzger and Walter); Department of Psychiatry, University of Ulm, Germany (Drs Wiegers, Abler, and Graf); Leibniz Institute for Neurobiology, Magdeburg, Germany (Drs Metzger and Walter); Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany (Dr Metzger); German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany (Dr Metzger).
| | | | | | | | | |
Collapse
|
14
|
Stingl J, Viviani R. Polymorphism in CYP2D6 and CYP2C19, members of the cytochrome P450 mixed-function oxidase system, in the metabolism of psychotropic drugs. J Intern Med 2015; 277:167-177. [PMID: 25297512 DOI: 10.1111/joim.12317] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Numerous studies in the field of psychopharmacological treatment have investigated the possible contribution of genetic variability between individuals to differences in drug efficacy and safety, motivated by the wide individual variation in treatment response. Genomewide analyses have been conducted in several large-scale studies on antidepressant drug response. However, no consistent findings have emerged from these studies. In a recent meta-analysis of genomewide data from the three studies capturing common variation for association with symptomatic improvement and remission revealed the absence of any strong genetic association and failed to replicate results of individual studies in the pooled data. However, there are good reasons to consider the possible importance of pharmacogenetic variants separately. These variants explain a large portion of the manifold variability in individual drug metabolism. More than 20 psychotropic drugs have now been relabelled by the FDA adding information on polymorphic drug metabolism and therapeutic recommendations. Furthermore, dose recommendations for polymorphisms in drug metabolizing enzymes, first and foremost CYP2D6 and CYP2C19, have been issued with the advice to reduce the dosage in poor metabolizers to 50% or less (in eight cases), or to choose an alternative treatment. Beside the well-described role in hepatic drug metabolism, these enzymes are also expressed in the brain and play a role in biotransformation of endogenous substrates. These polymorphisms may therefore modulate brain metabolism and affect the function of the neural substrates of cognition and emotion.
Collapse
Affiliation(s)
- J Stingl
- Center for Translational Medicine, University of Bonn Medical School, Bonn, Germany
| | - R Viviani
- Department of Psychiatry and Psychotherapy III, University of Ulm, Ulm, Germany
| |
Collapse
|
15
|
Chuang WC, Chen CY, Kuo SC, Chen TY, Yeh YW. Amisulpride-associated mania in a young adult with schizophrenia and cerebral disease. Am J Health Syst Pharm 2014; 71:2038-41. [PMID: 25404595 DOI: 10.2146/ajhp130572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE A case of rapid-onset mania after initiating amisulpride in a patient with schizophrenia and cerebral disease is reported. SUMMARY A 19-year-old Taiwanese man had a 1-year history of schizophrenia, paranoid type, and cerebral palsy. His only medication was a 12-week course of risperidone 6 mg orally daily. His positive symptoms of auditory hallucinations and paranoid delusions improved markedly, but negative symptoms of inattention, avolition, and anhedonia continued. His motor disability and athetosis of the hand related to cerebral palsy also worsened during risperidone therapy. After a discussion with the patient's guardian, conversion of antipsychotic therapy from risperidone to amisulpride was commenced. On days 1-8 of the conversion, amisulpride 400 mg was given orally daily. The daily risperidone dose on days 1, 2, and 3 was 6, 4, and 2 mg, respectively; risperidone was discontinued after day 3. On day 4, the patient exhibited a euphoric mood, with persistent laughing, expansive self-esteem, extreme talkativeness, flight of ideas, distractibility, and psychomotor agitation. On day 8, the amisulpride dosage was increased to 800 mg orally daily and his manic symptoms worsened. On day 17, amisulpride was withheld and risperidone 4 mg daily was resumed. The manic symptoms subsided within three days after the cessation of amisulpride. The patient was maintained on risperidone 4 mg daily for six months without any further hypomanic or manic symptoms. CONCLUSION A 19-year-old man with schizophrenia and underlying cerebral disease developed rapid-onset mania after risperidone was replaced with amisulpride. The reaction resolved soon after amisulpride was discontinued and treatment with risperidone was reinstituted.
Collapse
Affiliation(s)
- Wei-Chen Chuang
- Wei-Chen Chuang, M.D., is Pediatrist, Division of Pediatrics, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan, and Chief Resident, Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei. Chun-Yen Chen, M.D., is Attending Psychiatrist; Shin-Chang Kuo, M.D., is Attending Psychiatrist; Tien-Yu Chen, M.D., is Chief Resident; and Yi-Wei Yeh, M.D., is Attending Psychiatrist, Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center
| | - Chun-Yen Chen
- Wei-Chen Chuang, M.D., is Pediatrist, Division of Pediatrics, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan, and Chief Resident, Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei. Chun-Yen Chen, M.D., is Attending Psychiatrist; Shin-Chang Kuo, M.D., is Attending Psychiatrist; Tien-Yu Chen, M.D., is Chief Resident; and Yi-Wei Yeh, M.D., is Attending Psychiatrist, Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center
| | - Shin-Chang Kuo
- Wei-Chen Chuang, M.D., is Pediatrist, Division of Pediatrics, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan, and Chief Resident, Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei. Chun-Yen Chen, M.D., is Attending Psychiatrist; Shin-Chang Kuo, M.D., is Attending Psychiatrist; Tien-Yu Chen, M.D., is Chief Resident; and Yi-Wei Yeh, M.D., is Attending Psychiatrist, Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center
| | - Tien-Yu Chen
- Wei-Chen Chuang, M.D., is Pediatrist, Division of Pediatrics, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan, and Chief Resident, Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei. Chun-Yen Chen, M.D., is Attending Psychiatrist; Shin-Chang Kuo, M.D., is Attending Psychiatrist; Tien-Yu Chen, M.D., is Chief Resident; and Yi-Wei Yeh, M.D., is Attending Psychiatrist, Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center
| | - Yi-Wei Yeh
- Wei-Chen Chuang, M.D., is Pediatrist, Division of Pediatrics, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan, and Chief Resident, Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei. Chun-Yen Chen, M.D., is Attending Psychiatrist; Shin-Chang Kuo, M.D., is Attending Psychiatrist; Tien-Yu Chen, M.D., is Chief Resident; and Yi-Wei Yeh, M.D., is Attending Psychiatrist, Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center.
| |
Collapse
|
16
|
Viviani R, Lehmann ML, Stingl JC. Use of magnetic resonance imaging in pharmacogenomics. Br J Clin Pharmacol 2014; 77:684-94. [PMID: 23802603 PMCID: PMC3971984 DOI: 10.1111/bcp.12197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 06/18/2013] [Indexed: 01/11/2023] Open
Abstract
Because of the large variation in the response to psychoactive medication, many studies have attempted to uncover genetic factors that determine response. While considerable knowledge exists on the large effects of genetic polymorphisms on pharmacokinetics and plasma concentrations of drugs, effects of the concentration at the target site and pharmacodynamic effects on brain functions in disease are much less known. This article reviews the role of magnetic resonance imaging (MRI) to visualize response to medication in brain behaviour circuits in vivo in humans and assess the influence of pharmacogenetic factors. Two types of studies have been used to characterize effects of medication and genetic variation. In task-related activation studies the focus is on changes in the activity of a neural circuit associated with a specific psychological process. The second type of study investigates resting state perfusion. These studies provide an assessment of vascular changes associated with bioavailability of drugs in the brain, but may also assess changes in neural activity after binding of centrally active agents. Task-related pharmacogenetic studies of cognitive function have characterized the effects in the prefrontal cortex of genetic polymorphisms of dopamine receptors (DRD2), metabolic enzymes (COMT) and in the post-synaptic signalling cascade under the administration of dopamine agonists and antagonists. In contrast, pharmacogenetic imaging with resting state perfusion is still in its infancy. However, the quantitative nature of perfusion imaging, its non-invasive character and its repeatability might be crucial assets in visualizing the effects of medication in vivo in man during therapy.
Collapse
Affiliation(s)
- Roberto Viviani
- Department of Psychiatry and Psychotherapy III, University of Ulm, Ulm, Germany; Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| | | | | |
Collapse
|
17
|
Goozée R, Handley R, Kempton MJ, Dazzan P. A systematic review and meta-analysis of the effects of antipsychotic medications on regional cerebral blood flow (rCBF) in schizophrenia: association with response to treatment. Neurosci Biobehav Rev 2014; 43:118-36. [PMID: 24690578 DOI: 10.1016/j.neubiorev.2014.03.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 01/27/2014] [Accepted: 03/20/2014] [Indexed: 11/25/2022]
Abstract
Evaluating the short- and long-term effects of antipsychotics on brain physiology is a key factor in advancing our understanding of neurophysiological changes in psychosis and improving prediction of treatment response. Understanding the nature of such changes is crucial to the interpretation of neuroimaging findings in patients with schizophrenia and psychoses in general. This review has systematically appraised existing evidence on resting cerebral blood flow (rCBF) in schizophrenia, before and after antipsychotic treatment, relating the findings to symptom severity. The review shows that antipsychotics exert regional effects on rCBF, particularly in frontal and basal ganglia regions, and that different antipsychotic generations have differential effects on rCBF. These findings are supported by an exploratory meta-analysis of a subset of studies. The review also highlights the relative lack of studies that use a priori definitions of treatment response, which is an important step in identifying testable hypotheses and ensuring clinical relevance of remission criteria. Finally, the review highlights important considerations for future psychopharmacological studies investigating the potential for rCBF to predict symptomatic improvement, which could inform the management of treatment in schizophrenia.
Collapse
Affiliation(s)
- Rhianna Goozée
- King's College London, Institute of Psychiatry, Department of Psychosis Studies, London, UK.
| | - Rowena Handley
- King's College London, Institute of Psychiatry, Department of Psychosis Studies, London, UK
| | - Matthew J Kempton
- King's College London, Institute of Psychiatry, Department of Psychosis Studies, London, UK
| | - Paola Dazzan
- King's College London, Institute of Psychiatry, Department of Psychosis Studies, London, UK; NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Kings College London, London, UK
| |
Collapse
|