1
|
Milivojevic V, Sullivan L, Tiber J, Fogelman N, Simpson C, Hermes G, Sinha R. Pregnenolone effects on provoked alcohol craving, anxiety, HPA axis, and autonomic arousal in individuals with alcohol use disorder. Psychopharmacology (Berl) 2023; 240:101-114. [PMID: 36445398 PMCID: PMC10630889 DOI: 10.1007/s00213-022-06278-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 11/10/2022] [Indexed: 11/30/2022]
Abstract
RATIONALE Chronic alcohol intake down-regulates GABAergic transmission and reduces levels of neuroactive steroids. These changes are associated with greater stress dysregulation and high alcohol craving which in turn increases relapse risk. OBJECTIVES This study tested whether potentiation of the neurosteroid system with pregnenolone (PREG), a precursor to neuroactive steroids and known to increase GABAergic transmission, will normalize chronic alcohol-related stress adaptations in the hypothalamic-pituitary-adrenal (HPA) axis and autonomic responses and reduce alcohol craving to significantly impact relapse risk. METHODS Forty-three treatment-seeking individuals with alcohol use disorder (AUD) were randomized to placebo (PBO) or supraphysiologic pregnenolone doses of 300 mg or 500 mg treatment using a parallel-between subject design as part of a larger 8-week pilot clinical trial. In week 2, they participated in a 3-day laboratory experiment where on each day they self-administered the assigned study drug in the laboratory and were then exposed to 5-min personalized guided imagery provocation of stress, alcohol, or neutral/relaxing cues, one condition per day on separate days, in a random, counterbalanced order. Repeated assessments of alcohol craving, anxiety, HPA axis, heart rate (HR), systolic (SBP), and diastolic blood pressure (DBP) and serum pregnenolone levels were made on each day. RESULTS Pregnenolone levels were significantly increased in the PREG groups versus PBO. PREG treatment decreased stress- and alcohol cue- induced craving and dose-specifically reduced stress-induced anxiety in the 300 mg/day group. Both PREG doses compared to PBO also normalized CORT/ACTH and increased stress-induced HR, stress- and cue-induced SBP, and in the 300 mg PREG group cue-induced DBP responses relative to neutral condition. CONCLUSIONS Findings indicate that pregnenolone decreases stress- and alcohol cue-provoked craving and normalizes HPA axis and autonomic arousal in individuals with AUD, thereby supporting the need for further assessment of pregnenolone in the treatment of AUD.
Collapse
Affiliation(s)
- Verica Milivojevic
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA.
| | - Liam Sullivan
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Jessica Tiber
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Nia Fogelman
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Christine Simpson
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gretchen Hermes
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Rajita Sinha
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| |
Collapse
|
2
|
Goetjen A, Watson M, Lieberman R, Clinton K, Kranzler HR, Covault J. Induced pluripotent stem cell reprogramming-associated methylation at the GABRA2 promoter and chr4p12 GABA A subunit gene expression in the context of alcohol use disorder. Am J Med Genet B Neuropsychiatr Genet 2020; 183:464-474. [PMID: 33029895 PMCID: PMC8022112 DOI: 10.1002/ajmg.b.32824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 11/07/2022]
Abstract
Twin studies indicate that there is a significant genetic contribution to the risk of developing alcohol use disorder (AUD). With the exception of coding variants in ADH1B and ALDH2, little is known about the molecular effects of AUD-associated loci. We previously reported that the AUD-associated synonymous polymorphism rs279858 within the GABAA α2 receptor subunit gene, GABRA2, was associated with gene expression of the chr4p12 GABAA subunit gene cluster in induced pluripotent stem cell (iPSC)-derived neural cultures. Based on this and other studies that showed changes in GABRA2 DNA methylation associated with schizophrenia and aging, we examined methylation in GABRA2. Specifically, using 69 iPSC lines and neural cultures derived from 47 of them, we examined whether GABRA2 rs279858 genotype predicted methylation levels and whether methylation was related to GABAA receptor subunit gene expression. We found that the GABRA2 CpG island undergoes random stochastic methylation during reprogramming and that methylation is associated with decreased GABRA2 gene expression, an effect that extends to the GABRB1 gene over 600 kb distal to GABRA2. Further, we identified additive effects of GABRA2 CpG methylation and GABRA2 rs279858 genotype on expression of the GABRB1 subunit gene in iPSC-derived neural cultures.
Collapse
Affiliation(s)
- Alexandra Goetjen
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, Connecticut
- Genetics and Developmental Biology Graduate Program, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Maegan Watson
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Richard Lieberman
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Kaitlin Clinton
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Henry R. Kranzler
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania
- VISN 4 MIRECC, Crescenz VAMC, Philadelphia, Pennsylvania
| | - Jonathan Covault
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, Connecticut
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
3
|
Lieberman R, Jensen KP, Clinton K, Levine ES, Kranzler HR, Covault J. Molecular Correlates of Topiramate and GRIK1 rs2832407 Genotype in Pluripotent Stem Cell-Derived Neural Cultures. Alcohol Clin Exp Res 2020; 44:1561-1570. [PMID: 32574382 PMCID: PMC7491603 DOI: 10.1111/acer.14399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND There is growing evidence that the anticonvulsant topiramate is efficacious in reducing alcohol consumption. Further, an intronic single nucleotide polymorphism (rs2832407, C A) in the GRIK1 gene, which encodes the GluK1 subunit of the excitatory kainate receptor, predicted topiramate's effectiveness in reducing heavy drinking in a clinical trial. The molecular correlates of GRIK1 genotype that may relate to topiramate's ability to reduce drinking remain unknown. METHODS We differentiated induced pluripotent stem cells (iPSCs) characterized by GRIK1 rs2832407 genotype from 8 A/A and 8 C/C donors into forebrain-lineage neural cultures. Our differentiation protocol yielded mixed neural cultures enriched for glutamatergic neurons. Basal mRNA expression of the GRIK1 locus was examined via quantitative polymerase chain reaction (qPCR). The effects of acute topiramate exposure on excitatory spontaneous synaptic activity were examined via whole-cell patch-clamp electrophysiology. Results were compared and contrasted between iPSC donor genotypes. RESULTS Although characterization of the GRIK1 locus revealed no effect of rs2832407 genotype on GRIK1 isoform mRNA expression, a significant difference was observed on GRIK1 antisense-2 expression, which was greater in C/C neural cultures. Differential effects of acute exposure to 5 μM topiramate were observed on spontaneous synaptic activity in A/A versus C/C neurons, with a smaller reduction in excitatory event frequency observed in C/C donor neurons. CONCLUSIONS This work highlights the use of iPSC technologies to study pharmacogenetic treatment effects in psychiatric disorders and furthers our understanding of the molecular effects of topiramate exposure in human neural cells.
Collapse
Affiliation(s)
- Richard Lieberman
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT 06030-1410
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA 06030
| | - Kevin P. Jensen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- VA Connecticut Healthcare System, West Haven, CT 06516
| | - Kaitlin Clinton
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT 06030-1410
| | - Eric S. Levine
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA 06030
| | - Henry R. Kranzler
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104
- VISN4 MIRECC, Crescenz VAMC, Philadelphia, PA 19104
| | - Jonathan Covault
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT 06030-1410
| |
Collapse
|
4
|
Jensen KP, Lieberman R, Kranzler HR, Gelernter J, Clinton K, Covault J. Alcohol-responsive genes identified in human iPSC-derived neural cultures. Transl Psychiatry 2019; 9:96. [PMID: 30862775 PMCID: PMC6414668 DOI: 10.1038/s41398-019-0426-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/22/2019] [Accepted: 01/26/2019] [Indexed: 01/04/2023] Open
Abstract
Alcohol use contributes to numerous diseases and injuries. The nervous system is affected by alcohol in diverse ways, though the molecular mechanisms of these effects are not clearly understood. Using human-induced pluripotent stem cells (iPSCs), we developed a neural cell culture model to identify the mechanisms of alcohol's effects. iPSCs were generated from fibroblasts and differentiated into forebrain neural cells cultures that were treated with 50 mM alcohol or sham conditions (same media lacking alcohol) for 7 days. We analyzed gene expression using total RNA sequencing (RNA-seq) for 34 samples derived from 10 subjects and for 10 samples from 5 subjects in an independent experiment that had intermittent exposure to the same dose of alcohol. We also analyzed genetic effects on gene expression and conducted a weighted correlation network analysis. We found that differentiated neural cell cultures have the capacity to recapitulate gene regulatory effects previously observed in specific primary neural tissues and identified 226 genes that were differentially expressed (FDR < 0.1) after alcohol treatment. The effects on expression included decreases in INSIG1 and LDLR, two genes involved in cholesterol homeostasis. We also identified a module of 58 co-expressed genes that were uniformly decreased following alcohol exposure. The majority of these effects were supported in independent alcohol exposure experiments. Enrichment analysis linked the alcohol responsive genes to cell cycle, notch signaling, and cholesterol biosynthesis pathways, which are disrupted in several neurological disorders. Our findings suggest that there is convergence between these disorders and the effects of alcohol exposure.
Collapse
Affiliation(s)
- Kevin P. Jensen
- 0000000419368710grid.47100.32Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511 USA ,0000 0004 0419 3073grid.281208.1VA Connecticut Healthcare System, West Haven, CT 06516 USA
| | - Richard Lieberman
- 0000000419370394grid.208078.5Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT 06030–1410 USA
| | - Henry R. Kranzler
- 0000 0004 1936 8972grid.25879.31Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104 USA ,VISN4 MIRECC, Crescenz VAMC, Philadelphia, PA 19104 USA
| | - Joel Gelernter
- 0000000419368710grid.47100.32Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511 USA ,0000 0004 0419 3073grid.281208.1VA Connecticut Healthcare System, West Haven, CT 06516 USA
| | - Kaitlin Clinton
- 0000000419370394grid.208078.5Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT 06030–1410 USA
| | - Jonathan Covault
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, 06030-1410, USA. .,Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
5
|
Milivojevic V, Covault J, Angarita GA, Siedlarz K, Sinha R. Neuroactive steroid levels and cocaine use chronicity in men and women with cocaine use disorder receiving progesterone or placebo. Am J Addict 2018; 28:16-21. [PMID: 30537098 DOI: 10.1111/ajad.12828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/29/2018] [Accepted: 11/18/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Neuroactive steroids (NAS) may play a role in addiction, with observed increases in response to acute stress and drug use, but decreases with chronic substance use, suggesting that NAS neuroadaptations may occur with chronic substance use. However, levels of NAS in addicted individuals have not been systematically examined. Here, we evaluated a panel of NAS in men and women with cocaine use disorder (CUD) who participated in a clinical laboratory study of progesterone. METHODS Forty six CUD individuals were enrolled in a randomized placebo-controlled laboratory study to evaluate progesterone effects on levels of various NAS. On day 5 of a 7-day inpatient treatment regimen of 400 mg/day progesterone (15M/8F) or placebo (14M/9F), plasma levels of NAS known to be downstream of progesterone (allopregnanolone, pregnanolone), and NAS not in the progesterone synthesis pathway (androstanediol, testosterone, dehydroepiandrosterone [DHEA] and the NAS precursor, pregnenolone) were analyzed using highly sensitive gas chromatography/mass spectrometry (GC/MS). The relationship between each of the NAS and chronicity of cocaine use was also assessed. RESULTS Progesterone versus placebo significantly increased the GABAergic NAS allopregnanolone and pregnanolone in both CUD men and women. Levels of pregnenolone, testosterone, its GABAergic metabolite androstanediol, and the non-GABAergic DHEA were unaffected by progesterone treatment, and testosterone and androstanediol levels were significantly higher in men than women. Importantly, lower pregnenolone and androstanediol levels were associated with greater years of cocaine use. SCIENTIFIC SIGNIFICANCE GABAergic NAS that are upstream from the progesterone synthesis pathway appear susceptible to chronic effects of cocaine use. (Am J Addict 2019;28:16-21).
Collapse
Affiliation(s)
- Verica Milivojevic
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Jonathan Covault
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Gustavo A Angarita
- Connecticut Mental Health Center, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Kristen Siedlarz
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Rajita Sinha
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
6
|
Lieberman R, Kranzler HR, Levine ES, Covault J. Examining the effects of alcohol on GABA A receptor mRNA expression and function in neural cultures generated from control and alcohol dependent donor induced pluripotent stem cells. Alcohol 2018; 66:45-53. [PMID: 29156239 PMCID: PMC5743620 DOI: 10.1016/j.alcohol.2017.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/03/2017] [Accepted: 08/05/2017] [Indexed: 02/07/2023]
Abstract
Factors influencing the development of alcohol-use disorder (AUD) are complex and heterogeneous. While animal models have been crucial to identifying actions of alcohol on neural cells, human-derived in vitro systems that reflect an individual's genetic background hold promise in furthering our understanding of the molecular and functional effects of alcohol exposure and the pathophysiology of AUD. In this report, we utilized induced pluripotent stem cell (iPSCs)-derived neural cell cultures obtained from healthy individuals (CTLs) and those with alcohol dependence (ADs) to 1) examine the effect of 21-day alcohol exposure on mRNA expression of three genes encoding GABAA receptor subunits (GABRA1, GABRG2, and GABRD) using quantitative PCR, and 2) examine the effect of acute and chronic alcohol exposure on GABA-evoked currents using whole-cell patch-clamp electrophysiology. iPSCs from CTLs and ADs were differentiated into neural cultures enriched for forebrain-type excitatory glutamate neurons. Following 21-day alcohol exposure, significant treatment effects were observed in GABRA1, GABRG2, and GABRD mRNA expression. A modestly significant interaction between treatment and donor phenotype was observed for GABRD, which was increased in cell cultures derived from ADs. No effect of acute or chronic alcohol was observed on GABA-evoked currents in neurons from either CTLs or ADs. This work extends findings examining the effects of alcohol on the GABAA receptor in human cell in vitro model systems.
Collapse
Affiliation(s)
- Richard Lieberman
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, 06030-1410, USA
| | - Henry R Kranzler
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, 19104, USA; VISN4 MIRECC, Crescenz Philadelphia VAMC, Philadelphia, PA, 19104, USA
| | - Eric S Levine
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Jonathan Covault
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, 06030-1410, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06268, USA.
| |
Collapse
|
7
|
Lieberman R, Kranzler HR, Levine ES, Covault J. Examining FKBP5 mRNA expression in human iPSC-derived neural cells. Psychiatry Res 2017; 247:172-181. [PMID: 27915167 PMCID: PMC5191911 DOI: 10.1016/j.psychres.2016.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/03/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022]
Abstract
In peripheral blood leukocytes, FKBP5 mRNA expression is upregulated following glucocorticoid receptor activation. The single nucleotide polymorphism rs1360780 in FKBP5 is associated with psychiatric illness and has functional molecular effects. However, examination of FKBP5 regulation has largely been limited to peripheral cells, which may not reflect regulation in neural cells. We used 27 human induced pluripotent stem cell lines (iPSCs) derived from 20 subjects to examine FKBP5 mRNA expression following GR activation. Following differentiation into forebrain-lineage neural cultures, cells were exposed to 1μM dexamethasone and mRNA expression of FKBP5 and NR3C1 analyzed. Results from the iPSC-derived neural cells were compared with those from 15 donor matched fibroblast lines. Following dexamethasone treatment, there was a 670% increase in FKBP5 expression in fibroblasts, mimicking findings in peripheral blood-derived cells, but only a 23% increase in iPSC-derived neural cultures. FKBP5 rs1360780 genotype did not affect the induction of FKBP5 mRNA in either fibroblasts or neural cells. These results suggest that iPSC-derived forebrain-lineage neurons may not be an optimal neural cell type in which to examine relationships between GR activation, FKBP5 expression, and genetic variation in human subjects. Further, FKBP5 induction following GR activation may differ between cell types derived from the same individual.
Collapse
Affiliation(s)
- Richard Lieberman
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington 06030-1410, CT, USA
| | - Henry R Kranzler
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia 19104, PA, USA; VISN4 MIRECC, Crescenz Philadelphia VAMC, Philadelphia 19104, PA, USA
| | - Eric S Levine
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington 06030, CT, USA
| | - Jonathan Covault
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington 06030-1410, CT, USA.
| |
Collapse
|
8
|
Milivojevic V, Fox HC, Sofuoglu M, Covault J, Sinha R. Effects of progesterone stimulated allopregnanolone on craving and stress response in cocaine dependent men and women. Psychoneuroendocrinology 2016; 65:44-53. [PMID: 26716877 PMCID: PMC4752896 DOI: 10.1016/j.psyneuen.2015.12.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Fluctuations in progesterone levels during the menstrual cycle have been shown to affect physiological and subjective effects of cocaine. Furthermore, our laboratory has demonstrated that following drug-cue exposure, cocaine dependent women with high levels of circulating progesterone display lower diastolic and systolic blood pressure responses and report lower levels of anxiety and drug craving compared to cocaine dependent women with low levels of progesterone. In the current study we examined the role of the progesterone derived neuroactive steroid allopregnanolone (ALLO) on stress arousal, inhibitory control and drug craving in cocaine dependent subjects. METHODS Plasma levels of ALLO were measured using GC/MS in 46 treatment-seeking cocaine dependent men and women on day 5 of a 7-day treatment regimen of micronized progesterone (15M/8F) (400mg/day) or placebo (14M/9F) administered in a double blind, randomized manner. As a control, levels of the testosterone derived neurosteroid androstanediol (ADIOL) were also measured. All subjects participated in laboratory sessions on days 5-7 of progesterone/placebo administration in which they were exposed to a series of 5-min personalized guided imagery of either a stressful situation, cocaine use or of a neutral setting and dependent variables including subjective craving, mood, Stroop task as a measure of inhibitory control performance and plasma cortisol were assessed. Participants were grouped by high or low ALLO level and levels of dependent variables compared between ALLO groups. RESULTS Progesterone relative to placebo significantly increased ALLO levels with no sex differences. There were no effects of micronized progesterone on the testosterone derived ADIOL. Individuals in the high versus the low ALLO group showed decreased levels of cortisol at baseline, and a higher cortisol response to stress; higher positive mood scores at baseline and improved Stroop performance in the drug-cue and stress conditions, and reduced cocaine craving across all imagery conditions. CONCLUSIONS As expected, cocaine dependent individuals administered progesterone showed significantly higher ALLO plasma levels. High levels of ALLO appeared to normalize basal and stress response levels of cortisol, decrease cocaine craving and also contribute to improvements in positive emotion and Stroop performance in response to stress and drug-cue exposures. These findings suggest that the neuroactive steroid ALLO plays a significant role in mediating the positive effects of progesterone on stress arousal, cognitive performance and drug craving in cocaine dependence.
Collapse
Affiliation(s)
- Verica Milivojevic
- The Connecticut Mental Health Center, Yale University School of Medicine, Department of Psychiatry, 34 Park Street, New Haven, CT 06519, USA; The Yale Stress Center, Yale University School of Medicine, Department of Psychiatry 2 Church Street South, Suite 209, New Haven, CT 06519, USA.
| | - Helen C. Fox
- The Connecticut Mental Health Center, Yale University School of Medicine, Department of Psychiatry, 34 Park Street, New Haven, CT 06519, USA,The Yale Stress Center, Yale University School of Medicine, Department of Psychiatry 2 Church Street South, Suite 209, New Haven, CT 06519, USA
| | - Mehmet Sofuoglu
- VA Medical Center, 950 Campbell Ave, # 36, West Haven, CT 06516, USA
| | - Jonathan Covault
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Rajita Sinha
- The Yale Stress Center, Yale University School of Medicine, Department of Psychiatry 2 Church Street South, Suite 209, New Haven, CT 06519, USA
| |
Collapse
|
9
|
Lieberman R, Kranzler HR, Joshi P, Shin DG, Covault J. GABRA2 Alcohol Dependence Risk Allele is Associated with Reduced Expression of Chromosome 4p12 GABAA Subunit Genes in Human Neural Cultures. Alcohol Clin Exp Res 2015; 39:1654-64. [PMID: 26250693 DOI: 10.1111/acer.12807] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/05/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND Genetic variation in a region of chromosome 4p12 that includes the GABAA subunit gene GABRA2 has been reproducibly associated with alcohol dependence (AD). However, the molecular mechanisms underlying the association are unknown. This study examined correlates of in vitro gene expression of the AD-associated GABRA2 rs279858*C-allele in human neural cells using an induced pluripotent stem cell (iPSC) model system. METHODS We examined mRNA expression of chromosome 4p12 GABAA subunit genes (GABRG1, GABRA2, GABRA4, and GABRB1) in 36 human neural cell lines differentiated from iPSCs using quantitative polymerase chain reaction and next-generation RNA sequencing. mRNA expression in adult human brain was examined using the BrainCloud and BRAINEAC data sets. RESULTS We found significantly lower levels of GABRA2 mRNA in neural cell cultures derived from rs279858*C-allele carriers. Levels of GABRA2 RNA were correlated with those of the other 3 chromosome 4p12 GABAA genes, but not other neural genes. Cluster analysis based on the relative RNA levels of the 4 chromosome 4p12 GABAA genes identified 2 distinct clusters of cell lines, a low-expression cluster associated with rs279858*C-allele carriers and a high-expression cluster enriched for the rs279858*T/T genotype. In contrast, there was no association of genotype with chromosome 4p12 GABAA gene expression in postmortem adult cortex in either the BrainCloud or BRAINEAC data sets. CONCLUSIONS AD-associated variation in GABRA2 is associated with differential expression of the entire cluster of GABAA subunit genes on chromosome 4p12 in human iPSC-derived neural cell cultures. The absence of a parallel effect in postmortem human adult brain samples suggests that AD-associated genotype effects on GABAA expression, although not present in mature cortex, could have effects on regulation of the chromosome 4p12 GABAA cluster during neural development.
Collapse
Affiliation(s)
- Richard Lieberman
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, Connecticut.,Department of Neuroscience, University of Connecticut Health Center, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Henry R Kranzler
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania.,VISN4 MIRECC, Philadelphia VAMC, Philadelphia, Pennsylvania
| | - Pujan Joshi
- Department of Computer Science and Engineering, University of Connecticut, Storrs, Connecticut
| | - Dong-Guk Shin
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut.,Department of Computer Science and Engineering, University of Connecticut, Storrs, Connecticut
| | - Jonathan Covault
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, Connecticut.,Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
10
|
Jones JD, Comer SD, Kranzler HR. The pharmacogenetics of alcohol use disorder. Alcohol Clin Exp Res 2015; 39:391-402. [PMID: 25703505 PMCID: PMC4348335 DOI: 10.1111/acer.12643] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/24/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Annually, the use and abuse of alcohol contributes to millions of deaths and billions of dollars in societal costs. To determine the impact of genetic variation on the susceptibility to the disorder and its response to treatment, studies have been conducted to assess the contribution of a variety of candidate genetic variants. These variants, which we review here, were chosen based upon their observed or hypothesized functional relevance to alcohol use disorder (AUD) risk or to the mechanism by which medications used to treat the disorder exert their effects. METHODS This qualitative review examines studies in which candidate polymorphisms were tested as moderator variables to identify pharmacogenetic effects on either the subjective response to alcohol or the outcomes of pharmacotherapy. RESULTS Although findings from these studies provide evidence of a number of clinically relevant pharmacogenetic effects, the literature is limited and there are conflicting findings that require resolution. CONCLUSIONS Pharmacogenetic studies of AUD treatment that use greater methodological rigor and better statistical controls, such as corrections for multiple testing, may help to resolve inconsistent findings. These procedures could also lead to the discovery of more robust and clinically meaningful moderator effects. As the field evolves through methodological standardization and the use of larger study samples, pharmacogenetic research has the potential to inform clinical care by enhancing therapeutic effects and personalizing treatments. These efforts may also provide insights into the mechanisms by which medications reduce heavy drinking or promote abstinence in patients with an AUD.
Collapse
Affiliation(s)
- Jermaine D Jones
- Division on Substance Abuse , New York State Psychiatric Institute & Columbia University College of Physicians and Surgeons, New York, New York
| | | | | |
Collapse
|