1
|
Zhi H, Wang Z, Zhu X, Wu W, Yang L, Dai Y, Wang Z, Jiang L, Tan Y, Liu X, Liu L. Chronic liver injury decreases levels of cerebral carnitine and acetylcarnitine in rats partly due to the downregulation of organic cation transporters OCT1/2 and OCTN2 at the blood-brain barrier. Drug Metab Dispos 2025; 53:100072. [PMID: 40300306 DOI: 10.1016/j.dmd.2025.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/11/2025] [Accepted: 03/21/2025] [Indexed: 05/01/2025] Open
Abstract
Liver failure often causes hepatic encephalopathy, partly due to dysregulation in cerebral energy metabolism. Carnitine and acetylcarnitine play essential roles in energy metabolism by transporting fatty acids from the cytosol into mitochondria, whose transport across the blood-brain barrier (BBB) is primarily mediated by organic cation transporters (OCTs) and organic cation/carnitine transporters (OCTNs). This study aimed to investigate whether liver injury alters the expression of OCTs and OCTNs at the BBB, leading to decreased cerebral carnitine and acetylcarnitine levels and impaired energy metabolism using thioacetamide-induced chronic liver injury (CLI) in rats. The results showed that CLI significantly downregulated the expressions of OCT1, OCT2, and OCTN2 at the BBB; decreased cerebral carnitine/acetylcarnitine levels; and increased the adenosine diphosphate/ adenosine triphosphate ratio. Elevated plasmic levels of chenodeoxycholic acid (CDCA) and 17β-estradiol (E2) were detected in CLI rats. In hCMEC/D3 cells, E2 downregulated the expressions of OCT2 and OCTN2, which were attenuated by the estrogen receptor-α (ER-α) inhibitor and silencing. CDCA downregulated the expression of OCT1 and OCTN2, which was reversed by the farnesoid X receptor inhibitor and silencing. These in vitro findings were confirmed in rats treated with CDCA or E2. Additionally, HEK-293-OCT1 and HEK-293-OCT2 cells demonstrated an uptake of carnitine and acetylcarnitine, with uptake in HEK-293-OCT2 cells being 6-fold and 14-fold higher, respectively, than in HEK-293-OCT1 cells. In conclusion, thioacetamide-induced CLI downregulated the expressions of OCT1, OCT2, and OCTN2 at the BBB by activating both E2/ER-α and CDCA/farnesoid X receptor pathways, leading to decreased cerebral carnitine and acetylcarnitine levels, disrupted energy metabolism, and contributing to hepatic encephalopathy. SIGNIFICANCE STATEMENT: This study revealed that the deficiency of brain carnitine and acetylcarnitine in thioacetamide-induced chronic liver injury rats is mainly attributed to the downregulation of organic cation transporter 1/2 and organic cation/carnitine transporter 2 expressions at the blood-brain barrier. The increased circulating levels of chenodeoxycholic acid and 17β-estradiol play a significant role in the downregulation of organic cation transporter 1/2 and organic cation/carnitine transporter 2 expression in chronic liver injury.
Collapse
Affiliation(s)
- Hao Zhi
- Center of Drug Metabolism and Pharmacokinetics, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhongyan Wang
- Center of Drug Metabolism and Pharmacokinetics, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xinyue Zhu
- Center of Drug Metabolism and Pharmacokinetics, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenhan Wu
- Center of Drug Metabolism and Pharmacokinetics, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lu Yang
- Center of Drug Metabolism and Pharmacokinetics, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yidong Dai
- Center of Drug Metabolism and Pharmacokinetics, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zehua Wang
- Center of Drug Metabolism and Pharmacokinetics, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ling Jiang
- Center of Drug Metabolism and Pharmacokinetics, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yongmei Tan
- Center of Drug Metabolism and Pharmacokinetics, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- Center of Drug Metabolism and Pharmacokinetics, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
2
|
Abstract
Most psychiatric illnesses, such as schizophrenia, show profound sex differences in incidence, clinical presentation, course, and outcome. Fortunately, more recently the literature on sex differences and (to a lesser extent) effects of sex steroid hormones is expanding, and in this review we have focused on such studies in psychosis, both from a clinical/epidemiological and preclinical/animal model perspective. We begin by briefly describing the clinical evidence for sex differences in schizophrenia epidemiology, symptomatology, and pathophysiology. We then detail sex differences and sex hormone effects in behavioral animal models of psychosis, specifically psychotropic drug-induced locomotor hyperactivity and disruption of prepulse inhibition. We expand on the preclinical data to include developmental and genetic models of psychosis, such as the maternal immune activation model and neuregulin transgenic animals, respectively. Finally, we suggest several recommendations for future studies, in order to facilitate a better understanding of sex differences in the development of psychosis.
Collapse
|
3
|
Yamada C, Iizuka S, Nahata M, Hattori T, Takeda H. Vulnerability to psychological stress-induced anorexia in female mice depends on blockade of ghrelin signal in nucleus tractus solitarius. Br J Pharmacol 2020; 177:4666-4682. [PMID: 32754963 PMCID: PMC7520439 DOI: 10.1111/bph.15219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Background and Purpose Women have a higher incidence of eating disorders than men. We investigated whether the effects of ghrelin on feeding are affected by sex and stress, and to elucidate the mechanisms that may cause sex differences in stress‐mediated anorexia, focusing on ghrelin. Experimental Approach Acylated ghrelin was administered to naïve and psychologically stressed male and female C57BL/6J mice, followed by measurements of food intake and plasma hormone levels. Ovariectomy was performed to determine the effects of ovary‐derived oestrogen on stress‐induced eating disorders in female mice. The numbers of Agrp or c‐Fos mRNA‐positive cells and estrogen receptor α/c‐Fos protein‐double‐positive cells were assessed. Key Results Ghrelin administration to naïve female mice caused a higher increase in food intake, growth hormone secretion, Agrp mRNA expression in the arcuate nucleus and c‐Fos expression in the nucleus tractus solitarius (NTS) than in male mice. In contrast, psychological stress caused a more sustained reduction in food intake in females than males. The high sensitivity of naïve females to exogenous ghrelin was attenuated by stress exposure. The stress‐induced decline in food intake was not abolished by ovariectomy. Estrogen receptor‐α but not ‐β antagonism prevented the decrease in food intake under stress. Estrogen receptor‐α/c‐Fos‐double‐positive cells in the NTS were significantly increased by stress only in females. Conclusion and Implications Stress‐mediated eating disorders in females may be due to blockade of ghrelin signalling via estrogen receptor‐α activation in the NTS. Targeting the ghrelin signal in the brain could be a new treatment strategy to prevent these disorders.
Collapse
Affiliation(s)
- Chihiro Yamada
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Ibaraki, Japan
| | - Seiichi Iizuka
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Ibaraki, Japan
| | - Miwa Nahata
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Ibaraki, Japan
| | - Tomohisa Hattori
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Ibaraki, Japan
| | - Hiroshi Takeda
- Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan.,Hokkaido University Hospital Gastroenterological Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
4
|
Georgiou P, Zanos P, Jenne CE, Gould TD. Sex-Specific Involvement of Estrogen Receptors in Behavioral Responses to Stress and Psychomotor Activation. Front Psychiatry 2019; 10:81. [PMID: 30863326 PMCID: PMC6399411 DOI: 10.3389/fpsyt.2019.00081] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/06/2019] [Indexed: 12/25/2022] Open
Abstract
Fluctuating hormone levels, such as estradiol might underlie the difference in the prevalence of psychiatric disorders observed in women vs. men. Estradiol exert its effects primarily through binding on the two classical estrogen receptor subtypes, alpha (ERα) and beta (ERβ). Both receptors have been suggested to a have role in the development of psychiatric disorders, however, most of the current literature is limited to their role in females. We investigated the role of estrogen receptors on cognition (novel-object recognition), anxiety (open-field test, elevated-plus maze, and light/dark box), stress-responsive behaviors (forced-swim test, learned helplessness following inescapable shock, and sucrose preference), pre-pulse inhibition (PPI) and amphetamine-induced hyperlocomotion in both male and female mice either lacking the ERα or ERβ receptor. We found that female Esr1 -/- mice have attenuated pre-pulse inhibition, whereas female Esr2 -/- mice manifested enhanced pre-pulse inhibition. No pre-pulse inhibition difference was observed in male Esr1 -/- and Esr2 -/- mice. Moreover, amphetamine-induced hyperlocomotion was decreased in male Esr1 -/-, but not Esr2 -/- mice, while female Esr1 -/- and Esr2 -/- mice showed an enhanced response. Genetic absence of ERα did not alter the escape capability or sucrose preference following inescapable shock in both male and female mice. In contrast, female, but not male Esr2 -/- mice, manifested decreased escape failures compared with controls. Lack of Esr2 gene in male mice was associated with decreased sucrose preference following inescapable shock, suggesting susceptibility for development of anhedonia following stress. No sucrose preference differences were found in female Esr2 -/- mice following inescapable shock stress. Lastly, we demonstrated that lack of Esr1 or Esr2 genes had no effect on memory and anxiety-like behaviors in both male and female mice. Our findings indicate a differential sex-specific involvement of estrogen receptors in the development of stress-mediated maladaptive behaviors as well as psychomotor activation responses suggesting that these receptors might act as potential treatment targets in a sex-specific manner.
Collapse
Affiliation(s)
- Polymnia Georgiou
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Panos Zanos
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Carleigh E Jenne
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Todd D Gould
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Anatomy & Neurobiology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Veterans Affairs Maryland Health Care System, Baltimore, MD, United States
| |
Collapse
|
5
|
Memory-Related Synaptic Plasticity Is Sexually Dimorphic in Rodent Hippocampus. J Neurosci 2018; 38:7935-7951. [PMID: 30209204 DOI: 10.1523/jneurosci.0801-18.2018] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/22/2018] [Accepted: 07/15/2018] [Indexed: 12/22/2022] Open
Abstract
Men are generally superior to women in remembering spatial relationships, whereas the reverse holds for semantic information, but the neurobiological bases for these differences are not understood. Here we describe striking sexual dimorphism in synaptic mechanisms of memory encoding in hippocampal field CA1, a region critical for spatial learning. Studies of acute hippocampal slices from adult rats and mice show that for excitatory Schaffer-commissural projections, the memory-related long-term potentiation (LTP) effect depends upon endogenous estrogen and membrane estrogen receptor α (ERα) in females but not in males; there was no evident involvement of nuclear ERα in females, or of ERβ or GPER1 (G-protein-coupled estrogen receptor 1) in either sex. Quantitative immunofluorescence showed that stimulation-induced activation of two LTP-related kinases (Src, ERK1/2), and of postsynaptic TrkB, required ERα in females only, and that postsynaptic ERα levels are higher in females than in males. Several downstream signaling events involved in LTP were comparable between the sexes. In contrast to endogenous estrogen effects, infused estradiol facilitated LTP and synaptic signaling in females via both ERα and ERβ. The estrogen dependence of LTP in females was associated with a higher threshold for both inducing potentiation and acquiring spatial information. These results indicate that the observed sexual dimorphism in hippocampal LTP reflects differences in synaptic kinase activation, including both a weaker association with NMDA receptors and a greater ERα-mediated kinase activation in response to locally produced estrogen in females. We propose that male/female differences in mechanisms and threshold for field CA1 LTP contribute to differences in encoding specific types of memories.SIGNIFICANCE STATEMENT There is good evidence for male/female differences in memory-related cognitive function, but the neurobiological basis for this sexual dimorphism is not understood. Here we describe sex differences in synaptic function in a brain area that is critical for learning spatial cues. Our results show that female rodents have higher synaptic levels of estrogen receptor α (ERα) and, in contrast to males, require membrane ERα for the activation of signaling kinases that support long-term potentiation (LTP), a form of synaptic plasticity thought to underlie learning. The additional requirement of estrogen signaling in females resulted in a higher threshold for both LTP and hippocampal field CA1-dependent spatial learning. These results describe a synaptic basis for sexual dimorphism in encoding spatial information.
Collapse
|
6
|
Wang Z, Yang Y, Zheng X, Zhang T, Huang W, Yan D, Zhang W, Wang X, Shen Z. Synthesis and biological evaluation of novel cyclopropyl derivatives as subtype-selective ligands for estrogen receptor. J Pharm Pharmacol 2018; 70:910-918. [DOI: 10.1111/jphp.12908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/10/2018] [Indexed: 12/31/2022]
Abstract
Abstract
Objectives
Tamoxifen is the most commonly used selective estrogen receptor modulators (SERMs); however, patients often develop the acquired drug resistance on tamoxifen therapy. The aim of this study was to develop new SERMs.
Methods
Several novel cyclopropyl derivatives were designed and synthesized. The binding affinities of these compounds as well as the selectivity on subtype of estrogen receptor (ER) were assessed by fluorescence polarization. The antagonistic activity was also evaluated by dual-luciferase reporter assay.
Key findings
Our data identified five compounds (9a, 9b, 9d, 9e and 9f) with a higher selectivity on ERα than ERβ subtype, warranting further development as a subtype-selective ER modulator. The study of antiestrogen activity also demonstrated that compounds 9a, 9c-f acted as full functional antagonists for ERα. These compounds had no or very low cytotoxicity.
Conclusions
Although these cyclopropyl derivatives showed lower binding affinities on ERs compared to 17β-estradiol, five of these compounds exhibited binding to ERα only and therefore might serve as a promising lead compound for further development of novel subtype-selective SERMs.
Collapse
Affiliation(s)
- Zunyuan Wang
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Yewei Yang
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Xiaoliang Zheng
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Tao Zhang
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Wenhai Huang
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Dongmei Yan
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Wenjun Zhang
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Xiaoju Wang
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Zhengrong Shen
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, China
| |
Collapse
|
7
|
Sbisa A, van den Buuse M, Gogos A. The effect of estrogenic compounds on psychosis-like behaviour in female rats. PLoS One 2018; 13:e0193853. [PMID: 29579065 PMCID: PMC5868772 DOI: 10.1371/journal.pone.0193853] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/19/2018] [Indexed: 12/21/2022] Open
Abstract
17β-estradiol treatment has shown benefit against schizophrenia symptoms, however long-term use may be associated with negative side-effects. Selective estrogen receptor modulators, such as raloxifene and tamoxifen, have been proposed as suitable alternatives to 17β-estradiol. An isomer of 17β-estradiol, 17α-estradiol, is considered less carcinogenic, and non-feminising in males, however little is known about its potential as a treatment for schizophrenia. Moreover, the mechanism underlying the therapeutic action of estrogens remains unclear. We aimed to investigate the ability of these estrogenic compounds to attenuate psychosis-like behaviour in rats. We used two acute pharmacologically-induced assays of psychosis-like behaviour: psychotomimetic drug-induced hyperlocomotion and disruption of prepulse inhibition (PPI). Female Long Evans rats were either intact, ovariectomised (OVX), or OVX and chronically treated with 17β-estradiol, 17α-estradiol, raloxifene or tamoxifen. Only 17β-estradiol treatment attenuated locomotor hyperactivity induced by the indirect dopamine receptor agonist, methamphetamine. 17β-estradiol- and tamoxifen-treated rats showed attenuated methamphetamine- and apomorphine (dopamine D1/D2 receptor agonist)-induced disruption of PPI. Raloxifene-treated rats showed attenuated apomorphine-induced PPI disruption only. Baseline PPI was significantly reduced following OVX, and this deficit was reversed by all estrogenic compounds. Further, PPI in OVX rats was increased following administration of apomorphine. This study confirms a protective effect of 17β-estradiol in two established animal models of psychosis, while tamoxifen showed beneficial effects against PPI disruption. In contrast, 17α-estradiol and raloxifene showed little effect on dopamine receptor-mediated psychosis-like behaviours. This study highlights the utility of some estrogenic compounds to attenuate psychosis-like behaviour in rats, supporting the notion that estrogens have therapeutic potential for psychotic disorders.
Collapse
Affiliation(s)
- Alyssa Sbisa
- Hormones in Psychiatry Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia.,Department of Pharmacology, University of Melbourne, Parkville, VIC, Australia.,The College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Andrea Gogos
- Hormones in Psychiatry Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
8
|
El-Lakany MA, Fouda MA, El-Gowelli HM, El-Gowilly SM, El-Mas MM. Gonadal hormone receptors underlie the resistance of female rats to inflammatory and cardiovascular complications of endotoxemia. Eur J Pharmacol 2018; 823:41-48. [PMID: 29382531 DOI: 10.1016/j.ejphar.2018.01.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 01/08/2023]
Abstract
The male gender is more vulnerable to immunological complications of sepsis. Here, we tested the hypotheses that female rats are protected against endotoxemia-evoked hypotension and cardiac autonomic dysfunction, and that gonadal hormone receptors account for such protection. Changes in blood pressure, heart rate, and cardiac sympathovagal balance caused by i.v. lipopolysaccharide (LPS) were determined. In male rats, LPS elevated serum TNFα together with falls in blood pressure and rises in heart rate. The spectral index of cardiac sympathovagal balance (low-frequency/high-frequency ratio, LF/HF) was reduced by LPS, suggesting an enhanced parasympathetic dominance. Remarkably, none of these LPS effects was evident in female rats. We also report that pretreatment of female rats with fulvestrant (nonselective estrogen receptor blocker), PHTPP (estrogen receptor β blocker), or mifepristone (progesterone receptor blocker) uncovered clear inflammatory (increased serum TNFα), hypotensive and tachycardic responses to LPS. However, these female rats, contrary to their male counterparts, exhibited increases in LF/HF ratio. On the other hand, LPS failed to modify inflammatory or cardiovascular states in rats pretreated with MPP (estrogen receptor α blocker). In females treated with formestane (aromatase inhibitor), LPS increased LF/HF ratio but had no effect on blood pressure. In male rats, the hypotensive and cardiac autonomic effects of LPS were (i) eliminated after treatment with estrogen, and (ii) intensified and inhibited, respectively, in flutamide (androgen receptor blocker)-pretreated rats. These findings highlight important roles for female gonadal hormones and functional estrogen receptor β and progesterone receptors in offsetting inflammatory and cardiovascular derangements caused by endotoxemia in female rats.
Collapse
Affiliation(s)
- Mohammed A El-Lakany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohamed A Fouda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hanan M El-Gowelli
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sahar M El-Gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
9
|
Ding X, Tang C, Wang Z, Liang J. [Recent Advances in Association of Estrogen and Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2017; 20:499-504. [PMID: 28738967 PMCID: PMC5972945 DOI: 10.3779/j.issn.1009-3419.2017.07.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
肺癌是目前发病率及死亡率最高的恶性肿瘤之一,其中约85%为非小细胞肺癌(non-small cell lung cancer, NSCLC)。尽管其治疗手段不断提高,但总体预后不容乐观。既往研究已证实雌激素系统参与了NSCLC的发生、发展。越来越多的证据表明,抗雌激素治疗不仅可以逆转NSCLC患者对铂类化疗药物的耐药性,还可以增加人类表皮生长因子受体酪氨酸激酶抑制剂的疗效。本文就雌激素系统及抗雌激素治疗在NSCLC中的作用作一综述。
Collapse
Affiliation(s)
- Xiaosheng Ding
- Department of Oncology, Peking University International Hospital, Beijing 102206, China
| | - Chuanhao Tang
- Department of Oncology, Peking University International Hospital, Beijing 102206, China
| | - Zhijie Wang
- Department of Oncology, Peking University International Hospital, Beijing 102206, China
| | - Jun Liang
- Department of Oncology, Peking University International Hospital, Beijing 102206, China
| |
Collapse
|
10
|
Zha W, Ho HTB, Hu T, Hebert MF, Wang J. Serotonin transporter deficiency drives estrogen-dependent obesity and glucose intolerance. Sci Rep 2017; 7:1137. [PMID: 28442777 PMCID: PMC5430688 DOI: 10.1038/s41598-017-01291-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/27/2017] [Indexed: 12/31/2022] Open
Abstract
Depression and use of antidepressant medications are both associated with increased risk of obesity, potentially attributed to a reduced serotonin transporter (SERT) function. However, how SERT deficiency promotes obesity is unknown. Here, we demonstrated that SERT−/− mice display abnormal fat accumulation in both white and brown adipose tissues, glucose intolerance and insulin resistance while exhibiting suppressed aromatase (Cyp19a1) expression and reduced circulating 17β-estradiol levels. 17β-estradiol replacement in SERT−/− mice reversed the obesity and glucose intolerance, supporting a role for estrogen in SERT deficiency-associated obesity and glucose intolerance. Treatment of wild type mice with paroxetine, a chemical inhibitor of SERT, also resulted in Cyp19a1 suppression, decreased circulating 17β-estradiol levels, abnormal fat accumulation, and glucose intolerance. Such effects were not observed in paroxetine-treated SERT−/− mice. Conversely, pregnant SERT−/− mice displayed normalized estrogen levels, markedly reduced fat accumulation, and improved glucose tolerance, which can be eliminated by an antagonist of estrogen receptor α (ERα). Together, these findings support that estrogen suppression is involved in SERT deficiency-induced obesity and glucose intolerance, and suggest approaches to restore 17β-estradiol levels as a novel treatment option for SERT deficiency associated obesity and metabolic abnormalities.
Collapse
Affiliation(s)
- Weibin Zha
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Horace T B Ho
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Tao Hu
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Mary F Hebert
- Department of Pharmacy, University of Washington, Seattle, WA, USA.,Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA. .,Nutrition Obesity Research Center, University of Washington, Seattle, WA, USA.
| |
Collapse
|
11
|
Crider A, Pillai A. Estrogen Signaling as a Therapeutic Target in Neurodevelopmental Disorders. J Pharmacol Exp Ther 2017; 360:48-58. [PMID: 27789681 PMCID: PMC5193073 DOI: 10.1124/jpet.116.237412] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/18/2016] [Indexed: 12/19/2022] Open
Abstract
Estrogens, the primary female sex hormones, were originally characterized through their important role in sexual maturation and reproduction. However, recent studies have shown that estrogens play critical roles in a number of brain functions, including cognition, learning and memory, neurodevelopment, and adult neuroplasticity. A number of studies from both clinical as well as preclinical research suggest a protective role of estrogen in neurodevelopmental disorders including autism spectrum disorder (ASD) and schizophrenia. Alterations in the levels of estrogen receptors have been found in subjects with ASD or schizophrenia, and adjunctive estrogen therapy has been shown to be effective in enhancing the treatment of schizophrenia. This review summarizes the findings on the role of estrogen in the pathophysiology of neurodevelopmental disorders with a focus on ASD and schizophrenia. We also discuss the potential of estrogen as a therapeutic target in the above disorders.
Collapse
Affiliation(s)
- Amanda Crider
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
12
|
Khan MM. Neurocognitive, Neuroprotective, and Cardiometabolic Effects of Raloxifene: Potential for Improving Therapeutic Outcomes in Schizophrenia. CNS Drugs 2016; 30:589-601. [PMID: 27193386 DOI: 10.1007/s40263-016-0343-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Raloxifene is a selective estrogen receptor modulator that has been approved for treating osteoporosis and breast cancer in high-risk postmenopausal women. However, recent evidence suggests that raloxifene adjunct therapy improves cognition and reduces symptom severity in men and women with schizophrenia. In animal models, raloxifene increases forebrain neurogenesis and enhances working memory and synaptic plasticity. It may consequently repair the neuronal and synaptic connectivity that is disrupted in schizophrenia. It also reduces oxidative stress and neuroinflammation, which are potent etiological factors in the neuropathology of schizophrenia. Furthermore, in postmenopausal women, raloxifene reduces the risks for atherosclerosis, diabetes mellitus, and weight gain, which are serious adverse effects associated with long-term antipsychotic treatment in schizophrenia; therefore, it may improve the safety and efficacy of antipsychotic drugs. In this review, recent insights into the neurocognitive, neuroprotective, and cardiometabolic effects of raloxifene in relation to therapeutic outcomes in schizophrenia are discussed.
Collapse
Affiliation(s)
- Mohammad M Khan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Zawia, Jamal Abdul Nassre Street, P.O. Box 16418, Az-Zawiyah, Libya.
| |
Collapse
|
13
|
Souza CS, Paulsen BS, Devalle S, Lima Costa S, Borges HL, Rehen SK. Commitment of human pluripotent stem cells to a neural lineage is induced by the pro-estrogenic flavonoid apigenin. ACTA ACUST UNITED AC 2015. [DOI: 10.3402/arb.v2.29244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
Shum C, Macedo SC, Warre-Cornish K, Cocks G, Price J, Srivastava DP. Utilizing induced pluripotent stem cells (iPSCs) to understand the actions of estrogens in human neurons. Horm Behav 2015; 74:228-42. [PMID: 26143621 PMCID: PMC4579404 DOI: 10.1016/j.yhbeh.2015.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/11/2015] [Accepted: 06/25/2015] [Indexed: 01/05/2023]
Abstract
This article is part of a Special Issue "Estradiol and Cognition". Over recent years tremendous progress has been made towards understanding the molecular and cellular mechanism by which estrogens exert enhancing effects on cognition, and how they act as a neuroprotective or neurotrophic agent in disease. Currently, much of this work has been carried out in animal models with only a limited number of studies using native human tissue or cells. Recent advances in stem cell technology now make it possible to reprogram somatic cells from humans into induced pluripotent stem cells (iPSCs), which can subsequently be differentiated into neurons of specific lineages. Importantly, the reprogramming of cells allows for the generation of iPSCs that retain the genetic "makeup" of the donor. Therefore, it is possible to generate iPSC-derived neurons from patients diagnosed with specific diseases, that harbor the complex genetic background associated with the disorder. Here, we review the iPSC technology and how it's currently being used to model neural development and neurological diseases. Furthermore, we explore whether this cellular system could be used to understand the role of estrogens in human neurons, and present preliminary data in support of this. We further suggest that the use of iPSC technology offers a novel system to not only further understand estrogens' effects in human cells, but also to investigate the mechanism by which estrogens are beneficial in disease. Developing a greater understanding of these mechanisms in native human cells will also aid in the development of safer and more effective estrogen-based therapeutics.
Collapse
Affiliation(s)
- Carole Shum
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Sara C Macedo
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK; Faculty of Engineering, Universidade do Porto, 4200-465 Porto, Portugal
| | - Katherine Warre-Cornish
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Graham Cocks
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Jack Price
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.
| |
Collapse
|