1
|
Ishaq S, Zahid S, Ahmed T. Sex-specific effects of neuromodulatory drugs on normal and stress-induced social dominance and aggression in rats. Psychopharmacology (Berl) 2025; 242:1011-1024. [PMID: 37994914 DOI: 10.1007/s00213-023-06503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Social hierarchies are important for individual's well-being, professional and domestic growth, harmony of the society, as well as survival and morbidity. Studies have revealed sexual dimorphism in the social abilities; however, data is limited on the sex-specific effects of various drugs used to treat psychiatric disorders and social deficits. OBJECTIVE The present study aimed at evaluating the sex-dependent effects of Risperidone (antipsychotic that targets D2 dopaminergic, 5HT2A serotonergic, and α-adrenergic receptors), Donepezil (a reversible acetylcholinesterase inhibitor), and Paroxetine (a selective serotonin reuptake inhibitor) on social hierarchy in rats under normal and stressed states. METHODS 8-12 weeks old male and female Wistar rats were divided into sex-wise 4-4 groups, i.e., 1. control group, 2. Risperidone treated group (3 mg/kg/day), 3. Donepezil treated group (5 mg/kg/day), and Paroxetine treated group (10 mg/kg/day). Rats were treated with these drugs in phase I for 21 days in distilled drinking water, followed by a no (drugs) treatment break of 10 days. After the break phase II started with the administration of drugs (same as in phase I) along with tilt-cage stress for 21 days. Home cage activity assessment was performed once a week during both phases (I & II), while tube dominance and resident intruder tests were performed at the end of each phase. RESULTS In phase I in both sexes, Risperidone treatment decreased social interaction and motor activity while Paroxetine treatment increased these in both sexes compared to their respective control groups. Social dominance and aggression were reduced after treatment with both of these drugs. In contrast, Donepezil treatment caused an increase in motor activity in females whereas reduced motor activity in males. Furthermore, Donepezil treatment caused reduction in interaction but increased social dominance and aggression were observed in both sexes. In phase II, stress led to an overall decrease in motor activity and social interaction of animals. Treatment with Risperidone, Paroxetine, and Donepezil caused a sex-specific effect on, motor activity, social interaction, and social exploration. CONCLUSION These results showed that Risperidone has stronger effects on male social behavior whereas Paroxetine and Donepezil differentially affect social abilities in both sexes during normal and stressed situations.
Collapse
Affiliation(s)
- Sara Ishaq
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Saadia Zahid
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| |
Collapse
|
2
|
Eskikurt G, Özerman Edis B, Dalanay AU, Özen I, Nurten A, Kara I, Karamürsel S. Long-term administration of paroxetine increases cortical EEG beta and gamma band activities in healthy awake rats. Pharmacol Biochem Behav 2024; 245:173896. [PMID: 39433160 DOI: 10.1016/j.pbb.2024.173896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Understanding the electrophysiological properties of antidepressant medications is important to resolve the response heterogeneity of these drugs in clinical practice. Administration of paroxetine, a selective serotonin reuptake inhibitor, has been shown to increase serotonin levels that affect cortical activities in healthy subjects. However, the extent to which cortical oscillations can be altered by ongoing administration of paroxetine is not known. Here, we develop EEG biomarkers showing long-term effects of paroxetine. EEG changes were analyzed using Neuroscan in healthy wakeful rats administered paroxetine (4 mg/kg/day) for six weeks. Subsequent EEG recordings taken at 3 and 6 weeks after treatment showed differences in cortical oscillations obtained from both hemispheres and frontal-central-parietal regions. Chronic paroxetine administration resulted in an increase in gamma band activity. Comparison of EEG frequency bands of paroxetine and saline groups showed an enhancement in higher frequency activities at third weeks after the treatment. Higher activity of alpha oscillations in the temporal cortex was persistent at sixth week of the administration. Overall, our results suggest that chronic paroxetine administration affects cortical oscillations across an expansive network.
Collapse
Affiliation(s)
- Gökçer Eskikurt
- Department of Psychology, Faculty of Humanities and Social Sciences, Istinye University, Istanbul, Turkey; Innovative Center of Applied Neurosciences, Istinye University, Istanbul, Turkey.
| | - Bilge Özerman Edis
- Department of Biophysics, Istanbul Faculty of Medicine, Istanbul University, 34093 Çapa, Istanbul, Turkey.
| | - Ali Umut Dalanay
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ilknur Özen
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| | - Asiye Nurten
- Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Turkey.
| | - Ihsan Kara
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Sacit Karamürsel
- Department of Physiology, Koç Üniversitesi School of Medicine, Istanbul, Turkey.
| |
Collapse
|
3
|
Thanos PK, McCarthy M, Senior D, Watts S, Connor C, Hammond N, Blum K, Hadjiargyrou M, Komatsu D, Steiner H. Combined Chronic Oral Methylphenidate and Fluoxetine Treatment During Adolescence: Effects on Behavior. Curr Pharm Biotechnol 2023; 24:1307-1314. [PMID: 36306463 DOI: 10.2174/1389201024666221028092342] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Attention Deficit Hyperactivity Disorder (ADHD) can be comorbid with depression, often leading to the prescription of both methylphenidate (MP) and selective serotonin reuptake inhibitor (SSRI) antidepressants, such as fluoxetine (FLX). Moreover, these drugs are often misused as cognitive enhancers. This study examined the effects of chronic oral co-administration of MP and FLX on depressive- and anxiety-like behaviors. METHODS Adolescent rats received daily either water (control), MP, FLX, or the combination of MP plus FLX in their drinking water over the course of 4 weeks. RESULTS Data analysis shows a decrease in food consumption and body weight for rats exposed to FLX or the combination of MP and FLX. Sucrose consumption was significantly greater in FLX or MP+FLX groups compared to controls. FLX-treated rats showed no effect in the elevated plus maze (EPM; open arm time) and forced swim test (FST; latency to immobility). However, rats treated with the combination (MP+FLX) showed significant anxiolytic-like and anti-depressive-like behaviors (as measured by EPM and FST), as well as significant increases in overall activity (distance traveled in open field test). Finally, the combined MP+FLX treatment induced a decrease in anxiety and depressive- like behaviors significantly greater than the response from either of these drugs alone. CONCLUSION These behavioral results characterize the long-term effects of these drugs (orally administered) that are widely co-administered and co-misused and provide important insight into the potential neurobiological and neurochemical effects. Future research will determine the potential risks of the long-term use of MP and FLX together.
Collapse
Affiliation(s)
- Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory (BNNL), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14051, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, 14203, USA
| | - Madison McCarthy
- Behavioral Neuropharmacology and Neuroimaging Laboratory (BNNL), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14051, USA
| | - Daniela Senior
- Behavioral Neuropharmacology and Neuroimaging Laboratory (BNNL), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14051, USA
| | - Samantha Watts
- Behavioral Neuropharmacology and Neuroimaging Laboratory (BNNL), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14051, USA
| | - Carly Connor
- Behavioral Neuropharmacology and Neuroimaging Laboratory (BNNL), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14051, USA
| | - Nikki Hammond
- Behavioral Neuropharmacology and Neuroimaging Laboratory (BNNL), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14051, USA
| | - Kenneth Blum
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Michael Hadjiargyrou
- Department of Life Sciences, New York Institute of Technology, Old Westbury, NY, USA
| | - David Komatsu
- Department of Orthopedics, Stony Brook University, Stony Brook, NY, USA
| | - Heinz Steiner
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
4
|
Kryst J, Majcher-Maślanka I, Chocyk A. Effects of chronic fluoxetine treatment on anxiety- and depressive-like behaviors in adolescent rodents - systematic review and meta-analysis. Pharmacol Rep 2022; 74:920-946. [PMID: 36151445 PMCID: PMC9584991 DOI: 10.1007/s43440-022-00420-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 12/09/2022]
Abstract
Background Drugs prescribed for psychiatric disorders in adolescence should be studied very extensively since they can affect developing and thus highly plastic brain differently than they affect the adult brain. Therefore, we aimed to summarize animal studies reporting the behavioral consequences of chronic exposure to the most widely prescribed antidepressant drug among adolescents i.e., fluoxetine. Methods Electronic databases (Medline via Pubmed, Web of Science Core Collection, ScienceDirect) were systematically searched until April 12, 2022, for published, peer-reviewed, controlled trials concerning the effects of chronic fluoxetine administration vs. vehicle on anxiety and depression measures in naïve and stress-exposed adolescent rodents. All of the relevant studies were selected and critically appraised, and a meta-analysis of eligible studies was performed. Results A total of 18 studies were included in the meta-analysis. In naïve animals, chronic adolescent fluoxetine administration showed dose-related anxiogenic-like effects, measured as a reduction in time spent in the open arms of the elevated plus maze. No significant effects of chronic adolescent fluoxetine on depression-like behavior were reported in naïve animals, while in stress-exposed rodents chronic adolescent fluoxetine significantly decreased immobility time in the forced swim test compared to vehicle. Conclusions These results suggest that although chronic fluoxetine treatment proves positive effects in animal models of depression, it may simultaneously increase anxiety in adolescent animals in a dose-related manner. Although the clinical implications of the data should be interpreted with extreme caution, adolescent patients under fluoxetine treatment should be closely monitored. Supplementary Information The online version contains supplementary material available at 10.1007/s43440-022-00420-w.
Collapse
Affiliation(s)
- Joanna Kryst
- Faculty of Physiotherapy, Institute for Basics Sciences, University of Physical Education, Jana Pawła II Av. 78, 31-571, Kraków, Poland
| | - Iwona Majcher-Maślanka
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - Agnieszka Chocyk
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland.
| |
Collapse
|
5
|
Exploring pharmacological options for adolescent depression: a preclinical evaluation with a sex perspective. Transl Psychiatry 2022; 12:220. [PMID: 35650182 PMCID: PMC9160287 DOI: 10.1038/s41398-022-01994-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/12/2022] Open
Abstract
There is an urgent need for developing novel pharmacological treatment options for adolescent depression, and to ensure an optimal translational outcome to the clinic, sex should be included as a biological variable in preclinical studies. In this context, the present study compared the antidepressant-like potential of ketamine and cannabidiol, with the clinical standard fluoxetine, in adolescent rats exposed to maternal deprivation (as a model of early-life stress), while including a sex perspective. Moreover, changes in drug efficacy over time were evaluated by re-exposing rats to the same dose regimens during adulthood. Antidepressant-like responses were scored through a battery of distinctive tests (forced-swim, novelty-suppressed feeding, and sucrose preference) across time. The main results proved an antidepressant-like potential for ketamine and cannabidiol in adolescent rats, although their efficacy was dependent on sex and prior stress exposure, as well as on treatment length and the behavioral feature analyzed. In general, while all tested antidepressants in male rats improved certain affective-like features, female rats were mainly unresponsive to the treatments performed (except for certain benefits induced by ketamine), demonstrating the need for further characterizing proper treatments for this particular sex. Moreover, when rats were re-exposed in adulthood to the same drug regimens as in adolescence, a drop in efficacy was observed. These findings may have translational ramifications in that ketamine or cannabidiol could be moved forward as antidepressants for the adolescent depressed population, but not before further characterizing their potential long-term safety and/or beneficial vs. harmful effects for both sexes.
Collapse
|
6
|
Waye SC, Dinesh OC, Hasan SN, Conway JD, Raymond R, Nobrega JN, Blundell J, Bambico FR. Antidepressant action of transcranial direct current stimulation in olfactory bulbectomised adolescent rats. J Psychopharmacol 2021; 35:1003-1016. [PMID: 33908307 DOI: 10.1177/02698811211000765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Antidepressant drugs in adolescent depression are sometimes mired by efficacy issues and paradoxical effects. Transcranial direct current stimulation (tDCS) could represent an alternative. AIMS/METHODS We tested the antidepressant action of prefrontal tDCS and paroxetine (20 mg/kg, intraperitoneal) in olfactory bulbectomised (OBX) adolescent rats. Using enzyme-linked immunosorbent assays and in situ hybridisation, we examined treatment-induced changes in plasma brain-derived neurotrophic factor (BDNF) and brain serotonin transporter (SERT) and 5-HT-1A mRNA. RESULTS OBX-induced anhedonia-like reductions in sucrose preference (SP) correlated with open field (OF) hyperactivity. These were accompanied by decreased zif268 mRNA in the piriform/amygdalopiriform transition area, and increased zif268 mRNA in the hypothalamus. Acute paroxetine (2 days) led to a profound SP reduction, an effect blocked by combined tDCS-paroxetine administration. Chronic (14 days) tDCS attenuated hyperlocomotion and its combination with paroxetine blocked OBX-induced SP reduction. Correlations among BDNF, SP and hyperlocomotion scores were altered by OBX but were normalised by tDCS-paroxetine co-treatment. In the brain, paroxetine increased zif268 mRNA in the hippocampal CA1 subregion and decreased it in the claustrum. This effect was blocked by tDCS co-administration, which also increased zif268 in CA2. tDCS-paroxetine co-treatment had variable effects on 5-HT1A receptors and SERT mRNA. 5-HT1A receptor changes were found exclusively within depression-related parahippocampal/hippocampal subregions, and SERT changes within fear/defensive response-modulating brainstem circuits. CONCLUSION These findings point towards potential synergistic efficacies of tDCS and paroxetine in the OBX model of adolescent depression via mechanisms associated with altered expression of BDNF, 5-HT1A, SERT and zif268 in discrete corticolimbic areas.
Collapse
Affiliation(s)
- Shannon C Waye
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - O Chandani Dinesh
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Sm Nageeb Hasan
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Joshua D Conway
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Roger Raymond
- Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| | - José N Nobrega
- Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| | - Jacqueline Blundell
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Francis Rodriguez Bambico
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada.,Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| |
Collapse
|
7
|
Torrisi SA, Lavanco G, Maurel OM, Gulisano W, Laudani S, Geraci F, Grasso M, Barbagallo C, Caraci F, Bucolo C, Ragusa M, Papaleo F, Campolongo P, Puzzo D, Drago F, Salomone S, Leggio GM. A novel arousal-based individual screening reveals susceptibility and resilience to PTSD-like phenotypes in mice. Neurobiol Stress 2020; 14:100286. [PMID: 33392367 PMCID: PMC7772817 DOI: 10.1016/j.ynstr.2020.100286] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/21/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Translational animal models for studying post-traumatic stress disorder (PTSD) are valuable for elucidating the poorly understood neurobiology of this neuropsychiatric disorder. These models should encompass crucial features, including persistence of PTSD-like phenotypes triggered after exposure to a single traumatic event, trauma susceptibility/resilience and predictive validity. Here we propose a novel arousal-based individual screening (AIS) model that recapitulates all these features. The AIS model was designed by coupling the traumatization (24 h restraint) of C57BL/6 J mice with a novel individual screening. This screening consists of z-normalization of post-trauma changes in startle reactivity, which is a measure of arousal depending on neural circuits conserved across mammals. Through the AIS model, we identified susceptible mice showing long-lasting hyperarousal (up to 56 days post-trauma), and resilient mice showing normal arousal. Susceptible mice further showed persistent PTSD-like phenotypes including exaggerated fear reactivity and avoidance of trauma-related cue (up to 75 days post-trauma), increased avoidance-like behavior and social/cognitive impairment. Conversely, resilient mice adopted active coping strategies, behaving like control mice. We further uncovered novel transcriptional signatures driven by PTSD-related genes as well as dysfunction of hypothalamic–pituitary–adrenal axis, which corroborated the segregation in susceptible/resilient subpopulations obtained through the AIS model and correlated with trauma susceptibility/resilience. Impaired hippocampal synaptic plasticity was also observed in susceptible mice. Finally, chronic treatment with paroxetine ameliorated the PTSD-like phenotypes of susceptible mice. These findings indicate that the AIS model might be a new translational animal model for the study of crucial features of PTSD. It might shed light on the unclear PTSD neurobiology and identify new pharmacological targets for this difficult-to-treat disorder. The AIS model includes highly requested features necessary to shape a translational PTSD animal model. Susceptible mice identified through the AIS model exhibited persistent PTSD-like phenotypes. Resilient mice identified through the AIS model adopted active coping strategies. The AIS model revealed molecular adaptations underlying trauma susceptibility/resilience. The AIS model meets the criterion of predictive validity by exclusively using susceptible mice.
Collapse
Key Words
- 5-trial SM, 5-trial social memory
- AIS, arousal-based individual screening
- ASR, acoustic startle reactivity
- Amy, amygdala
- Animal model
- BDNF, brain derived neurotropic factor
- BST, basal synaptic transmission
- C, control
- CORT, corticosterone
- DSM-5, Diagnostic and Statistical Manual of Mental Disorders
- EPM, elevated plus maze
- FDA, Food and Drug Administration
- FKBP5, FK506 binding protein 5
- FST, forced swim test
- Fear conditioning
- HIP, hippocampus
- HPA, hypothalamic–pituitary–adrenal
- HT, hypothalamus
- OF, open field
- PTSD, post-traumatic stress disorder
- Resilience
- SGK1, serum/glucocorticoid-regulated kinase 1
- SSRIs, selective serotonin reuptake inhibitors
- Stress
- Susceptibility
- TE, trauma-exposed
- Z-score
- fEPSPs, field excitatory post-synaptic potentials
- mPFC, medial prefrontal cortex
Collapse
Affiliation(s)
- Sebastiano A Torrisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gianluca Lavanco
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,INSERM, U1215 Neurocentre Magendie and University of Bordeaux, Bordeaux, France
| | - Oriana M Maurel
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Research Group "Neuronal Plasticity", Max Planck Institute of Psychiatry, Munich, Germany
| | - Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Samuele Laudani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Federica Geraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Margherita Grasso
- Oasi Research Institute-IRCCS, Troina, Italy.,Department of Drug Sciences, University of Catania, Catania, Italy
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, Troina, Italy.,Department of Drug Sciences, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.,Neurobiology of Behavior Laboratory, Santa Lucia Foundation, Rome, Italy
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
8
|
Badr AM, Attia HA, Al-Rasheed N. Oleuropein Reverses Repeated Corticosterone-Induced Depressive-Like Behavior in mice: Evidence of Modulating Effect on Biogenic Amines. Sci Rep 2020; 10:3336. [PMID: 32094406 PMCID: PMC7040186 DOI: 10.1038/s41598-020-60026-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/03/2020] [Indexed: 11/09/2022] Open
Abstract
Depression is still one of challenging, and widely encountered disorders with complex etiology. The role of healthy diet and olive oil in ameliorating depression has been claimed. This study was designed to explore the effects of oleuropein; the main constituent of olive oil; on depression-like behaviors that are induced by repeated administration of corticosterone (40 mg/kg, i.p.), once a day for 21 days, in mice. Oleuropein (8, 16, and 32 mg/kg, i.p.) or fluoxetine (20 mg/kg, positive control, i.p.1) was administered 30 minutes prior to corticosterone injection. Sucrose consumption test, open-field test (OFT), tail suspension test (TST), and forced swimming test (FST) were performed. Reduced Glutathione (GSH), lipid peroxidation, and biogenic amines; serotonin, dopamine, and nor-epinephrine; levels were also analyzed in brain homogenates. Corticosterone treatment induced depression-like behaviors, it increased immobility time in the TST, OFT, and FST, decreased the number of movements in OFT, and decreased sucrose consumption. Corticosterone effect was associated with depletion of reduced glutathione and increase of lipid peroxidation, in addition to modification of biogenic amines; decreased serotonin and dopamine. Oleuropein or fluoxetine administration counteracted corticosterone-induced changes. In conclusion, oleuropein showed a promising antidepressant activity, that is evident by improving corticosterone-induced depression-like behaviors, and normalizing levels of biogenic amines.
Collapse
Affiliation(s)
- Amira M Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
- Department of Pharmacology and Toxicology, College of Pharmacy, Ain Shams University, Heliopolis, Cairo, Egypt.
| | - Hala A Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Nouf Al-Rasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Hossain MS, Kubec J, Grabicová K, Grabic R, Randák T, Guo W, Kouba A, Buřič M. Environmentally relevant concentrations of methamphetamine and sertraline modify the behavior and life history traits of an aquatic invertebrate. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105222. [PMID: 31212248 DOI: 10.1016/j.aquatox.2019.105222] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/04/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
Pharmaceutically active compounds are major contaminants of aquatic environments that show direct and indirect effects on aquatic organisms even at low concentrations. The aim of this study was to assess the effects of the illicit drug methamphetamine and the antidepressant sertraline on clonal marbled crayfish Procambarus virginalis. Crayfish exposed to the environmentally relevant concentrations of methamphetamine of ∼1 μg L-1 did not exhibit significant differences from unexposed controls in distance moved, velocity, and activity level with or without available shelter. Sertraline-exposed (∼1 μg L-1) crayfish were significantly more active, regardless of available shelter, and moved greater distances when shelter was available, compared to control crayfish. Crayfish exposed to methamphetamine and sertraline spent significantly more time outside the shelters compared to controls. Sertraline-exposed crayfish spawned more frequently and showed higher mortality than controls. The results suggest that the low environmental concentrations of the tested compounds could alter the behavior and life history traits of crayfish, resulting in higher reproductive effort and mortality.
Collapse
Affiliation(s)
- Md Shakhawate Hossain
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Jan Kubec
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Katerina Grabicová
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Tomas Randák
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Wei Guo
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Antonín Kouba
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Miloš Buřič
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
10
|
Adolescent fluoxetine history impairs spatial memory in adult male, but not female, C57BL/6 mice. J Affect Disord 2019; 249:347-356. [PMID: 30807936 PMCID: PMC6951803 DOI: 10.1016/j.jad.2019.02.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Epidemiological reports indicate that mood-related disorders are common in the adolescent population. The prevalence of juvenile major depressive disorder has resulted in a parallel increase in the prescription rates of fluoxetine (FLX) within this age group. Although such treatment can last for years, little is known about the enduring consequences of adolescent antidepressant exposure on memory-related performance. METHODS We exposed separate groups of adolescent (postnatal day [PD] 35) male and female C57BL/6 mice to FLX (20 mg/kg) for 15 consecutive days (PD35-49). Three weeks after FLX exposure (PD70), we assessed learning and memory performance on a single-day training object novelty recognition test, or a spatial memory task on the Morris water maze (MWM). RESULTS We found that FLX pretreatment did not influence performance on either the object novelty recognition task or the MWM, 24 h after training. Conversely, 48 h post spatial-training on the MWM, FLX pretreated male mice spent significantly less time on the quadrant of the missing platform during a standard probe trial. No differences in MWM performance were observed in the adult female mice pretreated with FLX. LIMITATIONS A limitation of this study is that normal adolescent mice (i.e., non-stressed) were evaluated for memory-related behavior three weeks after antidepressant exposure. Thus, it is possible that FLX pre-exposure in combination with animal models for the study of depression may yield different results. CONCLUSION Together, these results demonstrate enduring spatial memory-related deficiencies after pre-exposure to FLX during adolescence in male, but not female, C57BL/6 mice.
Collapse
|
11
|
Yardimci A, Ulker N, Bulmus O, Kaya N, Colakoglu N, Ozcan M, Canpolat S, Kelestimur H. Effects of long‐term paroxetine or bupropion treatment on puberty onset, reproductive and feeding parameters in adolescent male rats. Andrologia 2019; 51:e13268. [DOI: 10.1111/and.13268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/07/2019] [Accepted: 02/22/2019] [Indexed: 01/08/2023] Open
Affiliation(s)
- Ahmet Yardimci
- Department of Physiology, Faculty of Medicine Firat University Elazig Turkey
| | - Nazife Ulker
- Department of Physiology, Faculty of Medicine Firat University Elazig Turkey
| | - Ozgur Bulmus
- Department of Physiology, Faculty of Medicine Firat University Elazig Turkey
| | - Nalan Kaya
- Department of Histology and Embryology, Faculty of Medicine Firat University Elazig Turkey
| | - Neriman Colakoglu
- Department of Histology and Embryology, Faculty of Medicine Firat University Elazig Turkey
| | - Mete Ozcan
- Department of Biophysics, Faculty of Medicine Firat University Elazig Turkey
| | - Sinan Canpolat
- Department of Physiology, Faculty of Medicine Firat University Elazig Turkey
| | - Haluk Kelestimur
- Department of Physiology, Faculty of Medicine Firat University Elazig Turkey
| |
Collapse
|
12
|
Flores-Ramirez FJ, Garcia-Carachure I, Sanchez DO, Gonzalez C, Castillo SA, Arenivar MA, Themann A, Lira O, Rodriguez M, Preciado-Piña J, Iñiguez SD. Fluoxetine exposure in adolescent and adult female mice decreases cocaine and sucrose preference later in life. J Psychopharmacol 2018; 33:269881118805488. [PMID: 30334670 PMCID: PMC6472984 DOI: 10.1177/0269881118805488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Preclinical evidence from male subjects indicates that exposure to psychotropic medications, during early development, results in long-lasting altered responses to reward-related stimuli. However, it is not known if exposure to the antidepressant fluoxetine, in female subjects specifically, changes sensitivity to natural and drug rewards, later in life. AIMS The aim of this work was to investigate if exposure to fluoxetine mediates enduring changes in sensitivity to the rewarding properties of cocaine and sucrose, using female mice as a model system. METHODS We exposed C57BL/6 female mice to fluoxetine (250 mg/L in their drinking water) for 15 consecutive days, either during adolescence (postnatal day 35-49) or adulthood (postnatal day 70-84). Twenty-one days later, mice were examined on their behavioral reactivity to cocaine (0, 2.5, 5, 7.5 mg/kg) using the conditioned place preference paradigm, or assessed on the two-bottle sucrose (1%) test. RESULTS We found that regardless of age of antidepressant exposure, female mice pre-exposed to fluoxetine displayed reliable conditioning to the cocaine-paired compartment. However, when compared to respective age-matched controls, antidepressant pre-exposure decreased the magnitude of conditioning at the 5 and 7.5 mg/kg cocaine doses. Furthermore, fluoxetine pre-exposure reduced sucrose preference without altering total liquid intake. CONCLUSIONS The data suggest that pre-exposure to fluoxetine, during adolescence or adulthood, results in a prolonged decrease in sensitivity to the rewarding properties of both natural and drug rewards in female C57BL/6 mice.
Collapse
Affiliation(s)
| | | | - David O Sanchez
- Department of Psychology, The University of Texas at El Paso, El Paso, USA
- Department of Psychology, California State University, San Bernardino, USA
| | - Celene Gonzalez
- Department of Psychology, California State University, San Bernardino, USA
| | - Samuel A Castillo
- Department of Psychology, The University of Texas at El Paso, El Paso, USA
| | - Miguel A Arenivar
- Department of Psychology, The University of Texas at El Paso, El Paso, USA
| | - Anapaula Themann
- Department of Psychology, The University of Texas at El Paso, El Paso, USA
| | - Omar Lira
- Department of Psychology, The University of Texas at El Paso, El Paso, USA
| | - Minerva Rodriguez
- Department of Psychology, The University of Texas at El Paso, El Paso, USA
| | | | - Sergio D Iñiguez
- Department of Psychology, The University of Texas at El Paso, El Paso, USA
- Department of Psychology, California State University, San Bernardino, USA
| |
Collapse
|
13
|
Videman M, Tokariev A, Saikkonen H, Stjerna S, Heiskala H, Mantere O, Vanhatalo S. Newborn Brain Function Is Affected by Fetal Exposure to Maternal Serotonin Reuptake Inhibitors. Cereb Cortex 2018; 27:3208-3216. [PMID: 27269962 DOI: 10.1093/cercor/bhw153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Recent experimental animal studies have shown that fetal exposure to serotonin reuptake inhibitors (SRIs) affects brain development. Modern recording methods and advanced computational analyses of scalp electroencephalography (EEG) have opened a possibility to study if comparable changes are also observed in the human neonatal brain. We recruited mothers using SRI during pregnancy (n = 22) and controls (n = 62). Mood and anxiety of mothers, newborn neurology, and newborn cortical function (EEG) were assessed. The EEG parameters were compared between newborns exposed to drugs versus controls, followed by comparisons of newborn EEG features with maternal psychiatric assessments. Neurological assessment showed subtle abnormalities in the SRI-exposed newborns. The computational EEG analyses disclosed a reduced interhemispheric connectivity, lower cross-frequency integration, as well as reduced frontal activity at low-frequency oscillations. These effects were not related to maternal depression or anxiety. Our results suggest that antenatal serotonergic treatment might change newborn brain function in a manner compatible with the recent experimental studies. The present EEG findings suggest links at the level of neuronal activity between human studies and animal experiments. These links will also enable bidirectional translation in future studies on the neuronal mechanisms and long-term neurodevelopmental effects of early SRI exposure.
Collapse
Affiliation(s)
- Mari Videman
- Division of Pediatric Neurology, Department of Children and Adolescents.,BABA Center, Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Anton Tokariev
- Department of Children's Clinical Neurophysiology, HUS Medical Imaging Center and Children's Hospital.,Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Heini Saikkonen
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Mental Health Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Susanna Stjerna
- Department of Children's Clinical Neurophysiology, HUS Medical Imaging Center and Children's Hospital
| | - Hannu Heiskala
- Division of Pediatric Neurology, Department of Children and Adolescents
| | - Outi Mantere
- Mental Health Unit, National Institute for Health and Welfare, Helsinki, Finland.,Department of Psychiatry, McGill University, Montréal, Canada.,Bipolar Disorders Clinic, Douglas Mental Health University Institute, Montréal, Canada
| | - Sampsa Vanhatalo
- Department of Children's Clinical Neurophysiology, HUS Medical Imaging Center and Children's Hospital
| |
Collapse
|
14
|
Sex differences, learning flexibility, and striatal dopamine D1 and D2 following adolescent drug exposure in rats. Behav Brain Res 2016; 308:104-14. [PMID: 27091300 DOI: 10.1016/j.bbr.2016.04.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/23/2016] [Accepted: 04/14/2016] [Indexed: 02/06/2023]
Abstract
Corticostriatal circuitry supports flexible reward learning and emotional behavior from the critical neurodevelopmental stage of adolescence through adulthood. It is still poorly understood how prescription drug exposure in adolescence may impact these outcomes in the long-term. We studied adolescent methylphenidate (MPH) and fluoxetine (FLX) exposure in rats and their impact on learning and emotion in adulthood. In Experiment 1, male and female rats were administered MPH, FLX, or saline (SAL), and compared with methamphetamine (mAMPH) treatment beginning in postnatal day (PND) 37. The rats were then tested on discrimination and reversal learning in adulthood. In Experiment 2, animals were administered MPH or SAL also beginning in PND 37 and later tested in adulthood for anxiety levels. In Experiment 3, we analyzed striatal dopamine D1 and D2 receptor expression in adulthood following either extensive learning (after Experiment 1) or more brief emotional measures (after Experiment 2). We found sex differences in discrimination learning and attenuated reversal learning after MPH and only sex differences in adulthood anxiety. In learners, there was enhanced striatal D1, but not D2, after either adolescent MPH or mAMPH. Lastly, also in learners, there was a sex x treatment group interaction for D2, but not D1, driven by the MPH-pretreated females, who expressed significantly higher D2 levels compared to SAL. These results show enduring effects of adolescent MPH on reversal learning in rats. Developmental psychostimulant exposure may interact with learning to enhance D1 expression in adulthood, and affect D2 expression in a sex-dependent manner.
Collapse
|
15
|
Lukkes JL, Norman KJ, Meda S, Andersen SL. Sex differences in the ontogeny of CRF receptors during adolescent development in the dorsal raphe nucleus and ventral tegmental area. Synapse 2016; 70:125-32. [DOI: 10.1002/syn.21882] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/29/2015] [Accepted: 12/15/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Jodi L. Lukkes
- Laboratory for Developmental Neuropharmacology; McLean Hospital; Belmont Massachusetts
- Department of Psychiatry, Harvard Medical School; Belmont Massachusetts
| | - Kevin J. Norman
- Laboratory for Developmental Neuropharmacology; McLean Hospital; Belmont Massachusetts
| | - Shirisha Meda
- Laboratory for Developmental Neuropharmacology; McLean Hospital; Belmont Massachusetts
| | - Susan L. Andersen
- Laboratory for Developmental Neuropharmacology; McLean Hospital; Belmont Massachusetts
- Department of Psychiatry, Harvard Medical School; Belmont Massachusetts
| |
Collapse
|
16
|
Grécias L, Hébert FO, Berger CS, Barber I, Aubin-Horth N. Can the behaviour of threespine stickleback parasitized with Schistocephalus solidus be replicated by manipulating host physiology? J Exp Biol 2016; 220:237-246. [DOI: 10.1242/jeb.151456] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/23/2016] [Indexed: 12/25/2022]
Abstract
Sticklebacks infected by the parasitic flatworm Schistocephalus solidus show dramatic changes in phenotype, including a loss of species-typical behavioural responses to predators. The timing of host behaviour change coincides with the development of infectivity of the parasite to the final host (a piscivorous bird), making it an ideal model for studying the mechanisms of infection-induced behavioural modification. However, whether the loss of host anti-predator behaviour results from direct manipulation by the parasite, or is a by-product (e.g. host immune response) or side-effect of infection (e.g. energetic loss), remains controversial. To understand the physiological mechanisms that generate these behavioural changes, we quantified the behavioural profiles of experimentally infected fish and attempted to replicate these in non-parasitized fish by exposing them to treatments including immunity activation and fasting, or by pharmacologically inhibiting the stress axis. All fish were screened for the following behaviours: activity, water depth preference, sociability, phototaxis, anti-predator response and latency to feed. We were able to change individual behaviours with certain treatments. Our results suggest that the impact of S. solidus on the stickleback might be of a multifactorial nature. The behaviour changes observed in infected fish may be due to the combined effects of modifying the serotonergic axis, the lack of energy, and the activation of the immune system.
Collapse
Affiliation(s)
- Lucie Grécias
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada
| | - François-Olivier Hébert
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada
| | - Chloé Suzanne Berger
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada
| | - Iain Barber
- Department of Biology, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, United Kingdom
| | - Nadia Aubin-Horth
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada
| |
Collapse
|