1
|
Li N, Wei Y, Li R, Meng Y, Zhao J, Bai Q, Wang G, Zhao Y. Modulation of the human GlyT1 by clinical drugs and cholesterol. Nat Commun 2025; 16:2412. [PMID: 40069141 PMCID: PMC11897355 DOI: 10.1038/s41467-025-57613-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/21/2025] [Indexed: 03/15/2025] Open
Abstract
Glycine transporter 1 (GlyT1) is a key player in shaping extracellular glutamatergic signaling processes and holds promise for treating cognitive impairments associated with schizophrenia by inhibiting its activity and thus enhancing the function of NMDA receptors. Despite its significant role in physiological and pharmacology, its modulation mechanism by clinical drugs and internal lipids remains elusive. Here, we determine cryo-EM structures of GlyT1 in its apo state and in complex with clinical trial drugs iclepertin and sarcosine. The GlyT1 in its apo state is determined in three distinct conformations, exhibiting a conformational equilibrium of the transport cycle. The complex structures with inhibitor iclepertin and sarcosine elucidate their unique binding poses with GlyT1. Three binding sites of cholesterol are determined in GlyT1, two of which are conformation-dependent. Transport kinetics studies reveal that a delicate binding equilibrium for cholesterol is crucial for the conformational transition of GlyT1. This study significantly enhances our understanding of the physiological and pharmacological aspects of GlyT1.
Collapse
Affiliation(s)
- Na Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yiqing Wei
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Renjie Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yufei Meng
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Zhao
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Qinru Bai
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| | - Yan Zhao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Smith SM, Toolan D, Kandebo M, Vardigan J, Raheem I, Layton ME, Kern JC, Cox C, Gantert L, Riffel K, Hostetler E, Uslaner JM. Preclinical evaluation of MK-8189: A novel phosphodiesterase 10A inhibitor for the treatment of schizophrenia. J Pharmacol Exp Ther 2025; 392:100047. [PMID: 39893013 DOI: 10.1124/jpet.124.002347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/10/2024] [Accepted: 10/03/2024] [Indexed: 11/06/2024] Open
Abstract
MK-8189 is a novel phosphodiesterase 10A (PDE10A) inhibitor being evaluated in clinical studies for the treatment of schizophrenia. PDE10A is a cyclic nucleotide phosphodiesterase enzyme highly expressed in medium spiny neurons of the striatum. MK-8189 exhibits subnanomolar potency on the PDE10A enzyme and has excellent pharmaceutical properties. Oral administration of MK-8189 significantly increased cyclic guanosine monophosphate and phospho glutamate receptor 1 in rat striatal tissues. Activation of the dopamine D1 direct and D2 indirect pathways was demonstrated by detecting significant elevation of mRNA encoding substance P and enkephalin after MK-8189 administration. The PDE10A tracer [3H]MK-8193 was used to determine the PDE10A enzyme occupancy (EO) required for efficacy in behavioral models. In the rat-conditioned avoidance responding assay, MK-8189 significantly decreased avoidance behavior at PDE10A EO greater than ∼48%. MK-8189 significantly reversed an MK-801-induced deficit in prepulse inhibition at PDE10A EO of ∼47% and higher. Target engagement of MK-8189 in rhesus monkeys was examined with [11C]MK-8193 in positron emission tomography studies, and plasma concentrations of 127 nM MK-8189 yielded ∼50% EO in the striatum. The impact of MK-8189 on cognitive symptoms was evaluated using the objective retrieval task in rhesus monkeys. MK-8189 significantly attenuated a ketamine-induced deficit in object retrieval performance at exposure that yielded ∼29% PDE10A EO. These findings demonstrate the robust impact of MK-8189 on striatal signaling and efficacy in preclinical models of symptoms associated with schizophrenia. Data from these studies were used to establish the relationship between preclinical efficacy, plasma exposures, and PDE10A EO to guide dose selection of MK-8189 in clinical studies. SIGNIFICANCE STATEMENT: We describe the primary pharmacology of MK-8189, a phosphodiesterase 10A (PDE10A) inhibitor under evaluation for the treatment of schizophrenia. We report efficacy in preclinical models that have been used to characterize other PDE10A inhibitors and atypical antipsychotics. The PDE10A occupancy achieved by MK-8189 in behavioral studies was used to support dose selection in clinical trials. This work provides evidence to support exploration of higher levels of PDE10A occupancy in clinical trials to determine if this translates to improved efficacy in patients.
Collapse
|
3
|
de Carvalho GA, Tambwe PM, Nascimento LRC, Campos BKP, Chiareli RA, Junior GPN, Menegatti R, Gomez RS, Pinto MCX. In silico evidence of bitopertin's broad interactions within the SLC6 transporter family. J Pharm Pharmacol 2024; 76:1199-1211. [PMID: 38982944 DOI: 10.1093/jpp/rgae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/16/2024] [Indexed: 07/11/2024]
Abstract
The Glycine Transporter Type 1 (GlyT1) significantly impacts central nervous system functions, influencing glycinergic and glutamatergic neurotransmission. Bitopertin, the first GlyT1 inhibitor in clinical trials, was developed for schizophrenia treatment but showed limited efficacy. Despite this, bitopertin's repositioning could advance treating various pathologies. This study aims to understand bitopertin's mechanism of action using computational methods, exploring off-target effects, and providing a comprehensive pharmacological profile. Similarity Ensemble Approach (SEA) and SwissTargetPrediction initially predicted targets, followed by molecular modeling on SWISS-MODEL and GalaxyWeb servers. Binding sites were identified using PrankWeb, and molecular docking was performed with DockThor and GOLD software. Molecular dynamics analyses were conducted on the Visual Dynamics platform. Reverse screening on SEA and SwissTargetPrediction identified GlyT1 (SLC6A9), GlyT2 (SLC6A5), PROT (SLC6A7), and DAT (SLC6A3) as potential bitopertin targets. Homology modeling on SwissModel generated high-resolution models, optimized further on GalaxyWeb. PrankWeb identified similar binding sites in GlyT1, GlyT2, PROT, and DAT, indicating potential interaction. Docking studies suggested bitopertin's interaction with GlyT1 and proximity to GlyT2 and PROT. Molecular dynamics confirmed docking results, highlighting bitopertin's target stability beyond GlyT1. The study concludes that bitopertin potentially interacts with multiple SLC6 family targets, indicating a broader pharmacological property.
Collapse
Affiliation(s)
- Gustavo Almeida de Carvalho
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, CEP 74690-900, Goiânia-GO, Brazil
| | - Paul Magogo Tambwe
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, CEP 74690-900, Goiânia-GO, Brazil
| | - Lucas Rodrigues Couto Nascimento
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, CEP 74690-900, Goiânia-GO, Brazil
| | - Bruna Kelly Pedrosa Campos
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, CEP 74690-900, Goiânia-GO, Brazil
| | - Raphaela Almeida Chiareli
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, CEP 74690-900, Goiânia-GO, Brazil
| | - Guilhermino Pereira Nunes Junior
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, CEP 74690-900, Goiânia-GO, Brazil
| | - Ricardo Menegatti
- Faculdade de Farmácia, Universidade Federal de Goiás, Rua 240, Setor Leste Universitário, 74605170 - Goiânia, GO, Brazil
| | - Renato Santiago Gomez
- Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Alfredo Balena, 190, 30130-100, Belo Horizonte-MG, Brazil
| | - Mauro Cunha Xavier Pinto
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, CEP 74690-900, Goiânia-GO, Brazil
| |
Collapse
|
4
|
Dudzik P, Lustyk K, Pytka K. Beyond dopamine: Novel strategies for schizophrenia treatment. Med Res Rev 2024; 44:2307-2330. [PMID: 38653551 DOI: 10.1002/med.22042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Despite extensive research efforts aimed at discovering novel antipsychotic compounds, a satisfactory pharmacological strategy for schizophrenia treatment remains elusive. All the currently available drugs act by modulating dopaminergic neurotransmission, leading to insufficient management of the negative and cognitive symptoms of the disorder. Due to these challenges, several attempts have been made to design agents with innovative, non-dopaminergic mechanisms of action. Consequently, a number of promising compounds are currently progressing through phases 2 and 3 of clinical trials. This review aims to examine the rationale behind the most promising of these strategies while simultaneously providing a comprehensive survey of study results. We describe the versatility behind the cholinergic neurotransmission modulation through the activation of M1 and M4 receptors, exemplified by the prospective drug candidate KarXT. Our discussion extends to the innovative approach of activating TAAR1 receptors via ulotaront, along with the promising outcomes of iclepertin, a GlyT-1 inhibitor with the potential to become the first treatment option for cognitive impairment associated with schizophrenia. Finally, we evaluate the 5-HT2A antagonist paradigm, assessing two recently developed serotonergic agents, pimavanserin and roluperidone. We present the latest advancements in developing novel solutions to the complex challenges posed by schizophrenia, offering an additional perspective on the diverse investigated drug candidates.
Collapse
Affiliation(s)
- Paulina Dudzik
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
5
|
Deiana S, Hauber W, Munster A, Sommer S, Ferger B, Marti A, Schmid B, Dorner-Ciossek C, Rosenbrock H. Pro-cognitive effects of the GlyT1 inhibitor Bitopertin in rodents. Eur J Pharmacol 2022; 935:175306. [DOI: 10.1016/j.ejphar.2022.175306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 12/01/2022]
|
6
|
Griffiths K, Egerton A, Millgate E, Anton A, Barker GJ, Deakin B, Drake R, Eliasson E, Gregory CJ, Howes OD, Kravariti E, Lawrie SM, Lewis S, Lythgoe DJ, Murphy A, McGuire P, Semple S, Stockton-Powdrell C, Walters JTR, Williams SR, MacCabe JH. Impaired verbal memory function is related to anterior cingulate glutamate levels in schizophrenia: findings from the STRATA study. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:60. [PMID: 35853881 PMCID: PMC9279335 DOI: 10.1038/s41537-022-00265-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/23/2022] [Indexed: 11/22/2022]
Abstract
Impaired cognition is associated with lower quality of life and poor outcomes in schizophrenia. Brain glutamate may contribute to both clinical outcomes and cognition, but these relationships are not well-understood. We studied a multicentre cohort of 85 participants with non-affective psychosis using proton magnetic resonance spectroscopy. Glutamate neurometabolites were measured in the anterior cingulate cortex (ACC). Cognition was assessed using the Brief Assessment for Cognition in Schizophrenia (BACS). Patients were categorised as antipsychotic responders or non-responders based on treatment history and current symptom severity. Inverted U-shaped associations between glutamate or Glx (glutamate + glutamine) with BACS subscale and total scores were examined with regression analyses. We then tested for an interaction effect of the antipsychotic response group on the relationship between glutamate and cognition. ACC glutamate and Glx had a positive linear association with verbal memory after adjusting for age, sex and chlorpromazine equivalent dose (glutamate, β = 3.73, 95% CI = 1.26-6.20, P = 0.004; Glx, β = 3.38, 95% CI = 0.84-5.91, P = 0.01). This association did not differ between good and poor antipsychotic response groups. ACC glutamate was also positively associated with total BACS score (β = 3.12, 95% CI = 0.01-6.23, P = 0.046), but this was not significant after controlling for antipsychotic dose. Lower glutamatergic metabolites in the ACC were associated with worse verbal memory, and this relationship was independent of antipsychotic response. Further research on relationships between glutamate and cognition in antipsychotic responsive and non-responsive illness could aid the stratification of patient groups for targeted treatment interventions.
Collapse
Affiliation(s)
- Kira Griffiths
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Edward Millgate
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Adriana Anton
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Academic Radiology, Department of Infection, Immunity and Cardiovascular Disease, Medical School, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, S10 2JF, UK
| | - Gareth J Barker
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Bill Deakin
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Greater Manchester Mental Health NHS Foundation Trust, Manchester, M25 3BL, UK
| | - Richard Drake
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Greater Manchester Mental Health NHS Foundation Trust, Manchester, M25 3BL, UK
| | - Emma Eliasson
- Division of Psychiatry, University of Edinburgh, Edinburgh, EH10 5HF, UK
| | - Catherine J Gregory
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
| | - Eugenia Kravariti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburgh, EH10 5HF, UK
| | - Shôn Lewis
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Greater Manchester Mental Health NHS Foundation Trust, Manchester, M25 3BL, UK
| | - David J Lythgoe
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Anna Murphy
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Scott Semple
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Charlotte Stockton-Powdrell
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Stephen R Williams
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - James H MacCabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK.
| |
Collapse
|
7
|
Harhai M, Harsing, Jr LG. An Overview of Glycine Transporter Subtype 1 Inhibitors Under Preclinical and Clinical Evaluation for the Treatment of Alcohol Abuse. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2022. [DOI: 10.2174/2666082218666220126111415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Being a historical issue that withstands multiple societal control measures, alcohol abuse remains a major healthcare problem. Despite worldwide efforts to limit consumption and educate people about its effects, consumption rates remain unchanged. Alcohol abuse arises from chronic alcohol exposure-caused permanent synaptic plasticity changes in the brain. These manifest in life-threatening withdrawal symptoms and drive relapse even after detoxification and treatment. Since ethanol has multiple targets in the human brain, it warrants a multiapproach therapy; here we introduce the potential therapeutic effects of glycine transporter subtype 1 inhibitors. We have listed the various glycine transporter 1 inhibitors used in studies of alcoholism and how they influenced glycine release from rat hippocampus was demonstrated in a preliminary study. Glycine transporters modulate both glutamatergic and glycinergic pathways: (i) glutamatergic neurotransmission plays an important role in the development of chronic changes in alcoholism as daily alcohol administration was shown to increase N-methyl-D-aspartic acid receptor activity long-term, and (ii) ethanol has access to the dopaminergic reward system via glycine receptors, being an allosteric modulator of glycine receptors. This manuscript summarises the progress and development of glycine transporter 1 inhibitors, characterizing them by their mode of action, adverse effects, and discusses their clinical applicability. Furthermore, we highlight the progress in the latest clinical trials, outline currently applied treatment methods, and offer suggestions for implementing glycine transporter 1 inhibitors into the long-term treatment of alcohol abuse.
Collapse
Affiliation(s)
- Marcell Harhai
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Laszlo G. Harsing, Jr
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
8
|
Frouni I, Belliveau S, Maddaford S, Nuara SG, Gourdon JC, Huot P. Effect of the glycine transporter 1 inhibitor ALX-5407 on dyskinesia, psychosis-like behaviours and parkinsonism in the MPTP-lesioned marmoset. Eur J Pharmacol 2021; 910:174452. [PMID: 34480885 DOI: 10.1016/j.ejphar.2021.174452] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022]
Abstract
Dyskinesia and psychosis are complications encountered in advanced Parkinson's disease (PD) following long-term therapy with L-3,4-dihydroxyphenylalanine (L-DOPA). Disturbances in the glutamatergic system have been associated with both dyskinesia and psychosis, making glutamatergic modulation a potential therapeutic approach for these. Treatments thus far have sought to dampen glutamatergic transmission, for example through blockade of N-methyl-D-aspartate (NMDA) receptors or modulation of metabotropic glutamate receptors 5. In contrast, activation of the glycine-binding site on NMDA receptors is required for their physiological response. Here, we investigated whether indirectly enhancing glutamatergic transmission through inhibition of glycine re-uptake would be efficacious in diminishing both dyskinesia and psychosis-like behaviours (PLBs) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned common marmoset. Six marmosets were rendered parkinsonian by MPTP injection. Following repeated administration of L-DOPA to induce dyskinesia and PLBs, they underwent acute challenges of the glycine transporter 1 (GlyT1) inhibitor ALX-5407 (0.01, 0.1 and 1 mg/kg) or vehicle, in combination with L-DOPA, after which the severity of dyskinesia, PLBs and parkinsonian disability was evaluated. In combination with L-DOPA, ALX-5407 0.1 and 1 mg/kg significantly reduced the severity of dyskinesia, by 51% and 41% (both P < 0.001), when compared to vehicle. ALX-5407 0.01, 0.1 and 1 mg/kg also decreased the severity of global PLBs, by 25%, 51% and 38% (all P < 0.001), when compared to vehicle. The benefits on dyskinesia and PLBs were achieved without compromising the therapeutic effect of L-DOPA on parkinsonism. Our results suggest that GlyT1 inhibition may be a novel strategy to attenuate dyskinesia and PLBs in PD, without interfering with L-DOPA anti-parkinsonian action.
Collapse
Affiliation(s)
- Imane Frouni
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Sébastien Belliveau
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | | | - Stephen G Nuara
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Jim C Gourdon
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Movement Disorder Clinic, Division of Neurology, Department of Neuroscience, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
9
|
Rathore A, Asati V, Kashaw SK, Agarwal S, Parwani D, Bhattacharya S, Mallick C. The Recent Development of Piperazine and Piperidine Derivatives as Antipsychotic Agents. Mini Rev Med Chem 2021; 21:362-379. [PMID: 32912125 DOI: 10.2174/1389557520666200910092327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
Schizophrenia is a chronic neuropsychiatric disorder that affects nearly 1% of the global population. There are various anti-psychotic drugs available for the treatment of schizophrenia, but they have certain side effects; therefore, there is a need to explore and develop novel potential lead compounds against schizophrenia. The currently available drugs e.g. typical and atypical antipsychotics act on different dopamine and serotonin receptors and as per literature reports, various piperidine and piperazine derivatives have shown promising activity against these receptors. When different heterocyclic groups are attached to basic piperidine and piperazine rings, the antipsychotic activity is greatly potentiated. In this direction, various antipsychotic drugs have been synthesized at the laboratory level, and few are under clinical trial studies, such as Lu AE58054, PF-04802540, ORG25935, DMXB-A, Bitopertin, and ABT-126. In the present review, we include the studies related to the effect of different substituents on piperidine/piperazine derivatives and their anti-psychotic activity. Various series of synthesized compounds by other researchers with piperidine/piperazine nucleus have been reviewed and diagrammatically represented in the form of SAR (structure-activity relationships), which will help the scientists for the development of potential lead compounds.
Collapse
Affiliation(s)
- Akash Rathore
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Vivek Asati
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Sushil Kumar Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivangi Agarwal
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Deepa Parwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Sushanta Bhattacharya
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Chaitali Mallick
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| |
Collapse
|
10
|
Pei JC, Luo DZ, Gau SS, Chang CY, Lai WS. Directly and Indirectly Targeting the Glycine Modulatory Site to Modulate NMDA Receptor Function to Address Unmet Medical Needs of Patients With Schizophrenia. Front Psychiatry 2021; 12:742058. [PMID: 34658976 PMCID: PMC8517243 DOI: 10.3389/fpsyt.2021.742058] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/02/2021] [Indexed: 12/30/2022] Open
Abstract
Schizophrenia is a severe mental illness that affects ~1% of the world's population. It is clinically characterized by positive, negative, and cognitive symptoms. Currently available antipsychotic medications are relatively ineffective in improving negative and cognitive deficits, which are related to a patient's functional outcomes and quality of life. Negative symptoms and cognitive deficits are unmet by the antipsychotic medications developed to date. In recent decades, compelling animal and clinical studies have supported the NMDA receptor (NMDAR) hypofunction hypothesis of schizophrenia and have suggested some promising therapeutic agents. Notably, several NMDAR-enhancing agents, especially those that function through the glycine modulatory site (GMS) of NMDAR, cause significant reduction in psychotic and cognitive symptoms in patients with schizophrenia. Given that the NMDAR-mediated signaling pathway has been implicated in cognitive/social functions and that GMS is a potential therapeutic target for enhancing the activation of NMDARs, there is great interest in investigating the effects of direct and indirect GMS modulators and their therapeutic potential. In this review, we focus on describing preclinical and clinical studies of direct and indirect GMS modulators in the treatment of schizophrenia, including glycine, D-cycloserine, D-serine, glycine transporter 1 (GlyT1) inhibitors, and D-amino acid oxidase (DAO or DAAO) inhibitors. We highlight some of the most promising recently developed pharmacological compounds designed to either directly or indirectly target GMS and thus augment NMDAR function to treat the cognitive and negative symptoms of schizophrenia. Overall, the current findings suggest that indirectly targeting of GMS appears to be more beneficial and leads to less adverse effects than direct targeting of GMS to modulate NMDAR functions. Indirect GMS modulators, especially GlyT1 inhibitors and DAO inhibitors, open new avenues for the treatment of unmet medical needs for patients with schizophrenia.
Collapse
Affiliation(s)
- Ju-Chun Pei
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Da-Zhong Luo
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Shiang-Shin Gau
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Chia-Yuan Chang
- Department of Psychology, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Wen-Sung Lai
- Department of Psychology, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Kantak KM, Gauthier JM, Mathieson E, Knyazhanskaya E, Rodriguez-Echemendia P, Man HY. Sex differences in the effects of a combined behavioral and pharmacological treatment strategy for cocaine relapse prevention in an animal model of cue exposure therapy. Behav Brain Res 2020; 395:112839. [PMID: 32750464 DOI: 10.1016/j.bbr.2020.112839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/05/2020] [Accepted: 07/26/2020] [Indexed: 10/23/2022]
Abstract
Brief interventions of environmental enrichment (EE) or the glycine transporter-1 inhibitor Org24598 administered with cocaine-cue extinction training were shown previously to inhibit reacquisition of cocaine self-administration in male rats trained to self-administer a moderate 0.3 mg/kg dose of cocaine. Determining how EE and Org24598 synergize in combination in an animal model of cue exposure therapy is novel. Important changes made in this investigation were increasing the cocaine training dose to 1.0 mg/kg and determining sex differences. Adult male and female rats self-administering 1.0 mg/kg cocaine for 35-40 daily sessions exhibited an addiction-like phenotype under a second-order schedule of cocaine delivery and cue presentation. Rats next underwent 6 weekly extinction training sessions for which treatments consisted of EE or NoEE and Vehicle or Org24598 (3.0 mg/kg in males; 3.0 or 7.5 mg/kg in females). Rats then were tested for reacquisition of cocaine self-administration for 15 daily sessions. In males, the combined EE +3.0 mg/kg Org24598 treatment facilitated extinction learning and inhibited reacquisition of cocaine self-administration to a greater extent than no treatment and to individual EE or 3.0 mg/kg Org24598 treatments. In females, EE +7.5 mg/kg Org24598 facilitated extinction learning, but did not inhibit reacquisition of cocaine self-administration. Thus, there were sex differences in the ability of EE + Org24598 administered in conjunction with extinction training to inhibit cocaine relapse in rats exhibiting an addiction-like phenotype. These findings suggest that this multimodal treatment approach might be a feasible option during cue exposure therapy in cocaine-dependent men, but not women.
Collapse
Affiliation(s)
- Kathleen M Kantak
- Department of Psychological and Brain Sciences, Boston University, Boston, USA; Center for Systems Neuroscience, Boston University, Boston, USA.
| | - Jamie M Gauthier
- Department of Psychological and Brain Sciences, Boston University, Boston, USA
| | - Elon Mathieson
- Department of Psychological and Brain Sciences, Boston University, Boston, USA
| | | | | | - Heng-Ye Man
- Department of Biology, Boston University, Boston, USA; Center for Systems Neuroscience, Boston University, Boston, USA
| |
Collapse
|
12
|
Wang X, Daley C, Gakhar V, Lange HS, Vardigan JD, Pearson M, Zhou X, Warren L, Miller CO, Belden M, Harvey AJ, Grishin AA, Coles CJ, O'Connor SM, Thomson F, Duffy JL, Bell IM, Uslaner JM. Pharmacological Characterization of the Novel and Selective α7 Nicotinic Acetylcholine Receptor-Positive Allosteric Modulator BNC375. J Pharmacol Exp Ther 2020; 373:311-324. [PMID: 32094294 DOI: 10.1124/jpet.119.263483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/17/2020] [Indexed: 12/28/2022] Open
Abstract
Treatments for cognitive deficits associated with central nervous system (CNS) disorders such as Alzheimer disease and schizophrenia remain significant unmet medical needs that incur substantial pressure on the health care system. The α7 nicotinic acetylcholine receptor (nAChR) has garnered substantial attention as a target for cognitive deficits based on receptor localization, robust preclinical effects, genetics implicating its involvement in cognitive disorders, and encouraging, albeit mixed, clinical data with α7 nAChR orthosteric agonists. Importantly, previous orthosteric agonists at this receptor suffered from off-target activity, receptor desensitization, and an inverted U-shaped dose-effect curve in preclinical assays that limit their clinical utility. To overcome the challenges with orthosteric agonists, we have identified a novel selective α7 positive allosteric modulator (PAM), BNC375. This compound is selective over related receptors and potentiates acetylcholine-evoked α7 currents with only marginal effect on the receptor desensitization kinetics. In addition, BNC375 enhances long-term potentiation of electrically evoked synaptic responses in rat hippocampal slices and in vivo. Systemic administration of BNC375 reverses scopolamine-induced cognitive deficits in rat novel object recognition and rhesus monkey object retrieval detour (ORD) task over a wide range of exposures, showing no evidence of an inverted U-shaped dose-effect curve. The compound also improves performance in the ORD task in aged African green monkeys. Moreover, ex vivo 13C-NMR analysis indicates that BNC375 treatment can enhance neurotransmitter release in rat medial prefrontal cortex. These findings suggest that α7 nAChR PAMs have multiple advantages over orthosteric α7 nAChR agonists for the treatment of cognitive dysfunction associated with CNS diseases. SIGNIFICANCE STATEMENT: BNC375 is a novel and selective α7 nicotinic acetylcholine receptor (nAChR) positive allosteric modulator (PAM) that potentiates acetylcholine-evoked α7 currents in in vitro assays with little to no effect on the desensitization kinetics. In vivo, BNC375 demonstrated robust procognitive effects in multiple preclinical models across a wide exposure range. These results suggest that α7 nAChR PAMs have therapeutic potential in central nervous system diseases with cognitive impairments.
Collapse
Affiliation(s)
- Xiaohai Wang
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Christopher Daley
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Vanita Gakhar
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Henry S Lange
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Joshua D Vardigan
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Michelle Pearson
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Xiaoping Zhou
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Lee Warren
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Corin O Miller
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Michelle Belden
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Andrew J Harvey
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Anton A Grishin
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Carolyn J Coles
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Susan M O'Connor
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Fiona Thomson
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Joseph L Duffy
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Ian M Bell
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Jason M Uslaner
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| |
Collapse
|
13
|
Comparative Pro-cognitive and Neurochemical Profiles of Glycine Modulatory Site Agonists and Glycine Reuptake Inhibitors in the Rat: Potential Relevance to Cognitive Dysfunction and Its Management. Mol Neurobiol 2020; 57:2144-2166. [PMID: 31960362 PMCID: PMC7170834 DOI: 10.1007/s12035-020-01875-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/09/2020] [Indexed: 12/30/2022]
Abstract
Frontocortical NMDA receptors are pivotal in regulating cognition and mood, are hypofunctional in schizophrenia, and may contribute to autistic spectrum disorders. Despite extensive interest in agents potentiating activity at the co-agonist glycine modulatory site, few comparative functional studies exist. This study systematically compared the actions of the glycine reuptake inhibitors, sarcosine (40–200 mg/kg) and ORG24598 (0.63–5 mg/kg), the agonists, glycine (40–800 mg/kg), and D-serine (10–160 mg/kg) and the partial agonists, S18841 (2.5 mg/kg s.c.) and D-cycloserine (2.5–40 mg/kg) that all dose-dependently prevented scopolamine disruption of social recognition in adult rats. Over similar dose ranges, they also prevented a delay-induced impairment of novel object recognition (NOR). Glycine reuptake inhibitors specifically elevated glycine but not D-serine levels in rat prefrontal cortical (PFC) microdialysates, while glycine and D-serine markedly increased levels of glycine and D-serine, respectively. D-Cycloserine slightly elevated D-serine levels. Conversely, S18841 exerted no influence on glycine, D-serine, other amino acids, monamines, or acetylcholine. Reversal of NOR deficits by systemic S18841 was prevented by the NMDA receptor antagonist, CPP (20 mg/kg), and the glycine modulatory site antagonist, L701,324 (10 mg/kg). S18841 blocked deficits in NOR following microinjection into the PFC (2.5–10 μg/side) but not the striatum. Finally, in rats socially isolated from weaning (a neurodevelopmental model of schizophrenia), S18841 (2.5 and 10 mg/kg s.c.) reversed impairment of NOR and contextual fear-motivated learning without altering isolation-induced hyperactivity. In conclusion, despite contrasting neurochemical profiles, partial glycine site agonists and glycine reuptake inhibitors exhibit comparable pro-cognitive effects in rats of potential relevance to treatment of schizophrenia and other brain disorders where cognitive performance is impaired.
Collapse
|
14
|
Scopolamine increases perseveration in mice subjected to the detour test. Behav Brain Res 2019; 356:71-77. [DOI: 10.1016/j.bbr.2018.07.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 02/07/2023]
|
15
|
Stachel SJ, Berger R, Nomland AB, Ginnetti AT, Paone DV, Wang D, Puri V, Lange H, Drott J, Lu J, Marcus J, Dwyer MP, Suon S, Uslaner JM, Smith SM. Structure-Guided Design and Procognitive Assessment of a Potent and Selective Phosphodiesterase 2A Inhibitor. ACS Med Chem Lett 2018; 9:815-820. [PMID: 30128073 DOI: 10.1021/acsmedchemlett.8b00214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022] Open
Abstract
Herein we describe the development of a series of pyrazolopyrimidinone phosphodiesterase 2A (PDE2) inhibitors using structure-guided lead identification and design. The series was derived from informed chemotype replacement based on previously identified internal leads. The initially designed compound 3, while potent on PDE2, displayed unsatisfactory selectivity against the other PDE2 isoforms. Compound 3 was subsequently optimized for improved PDE2 activity and isoform selectivity. Insights into the origins of PDE2 selectivity are described and verified using cocrystallography. An optimized lead, 4, demonstrated improved performance in both a rodent and a nonhuman primate cognition model.
Collapse
Affiliation(s)
- Shawn J. Stachel
- Merck & Co. Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Richard Berger
- Merck & Co. Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Ashley B. Nomland
- Merck & Co. Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | | | - Daniel V. Paone
- Merck & Co. Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Deping Wang
- Merck & Co. Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Vanita Puri
- Merck & Co. Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Henry Lange
- Merck & Co. Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Jason Drott
- Merck & Co. Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Jun Lu
- Merck & Co. Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Jacob Marcus
- Merck & Co. Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Michael P. Dwyer
- Merck & Co. Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Sokreine Suon
- Merck & Co. Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Jason M. Uslaner
- Merck & Co. Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Sean M. Smith
- Merck & Co. Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| |
Collapse
|
16
|
Stachel SJ, Egbertson MS, Wai J, Machacek M, Toolan DM, Swestock J, Eddins DM, Puri V, McGaughey G, Su HP, Perlow D, Wang D, Ma L, Parthasarathy G, Reid JC, Abeywickrema PD, Smith SM, Uslaner JM. Indole acids as a novel PDE2 inhibitor chemotype that demonstrate pro-cognitive activity in multiple species. Bioorg Med Chem Lett 2018. [PMID: 29534798 DOI: 10.1016/j.bmcl.2018.01.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An internal HTS effort identified a novel PDE2 inhibitor series that was subsequently optimized for improved PDE2 activity and off-target selectivity. The optimized lead, compound 4, improved cognitive performance in a rodent novel object recognition task as well as a non-human primate object retrieval task. In addition, co-crystallization studies of close analog of 4 in the PDE2 active site revealed unique binding interactions influencing the high PDE isoform selectivity.
Collapse
Affiliation(s)
- Shawn J Stachel
- Department of Medicinal Chemistry, Merck & Co. Inc., PO Box 4, West Point, PA 19486, USA.
| | - Melissa S Egbertson
- Department of Medicinal Chemistry, Merck & Co. Inc., PO Box 4, West Point, PA 19486, USA
| | - Jenny Wai
- Department of Medicinal Chemistry, Merck & Co. Inc., PO Box 4, West Point, PA 19486, USA
| | - Michelle Machacek
- Department of Medicinal Chemistry, Merck & Co. Inc., PO Box 4, West Point, PA 19486, USA
| | - Dawn M Toolan
- Department of Neuroscience, Merck & Co. Inc., PO Box 4, West Point, PA 19486, USA
| | - John Swestock
- Department of Medicinal Chemistry, Merck & Co. Inc., PO Box 4, West Point, PA 19486, USA
| | - Donnie M Eddins
- Department of Pharmacology, Merck & Co. Inc., PO Box 4, West Point, PA 19486, USA
| | - Vanita Puri
- Department of Pharmacology, Merck & Co. Inc., PO Box 4, West Point, PA 19486, USA
| | - Georgia McGaughey
- Department of Structural Biology, Merck & Co. Inc, PO Box 4, West Point, PA 19486, USA
| | - Hua-Poo Su
- Department of Structural Biology, Merck & Co. Inc, PO Box 4, West Point, PA 19486, USA
| | - Debbie Perlow
- Department of Medicinal Chemistry, Merck & Co. Inc., PO Box 4, West Point, PA 19486, USA
| | - Deping Wang
- Department of Structural Biology, Merck & Co. Inc, PO Box 4, West Point, PA 19486, USA
| | - Lei Ma
- Department of Neuroscience, Merck & Co. Inc., PO Box 4, West Point, PA 19486, USA
| | - Gopal Parthasarathy
- Department of Structural Biology, Merck & Co. Inc, PO Box 4, West Point, PA 19486, USA
| | - John C Reid
- Department of Structural Biology, Merck & Co. Inc, PO Box 4, West Point, PA 19486, USA
| | | | - Sean M Smith
- Department of Neuroscience, Merck & Co. Inc., PO Box 4, West Point, PA 19486, USA
| | - Jason M Uslaner
- Department of Neuroscience, Merck & Co. Inc., PO Box 4, West Point, PA 19486, USA
| |
Collapse
|
17
|
Cramer PE, Gentzel RC, Tanis KQ, Vardigan J, Wang Y, Connolly B, Manfre P, Lodge K, Renger JJ, Zerbinatti C, Uslaner JM. Aging African green monkeys manifest transcriptional, pathological, and cognitive hallmarks of human Alzheimer's disease. Neurobiol Aging 2018; 64:92-106. [DOI: 10.1016/j.neurobiolaging.2017.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/20/2022]
|
18
|
Affiliation(s)
- Christopher L. Cioffi
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences , Albany, NY, USA
| |
Collapse
|
19
|
Abstract
In this paper, we review one of the oldest paradigms used in animal cognition: the detour paradigm. The paradigm presents the subject with a situation where a direct route to the goal is blocked and a detour must be made to reach it. Often being an ecologically valid and a versatile tool, the detour paradigm has been used to study diverse cognitive skills like insight, social learning, inhibitory control and route planning. Due to the relative ease of administrating detour tasks, the paradigm has lately been used in large-scale comparative studies in order to investigate the evolution of inhibitory control. Here we review the detour paradigm and some of its cognitive requirements, we identify various ecological and contextual factors that might affect detour performance, we also discuss developmental and neurological underpinnings of detour behaviors, and we suggest some methodological approaches to make species comparisons more robust.
Collapse
|
20
|
Talpos JC. Symptomatic thinking: the current state of Phase III and IV clinical trials for cognition in schizophrenia. Drug Discov Today 2017; 22:1017-1026. [PMID: 28461223 DOI: 10.1016/j.drudis.2017.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022]
Abstract
Research indicates that relieving the cognitive and negative symptoms of schizophrenia is crucial for improving patient quality of life. However effective pharmacotherapies for cognitive and negative symptoms do not currently exist. A review of ongoing Phase III clinical trials indicates that, despite numerous compounds being investigated for cognition in schizophrenia, few are actually novel and most are not backed by empirically driven preclinical research efforts. Based on these trials, and a general disinvestment in development of novel therapies for schizophrenia, the likelihood of a major advancement in treating cognitive differences in schizophrenia does not look promising. Possible ways in which the remaining resources for development of novel treatment for schizophrenia can best be leveraged are discussed.
Collapse
Affiliation(s)
- John C Talpos
- National Center for Toxicological Research, 3900 NCTR Rd, Jefferson, AR 72079, USA.
| |
Collapse
|
21
|
Lidö HH, Jonsson S, Hyytiä P, Ericson M, Söderpalm B. Further characterization of the GlyT-1 inhibitor Org25935: anti-alcohol, neurobehavioral, and gene expression effects. J Neural Transm (Vienna) 2017; 124:607-619. [PMID: 28161754 PMCID: PMC5399095 DOI: 10.1007/s00702-017-1685-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/22/2017] [Indexed: 12/25/2022]
Abstract
The glycine transporter-1 inhibitor Org25935 is a promising candidate in a treatment concept for alcohol use disorder targeting the glycine system. Org25935 inhibits ethanol-induced dopamine elevation in brain reward regions and reduces ethanol intake in Wistar rats. This study aimed to further characterise the compound and used ethanol consumption, behavioral measures, and gene expression as parameters to investigate the effects in Wistar rats and, as pharmacogenetic comparison, Alko-Alcohol (AA) rats. Animals were provided limited access to ethanol in a two-bottle free-choice paradigm with daily drug administration. Acute effects of Org25935 were estimated using locomotor activity and neurobehavioral status. Effects on gene expression in Wistar rats were measured with qPCR. The higher but not the lower dose of Org25935 reduced alcohol intake in Wistar rats. Unexpectedly, Org25935 reduced both ethanol and water intake and induced strong CNS-depressive effects in AA-rats (withdrawn from further studies). Neurobehavioral effects by Org25935 differed between the strains (AA-rats towards sedation). Org25935 did not affect gene expression at the mRNA level in the glycine system of Wistar rats. The data indicate a small therapeutic range for the anti-alcohol properties of Org25935, a finding that may guide further evaluations of the clinical utility of GlyT-1 inhibitors. The results point to the importance of pharmacogenetic considerations when developing drugs for alcohol-related medical concerns. Despite the lack of successful clinical outcomes, to date, the heterogeneity of drug action of Org25935 and similar agents and the unmet medical need justify further studies of glycinergic compounds in alcohol use disorder.
Collapse
Affiliation(s)
- Helga Höifödt Lidö
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. .,Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Susanne Jonsson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Petri Hyytiä
- Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
22
|
Asselot R, Simon-O'Brien E, Lebourgeois S, Nee G, Delaunay V, Duchatelle P, Bouet V, Dauphin F. Time-dependent impact of glutamatergic modulators on the promnesiant effect of 5-HT 6R blockade on mice recognition memory. Pharmacol Res 2016; 118:111-118. [PMID: 27373846 DOI: 10.1016/j.phrs.2016.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 01/19/2023]
Abstract
Selective antagonists at serotonin 5-HT6 receptors (5-HT6R) improve memory performance in rodents and are currently under clinical investigations. If blockade of 5-HT6R is known to increase glutamate release, only two studies have so far demonstrated an interaction between 5-HT6R and glutamate transmission, but both, using the non-competitive NMDA antagonist MK-801, insensitive to variations of glutamate concentrations. In a place recognition task, we investigated here in mice the role of glutamate transmission in the beneficial effects of 5-HT6R blockade (SB-271046). Through the use of increasing intervals (2, 4 and 6h) between acquisition and retrieval, we investigated the time-dependent impact of two different glutamatergic modulators. NMDAR-dependant glutamate transmission (NMDA Receptors) was either blocked by the competitive antagonist at NMDAR, CGS 19755, or potentiated by the glycine transporter type 1 (GlyT1) inhibitor, NFPS. Results showed that neither SB-271046, nor CGS 19755, nor NFPS, alter behavioural performances after short intervals, i.e. when control mice displayed significant memory performances (2h and 4h) (respectively 10, 3, and 0.625mg.kg-1). Conversely, with the 6h-interval, a situation in which spontaneous forgetting is observed in control mice, SB-271046 improved recognition memory performances. This beneficial effect was prevented when co-administered with either CGS 19755 or NFPS, which themselves had no effect. Interestingly, a dose-dependent effect was observed with NFPS, with promnesic effect observed at lower dose (0.156mg.kg-1) when administrated alone, whereas it did no modify promnesic effect of SB-271046. These results demonstrate that promnesiant effect induced by 5-HT6R blockade is sensitive to the competitive blockade of NMDAR and underline the need of a fine adjustment of the inhibition of GlyT1. Overall, our findings support the idea of a complex crosstalk between serotonergic and glutamatergic systems in the promnesic properties of 5-HT6R antagonists.
Collapse
Affiliation(s)
| | | | | | - Gérald Nee
- Normandie Univ, UNICAEN,GMPc, 14000 Caen, France
| | | | | | | | | |
Collapse
|
23
|
Goetghebeur PJ, Swartz JE. True alignment of preclinical and clinical research to enhance success in CNS drug development: a review of the current evidence. J Psychopharmacol 2016; 30:586-94. [PMID: 27147593 DOI: 10.1177/0269881116645269] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Central nervous system pharmacological research and development has reached a critical turning point. Patients suffering from disorders afflicting the central nervous system are numerous and command significant attention from the pharmaceutical industry. However, given the numerous failures of promising drugs, many companies are no longer investing in or, indeed, are divesting from this therapeutic area. Central nervous system drug development must change in order to develop effective therapies to treat these patients. Preclinical research is a cornerstone of drug development; however, it is frequently criticised for its lack of predictive validity. Animal models and assays can be shown to be more predictive than reported and, on many occasions, the lack of thorough preclinical testing is potentially to blame for some of the clinical failures. Important factors such as translational aspects, nature of animal models, variances in acute versus chronic dosing, development of add-on therapies and understanding of the full dose-response relationship are too often neglected. Reducing the attrition rate in central nervous system drug development could be achieved by addressing these important questions before novel compounds enter the clinical phase. This review illustrates the relevance of employing these criteria to translational central nervous system research, better to ensure success in developing new drugs in this therapeutic area.
Collapse
Affiliation(s)
| | - Jina E Swartz
- CNS Therapeutic Area Unit, Takeda Development Centre Europe Ltd, London, UK
| |
Collapse
|
24
|
Zhao J, Tao H, Xian W, Cai Y, Cheng W, Yin M, Liang G, Li K, Cui L, Zhao B. A Highly Selective Inhibitor of Glycine Transporter-1 Elevates the Threshold for Maximal Electroshock-Induced Tonic Seizure in Mice. Biol Pharm Bull 2016; 39:174-80. [DOI: 10.1248/bpb.b15-00501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jianghao Zhao
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University
| | - Hua Tao
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University
| | - Wenchuan Xian
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University
| | - Wanwen Cheng
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University
| | - Mingkang Yin
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University
| | - Guocong Liang
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University
| | - Keshen Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University
| | - Bin Zhao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University
| |
Collapse
|
25
|
Optimization of human dose prediction by using quantitative and translational pharmacology in drug discovery. Future Med Chem 2015; 7:2351-69. [PMID: 26599348 DOI: 10.4155/fmc.15.143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this perspective article, we explain how quantitative and translational pharmacology, when well-implemented, is believed to lead to improved clinical candidates and drug targets that are differentiated from current treatment options. Quantitative and translational pharmacology aims to build and continuously improve the quantitative relationship between drug exposure, target engagement, efficacy, safety and its interspecies relationship at every phase of drug discovery. Drug hunters should consider and apply these concepts to develop compounds with a higher probability of interrogating the clinical biological hypothesis. We offer different approaches to set an initial effective concentration or pharmacokinetic-pharmacodynamic target in man and to predict human pharmacokinetics that determine together the predicted human dose and dose schedule. All concepts are illustrated with ample literature examples.
Collapse
|
26
|
Prefrontal dysfunction and a monkey model of schizophrenia. Neurosci Bull 2015; 31:235-41. [PMID: 25822218 DOI: 10.1007/s12264-014-1506-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/23/2014] [Indexed: 12/28/2022] Open
Abstract
The prefrontal cortex is implicated in cognitive functioning and schizophrenia. Prefrontal dysfunction is closely associated with the symptoms of schizophrenia. In addition to the features typical of schizophrenia, patients also present with aspects of cognitive disorders. Based on these relationships, a monkey model mimicking the cognitive symptoms of schizophrenia has been made using treatment with the non-specific competitive N-methyl-D-aspartate receptor antagonist, phencyclidine. The symptoms are ameliorated by atypical antipsychotic drugs such as clozapine. The beneficial effects of clozapine on behavioral impairment might be a specific indicator of schizophrenia-related cognitive impairment.
Collapse
|
27
|
Spiros A, Roberts P, Geerts H. A computer-based quantitative systems pharmacology model of negative symptoms in schizophrenia: exploring glycine modulation of excitation-inhibition balance. Front Pharmacol 2014; 5:229. [PMID: 25374541 PMCID: PMC4204440 DOI: 10.3389/fphar.2014.00229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/23/2014] [Indexed: 02/04/2023] Open
Abstract
Although many antipsychotics can reasonably control positive symptoms in schizophrenia, patients' return to society is often hindered by negative symptoms and cognitive deficits. As an alternative to animal rodent models that are often not very predictive for the clinical situation, we developed a new computer-based mechanistic modeling approach. This Quantitative Systems Pharmacology approach combines preclinical basic neurophysiology of a biophysically realistic neuronal ventromedial cortical-ventral striatal network identified from human imaging studies that are associated with negative symptoms. Calibration of a few biological coupling parameters using a retrospective clinical database of 34 drug-dose combinations resulted in correlation coefficients greater than 0.60, while a robust quantitative prediction of a number of independent trials was observed. We then simulated the effect of glycine modulation on the anticipated clinical outcomes. The quantitative biochemistry of glycine interaction with the different NMDA-NR2 subunits, neurodevelopmental trajectory of the NMDA-NR2B in the human schizophrenia pathology, their specific localization on excitatory vs. inhibitory interneurons and the electrogenic nature of the glycine transporter resulted in an inverse U-shape dose-response with an optimum in the low micromolar glycine concentration. Quantitative systems pharmacology based computer modeling of complex humanized brain circuits is a powerful alternative approach to explain the non-monotonic dose-response observed in past clinical trial outcomes with sarcosine, D-cycloserine, glycine, or D-serine or with glycine transporter inhibitors. In general it can be helpful to better understand the human neurophysiology of negative symptoms, especially with targets that show non-monotonic dose-responses.
Collapse
Affiliation(s)
- Athan Spiros
- Computational Neuropharmacology, In Silico Biosciences, Inc. Berwyn, PA, USA
| | - Patrick Roberts
- Computational Neuropharmacology, In Silico Biosciences, Inc. Berwyn, PA, USA ; Department of Biomedical Engineering, Oregon Health and Science University Portland, OR, USA
| | - Hugo Geerts
- Computational Neuropharmacology, In Silico Biosciences, Inc. Berwyn, PA, USA ; Department of Laboratory Pathology, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
28
|
Joshi AD, Sanabria-Bohórquez SM, Bormans G, Koole M, De Hoon J, Van Hecken A, Depre M, De Lepeleire I, Van Laere K, Sur C, Hamill TG. Characterization of the novel GlyT1 PET tracer [18F]MK-6577 in humans. Synapse 2014; 69:33-40. [PMID: 25196464 DOI: 10.1002/syn.21782] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/06/2014] [Accepted: 07/26/2014] [Indexed: 01/05/2023]
Abstract
Decreased glutamatergic neurotransmission is hypothesized to be involved in the pathophysiology of schizophrenia. Inhibition of glycine transporter Type-1 (GlyT1) reuptake is expected to increase the glutamatergic neurotransmission and may serve as treatment for cognitive and negative symptoms of schizophrenia. In this article, we present human data from a novel GlyT1 PET tracer, [(18) F]MK-6577. In the process of developing a GlyT1 inhibitor therapeutic, a PET tracer can assist in determining the dose with a high probability of sufficiently testing the mechanism of action. This article reports the human PET studies with [(18) F]MK-6577 for measuring GlyT1 receptor availability at baseline in normal human subjects and occupancy with a GlyT1 inhibitor, MK-2637. Studies were also performed to measure radiation burden and the baseline test-retest (T-RT) variability of the tracer. The effective dose from sequential whole-body dosimetry scans in three male subjects was estimated to be 24.5 ± 2.9 µSV/MBq (mean ± SD). The time-activity curves from T-RT scans modeled satisfactorily using a two tissue compartmental model. The tracer uptake was highest in the pons (VT = 6.7 ± 0.9, BPND = 4.1 ± 0.43) and lowest in the cortex (VT = 2.1 ± 0.5, BPND = 0.60 ± 0.23). VT T-RT variability measured in three subjects was <12% on average. The occupancy scans performed in a cohort of 15 subjects indicated absence of a reference region. The in vivo potency (Occ50 ) of MK-2637 was determined using two methods: A: Lassen plot with a population input function (Occ50 = 106 nM, SE = 20 nM) and B: pseudo reference tissue model using cortex as the pseudo reference region (Occ50 = 141 nM, SE = 21 nM).
Collapse
|
29
|
Piel M, Vernaleken I, Rösch F. Positron Emission Tomography in CNS Drug Discovery and Drug Monitoring. J Med Chem 2014; 57:9232-58. [DOI: 10.1021/jm5001858] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Markus Piel
- Institute
of Nuclear Chemistry, Johannes Gutenberg-University, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany
| | - Ingo Vernaleken
- Department
of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - Frank Rösch
- Institute
of Nuclear Chemistry, Johannes Gutenberg-University, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany
| |
Collapse
|
30
|
GlyT-1 Inhibitors: From Hits to Clinical Candidates. SMALL MOLECULE THERAPEUTICS FOR SCHIZOPHRENIA 2014. [DOI: 10.1007/7355_2014_53] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|