1
|
Aykan D, Genc M, Unal G. Environmental enrichment enhances the antidepressant effect of ketamine and ameliorates spatial memory deficits in adult rats. Pharmacol Biochem Behav 2024; 240:173790. [PMID: 38761992 DOI: 10.1016/j.pbb.2024.173790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Ketamine is a rapid-acting antidepressant associated with various cognitive side effects. To mitigate these side effects while enhancing efficacy, it can be co-administered with other antidepressants. In our study, we adopted a similar strategy by combining ketamine with environmental enrichment, a potent sensory-motor paradigm, in adult male Wistar rats. We divided the animals into four groups based on a combination of housing conditions and ketamine versus vehicle injections. The groups included those housed in standard cages or an enriched environment for 50 days, which encompassed a 13-day-long behavioral testing period. Each group received either two doses of ketamine (20 mg/kg, IP) or saline as a vehicle. We tested the animals in the novel object recognition test (NORT), forced swim test (FST), open field test (OFT), elevated plus maze (EPM), and Morris water maze (MWM), which was followed by ex vivo c-Fos immunohistochemistry. We observed that combining environmental enrichment with ketamine led to a synergistic antidepressant effect. Environmental enrichment also ameliorated the spatial memory deficits caused by ketamine in the MWM. There was enhanced neuronal activity in the habenula of the enrichment only group following the probe trial of the MWM. In contrast, no differential activity was observed in enriched animals that received ketamine injections. The present study showed how environmental enrichment can enhance the antidepressant properties of ketamine while reducing some of its side effects, highlighting the potential of combining pharmacological and sensory-motor manipulations in the treatment of mood disorders.
Collapse
Affiliation(s)
- Deren Aykan
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Mert Genc
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey.
| |
Collapse
|
2
|
Carboni E, Carta AR, Carboni E, Novelli A. Repurposing Ketamine in Depression and Related Disorders: Can This Enigmatic Drug Achieve Success? Front Neurosci 2021; 15:657714. [PMID: 33994933 PMCID: PMC8120160 DOI: 10.3389/fnins.2021.657714] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/31/2021] [Indexed: 12/27/2022] Open
Abstract
Repurposing ketamine in the therapy of depression could well represent a breakthrough in understanding the etiology of depression. Ketamine was originally used as an anesthetic drug and later its use was extended to other therapeutic applications such as analgesia and the treatment of addiction. At the same time, the abuse of ketamine as a recreational drug has generated a concern for its psychotropic and potential long-term effects; nevertheless, its use as a fast acting antidepressant in treatment-resistant patients has boosted the interest in the mechanism of action both in psychiatry and in the wider area of neuroscience. This article provides a comprehensive overview of the actions of ketamine and intends to cover: (i) the evaluation of its clinical use in the treatment of depression and suicidal behavior; (ii) the potential use of ketamine in pediatrics; (iii) a description of its mechanism of action; (iv) the involvement of specific brain areas in producing antidepressant effects; (v) the potential interaction of ketamine with the hypothalamic-pituitary-adrenal axis; (vi) the effect of ketamine on neuronal transmission in the bed nucleus of stria terminalis and on its output; (vii) the evaluation of any gender-dependent effects of ketamine; (viii) the interaction of ketamine with the inflammatory processes involved in depression; (ix) the evaluation of the effects observed with single or repeated administration; (x) a description of any adverse or cognitive effects and its abuse potential. Finally, this review attempts to assess whether ketamine's use in depression can improve our knowledge of the etiopathology of depression and whether its therapeutic effect can be considered an actual cure for depression rather than a therapy merely aimed to control the symptoms of depression.
Collapse
Affiliation(s)
- Ezio Carboni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Anna R. Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Elena Carboni
- Unit of Paediatrics, ASST Cremona Maggiore Hospital, Cremona, Italy
| | - Antonello Novelli
- Department of Psychology and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
- Sanitary Institute of the Princedom of Asturias, Oviedo, Spain
| |
Collapse
|
3
|
Jadzic D, Bassareo V, Carta AR, Carboni E. Nicotine, cocaine, amphetamine, morphine, and ethanol increase norepinephrine output in the bed nucleus of stria terminalis of freely moving rats. Addict Biol 2021; 26:e12864. [PMID: 31849152 DOI: 10.1111/adb.12864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 01/18/2023]
Abstract
The bed nucleus of stria terminalis (BNST) is a complex limbic area involved in neuroendocrine and behavioural responses and, in particular, in the modulation of the stress response. BNST is innervated by dopamine and norepinephrine, which are known to be involved in drug addiction. It is also known that several drugs of abuse increase dopamine transmission in the BNST, but there has been less research regarding the effect on norepinephrine transmission. Here, we have used the microdialysis technique to investigate the effect of several drugs of abuse on norepinephrine transmission in the BNST of freely moving rats. We observed that nicotine (0.2-0.4 mg/kg), cocaine (2.5-5 mg/kg), amphetamine (0.25-0.5 mg/kg), and ethanol (0.5-1.0 g/kg), dose-dependently increased norepinephrine output while the effect of morphine at 3.0 was lower than that of 1.0 mg/kg. These results suggest that many drugs of abuse, though possessing diverse mechanisms of action, share the property of increasing norepinephrine transmission in the BNST. Furthermore, we suggest that the recurring activation of NE transmission in the BNST, due to drug administration, contributes to the alteration of the function that BNST assumes in how the behavioural response to stress manifests, favouring the establishment of the stress-induced drug seeking.
Collapse
Affiliation(s)
- Dragana Jadzic
- Department of Biomedical Sciences University of Cagliari Cagliari Italy
| | | | - Anna R. Carta
- Department of Biomedical Sciences University of Cagliari Cagliari Italy
| | - Ezio Carboni
- Department of Biomedical Sciences University of Cagliari Cagliari Italy
| |
Collapse
|
4
|
Desormeaux C, Demars F, Davenas E, Jay TM, Lavergne F. Selective activation of D1 dopamine receptors exerts antidepressant-like activity in rats. J Psychopharmacol 2020; 34:1443-1448. [PMID: 33256509 DOI: 10.1177/0269881120959613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Major depressive disorder is a common illness that severely decreases psychosocial functioning. Due to the major limitations of current treatments including response failure, it is crucial to develop better therapy strategies. Evidence suggests that dopamine dysregulation might play a major role in major depressive disorder physiopathology. AIMS This study investigates whether the dopamine D1 receptor agonist A77636 modulates antidepressant-like activity in rats. METHODS Rats were injected with an acute single dose of A77636 (0.75, 1.5 or 3 mg/kg), a potent and selective dopamine D1-like receptor agonist. Their locomotor activity, social interactions and behavioural response to the forced swim test were analysed 30 min after the injection. RESULTS During the forced swim test, the D1 agonist dose dependently reduced the immobility while the time of bursting was increased. Social interactions were significantly increased in the animals exposed to 3 mg/kg of A77636 whereas no significant changes were measured in general motor activity. CONCLUSIONS The present results provide evidence that pharmacological modulation of D1 receptor by the selective agonist A77636 induces antidepressant-like effects in rats, which encourages further studies regarding D1-specific modulation in major depressive disorder treatment.
Collapse
Affiliation(s)
- Cleo Desormeaux
- Pathophysiology of Psychiatric Disorders, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, Paris, France
| | - Fanny Demars
- Pathophysiology of Psychiatric Disorders, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, Paris, France
| | - Elisabeth Davenas
- Pathophysiology of Psychiatric Disorders, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, Paris, France
| | - Therese M Jay
- Pathophysiology of Psychiatric Disorders, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, Paris, France
| | - Francis Lavergne
- Pathophysiology of Psychiatric Disorders, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, Paris, France
| |
Collapse
|
5
|
Huang M, Rathore SS, Lindau M. Drug testing complementary metal-oxide-semiconductor chip reveals drug modulation of transmitter release for potential therapeutic applications. J Neurochem 2019; 151:38-49. [PMID: 31274190 PMCID: PMC6837173 DOI: 10.1111/jnc.14815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/05/2019] [Accepted: 07/02/2019] [Indexed: 01/01/2023]
Abstract
Neurodegenerative diseases, such as Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease, are considered incurable and significantly reduce the quality of life of the patients. A variety of drugs that modulate neurotransmitter levels have been used for the treatment of the neurodegenerative diseases but with limited efficacy. In this work, an amperometric complementary metal‐oxide‐semiconductor (CMOS) chip is used for high‐throughput drug testing with respect to the modulation of transmitter release from single vesicles using chromaffin cells prepared from bovine adrenal glands as a model system. Single chromaffin cell amperometry was performed with high efficiency on the surface‐modified CMOS chip and follow‐up whole‐cell patch‐clamp experiments were performed to determine the readily releasable pool sizes. We show that the antidepressant drug bupropion significantly increases the amount of neurotransmitter released in individual quantal release events. The antidepressant drug citalopram accelerates rapid neurotransmitter release following stimulation and follow‐up patch‐clamp experiments reveal that this is because of the increase in the pool of readily releasable vesicles. These results shed light on the mechanisms by which bupropion and citalopram may be potentially effective in the treatment of neurodegenerative diseases. These results demonstrate that the CMOS amperometry chip technology is an excellent tool for drug testing to determine the specific mechanisms by which they modulate neurotransmitter release. ![]()
Collapse
Affiliation(s)
- Meng Huang
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, USA.,School of Applied and Engineering Physics, Cornell University, Ithaca, New York, USA
| | - Shailendra S Rathore
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, USA
| | - Manfred Lindau
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
6
|
Xu K, He Y, Chen X, Tian Y, Cheng K, Zhang L, Wang Y, Yang D, Wang H, Wu Z, Li Y, Lan T, Dong Z, Xie P. Validation of the targeted metabolomic pathway in the hippocampus and comparative analysis with the prefrontal cortex of social defeat model mice. J Neurochem 2019; 149:799-810. [PMID: 30520040 DOI: 10.1111/jnc.14641] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/22/2018] [Accepted: 11/28/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Ke Xu
- Department of Neurology Yongchuan Hospital of Chongqing Medical University Chongqing China
- Institute of Neuroscience and Collaborative Innovation Center for Brain Science Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Neurobiology Chongqing China
| | - Yong He
- Institute of Neuroscience and Collaborative Innovation Center for Brain Science Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Neurobiology Chongqing China
| | - Xi Chen
- Department of Neurology Yongchuan Hospital of Chongqing Medical University Chongqing China
- Institute of Neuroscience and Collaborative Innovation Center for Brain Science Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Neurobiology Chongqing China
| | - Yu Tian
- Institute of Neuroscience and Collaborative Innovation Center for Brain Science Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Neurobiology Chongqing China
- Department of Neurology the First Affiliated Hospital of Chongqing Medical University ChongqingChina
| | - Ke Cheng
- Institute of Neuroscience and Collaborative Innovation Center for Brain Science Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Neurobiology Chongqing China
| | - Lu Zhang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders Children's Hospital of Chongqing Medical University Chongqing China
- Ministry of Education Key Laboratory of Child Development and Disorders Children's Hospital of Chongqing Medical University Chongqing China
| | - Yue Wang
- Institute of Neuroscience and Collaborative Innovation Center for Brain Science Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Neurobiology Chongqing China
| | - Deyu Yang
- Department of Neurology Yongchuan Hospital of Chongqing Medical University Chongqing China
- Institute of Neuroscience and Collaborative Innovation Center for Brain Science Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Neurobiology Chongqing China
| | - Haiyang Wang
- Institute of Neuroscience and Collaborative Innovation Center for Brain Science Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Neurobiology Chongqing China
| | - Zhonghao Wu
- Institute of Neuroscience and Collaborative Innovation Center for Brain Science Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Neurobiology Chongqing China
| | - Yan Li
- Institute of Neuroscience and Collaborative Innovation Center for Brain Science Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Neurobiology Chongqing China
| | - Tianlan Lan
- Institute of Neuroscience and Collaborative Innovation Center for Brain Science Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Neurobiology Chongqing China
| | - Zhifang Dong
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders Children's Hospital of Chongqing Medical University Chongqing China
- Ministry of Education Key Laboratory of Child Development and Disorders Children's Hospital of Chongqing Medical University Chongqing China
| | - Peng Xie
- Department of Neurology Yongchuan Hospital of Chongqing Medical University Chongqing China
- Institute of Neuroscience and Collaborative Innovation Center for Brain Science Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Neurobiology Chongqing China
- Department of Neurology the First Affiliated Hospital of Chongqing Medical University ChongqingChina
| |
Collapse
|
7
|
Zabegalov KN, Kolesnikova TO, Khatsko SL, Volgin AD, Yakovlev OA, Amstislavskaya TG, Alekseeva PA, Meshalkina DA, Friend AJ, Bao W, Demin KA, Gainetdinov RR, Kalueff AV. Understanding antidepressant discontinuation syndrome (ADS) through preclinical experimental models. Eur J Pharmacol 2018; 829:129-140. [DOI: 10.1016/j.ejphar.2018.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 12/14/2022]
|
8
|
Unsmoothed functional MRI of the human amygdala and bed nucleus of the stria terminalis during processing of emotional faces. Neuroimage 2018; 168:383-391. [DOI: 10.1016/j.neuroimage.2016.12.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 12/02/2016] [Accepted: 12/09/2016] [Indexed: 11/18/2022] Open
|
9
|
Kruchinina AD, Gamzin SS, Tengin MT. Effects of Single Administration of Bupropion on Carboxypeptidase E Activity in Structures of Rat Brain. Bull Exp Biol Med 2016; 161:788-791. [DOI: 10.1007/s10517-016-3511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Indexed: 11/30/2022]
|
10
|
Cadeddu R, Jadzic D, Carboni E. Ketamine modulates catecholamine transmission in the bed nucleus of stria terminalis: The possible role of this region in the antidepressant effects of ketamine. Eur Neuropsychopharmacol 2016; 26:1678-82. [PMID: 27569123 DOI: 10.1016/j.euroneuro.2016.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/26/2016] [Accepted: 08/05/2016] [Indexed: 11/29/2022]
Abstract
Since the therapeutic treatment of depression is far from being satisfactory, new therapeutic strategies ought to be pursued. In addition, further investigation on brain areas involved in the action mechanism of antidepressants can shed light on the aetiology of depression. We have previously reported that typical and atypical antidepressants strongly stimulate catecholamine transmission in the bed nucleus of stria terminalis (BNST). In this study, we have built on that work to examine the effect of ketamine, an unusual antidepressant that can produce a fast-acting and long-lasting antidepressant effect after administration of a single sub-anaesthetic dose. Ketamine is an antagonist of the ionotropic N-methyl-D-aspartate (NMDA) receptor but can also act through its metabolite (2R-6R)-hydroxynorketamine. Using the microdialysis technique in freely moving rats, we monitored the acute effect of ketamine on catecholamine release in the BNST to gain clues to its prompt antidepressant effect. Male Sprague-Dawley rats were implanted with a microdialysis probe in the BNST and 48h later, were injected with ketamine (10, 20, and 40mg/kg, i.p.). Ketamine increased norepinephrine (127%, 155%, 186%) and dopamine (114%, 156%, 176%) extracellular concentration above basal in a time and dose dependent manner, without significantly modifying motility. Since the effect of ketamine, although lower, was not substantially different from that produced by classical antidepressants, we suggest that catecholamine increase in BNST is not likely to be related to a rapid ketamine antidepressant effect, though it might be related to its performance in predictive tests of antidepressant properties.
Collapse
Affiliation(s)
- Roberto Cadeddu
- Department of Biomedical Sciences, University of Cagliari, Via Ospedale 72, 09126 Cagliari, Italy
| | - Dragana Jadzic
- Department of Biomedical Sciences, University of Cagliari, Via Ospedale 72, 09126 Cagliari, Italy
| | - Ezio Carboni
- Department of Biomedical Sciences, University of Cagliari, Via Ospedale 72, 09126 Cagliari, Italy; Neuroscience Institute, Section of Cagliari, National Research Council of Italy - CNR, Cagliari, Italy
| |
Collapse
|
11
|
Kim E, Howes OD, Park JW, Kim SN, Shin SA, Kim BH, Turkheimer FE, Lee YS, Kwon JS. Altered serotonin transporter binding potential in patients with obsessive-compulsive disorder under escitalopram treatment: [11C]DASB PET study. Psychol Med 2016; 46:357-366. [PMID: 26423910 DOI: 10.1017/s0033291715001865] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a chronic, relapsing mental illness. Selective serotonin reuptake inhibitors block serotonin transporters (SERTs) and are the mainstay of treatment for OCD. SERT abnormalities are reported in drug-free patients with OCD, but it is not known what happens to SERT levels during treatment. This is important as alterations in SERT levels in patients under treatment could underlie poor response, or relapse during or after treatment. The aim of the present study was first to validate a novel approach to measuring SERT levels in people taking treatment and then to investigate SERT binding potential (BP) using [11C]DASB PET in patients with OCD currently treated with escitalopram in comparison with healthy controls. METHOD Twelve patients and age- and sex-matched healthy controls were enrolled. The patients and healthy controls underwent serial PET scans after administration of escitalopram and blood samples for drug concentrations were collected simultaneously with the scans. Drug-free BPs were obtained by using an inhibitory E max model we developed previously. RESULTS The inhibitory E max model was able to accurately predict drug-free SERT BP in people taking drug treatment. The drug-free BP in patients with OCD currently treated with escitalopram was significantly different from those in healthy volunteers [Cohen's d = 0.03 (caudate), 1.16 (putamen), 1.46 (thalamus), -5.67 (dorsal raphe nucleus)]. CONCLUSIONS This result extends previous findings showing SERT abnormalities in drug-free patients with OCD by indicating that altered SERT availability is seen in OCD despite treatment. This could account for poor response and the high risk of relapse in OCD.
Collapse
Affiliation(s)
- E Kim
- Department of Neuropsychiatry,Seoul National University Bundang Hospital,Gyeonggi-do,Korea
| | - O D Howes
- Psychiatric Imaging,Medical Research Council Clinical Sciences Centre,Imperial College London,Hammersmith Hospital Campus,London,UK
| | - J W Park
- Department of Psychiatry,Seoul National University College of Medicine,Seoul,Korea
| | - S N Kim
- Department of Psychiatry,Seoul National University College of Medicine,Seoul,Korea
| | - S A Shin
- Department of Biomedical Sciences,Seoul National University,Seoul,Korea
| | - B-H Kim
- Department of Clinical Pharmacology and Therapeutics,Kyung Hee University College of Medicine and Hospital,Seoul,Korea
| | - F E Turkheimer
- King's College London, Institute of Psychiatry,London,UK
| | - Y-S Lee
- Department of Nuclear Medicine,Seoul National University College of Medicine,Seoul,Korea
| | - J S Kwon
- Department of Psychiatry,Seoul National University College of Medicine,Seoul,Korea
| |
Collapse
|
12
|
Chronic treatment with a tryptophan-rich protein hydrolysate improves emotional processing, mental energy levels and reaction time in middle-aged women. Br J Nutr 2015; 113:350-65. [PMID: 25572038 DOI: 10.1017/s0007114514003754] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Common pharmacological treatments of mood disorders aim to modulate serotonergic neurotransmission and enhance serotonin levels in the brain. Brain serotonin levels are dependent on the availability of its food-derived precursor essential amino acid tryptophan (Trp). We tested the hypothesis that delivery of Trp via food may serve as an alternative treatment, and examined the effects of a Trp-rich, bioavailable dietary supplement from egg protein hydrolysate on cognitive and emotional functions, mood state, and sleep quality. In a randomised, placebo-controlled, parallel trial, fifty-nine mentally and physically healthy women aged 45-65 years received placebo (n 30) or the supplement (n 29) (both as 0.5 g twice per d) for 19 d. Emotional processing was significantly changed by supplementation, exhibiting a shift in bias away from negative stimuli. The results for the Affective Go/No-Go Task exhibited a slowing of responses to negative words, suggesting reduced attention to negative emotional stimuli. The results for the Facial Emotional Expression Rating Task also supported a shift away from attention to negative emotions and a bias towards happiness. An increase in arousal-like symptoms, labelled 'high energy', shorter reaction times and a slight benefit to sustained attention were observed in the treated subjects. Finally, when the supplement was taken 60-90 min before bedtime, a feeling of happiness before going to bed was consistently reported. In summary, daily consumption of a low-dose supplement containing bioavailable Trp may have beneficial effects on emotional and cognitive functions.
Collapse
|
13
|
Bhagya V, Srikumar B, Raju T, Shankaranarayana Rao B. The selective noradrenergic reuptake inhibitor reboxetine restores spatial learning deficits, biochemical changes, and hippocampal synaptic plasticity in an animal model of depression. J Neurosci Res 2014; 93:104-20. [DOI: 10.1002/jnr.23473] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/07/2014] [Accepted: 07/24/2014] [Indexed: 12/21/2022]
Affiliation(s)
- V. Bhagya
- Department of Neurophysiology; National Institute of Mental Health and Neuro Sciences; Bangalore India
| | - B.N. Srikumar
- Department of Neurophysiology; National Institute of Mental Health and Neuro Sciences; Bangalore India
| | - T.R. Raju
- Department of Neurophysiology; National Institute of Mental Health and Neuro Sciences; Bangalore India
| | - B.S. Shankaranarayana Rao
- Department of Neurophysiology; National Institute of Mental Health and Neuro Sciences; Bangalore India
| |
Collapse
|