1
|
Nebe S, Reutter M, Baker DH, Bölte J, Domes G, Gamer M, Gärtner A, Gießing C, Gurr C, Hilger K, Jawinski P, Kulke L, Lischke A, Markett S, Meier M, Merz CJ, Popov T, Puhlmann LMC, Quintana DS, Schäfer T, Schubert AL, Sperl MFJ, Vehlen A, Lonsdorf TB, Feld GB. Enhancing precision in human neuroscience. eLife 2023; 12:e85980. [PMID: 37555830 PMCID: PMC10411974 DOI: 10.7554/elife.85980] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/23/2023] [Indexed: 08/10/2023] Open
Abstract
Human neuroscience has always been pushing the boundary of what is measurable. During the last decade, concerns about statistical power and replicability - in science in general, but also specifically in human neuroscience - have fueled an extensive debate. One important insight from this discourse is the need for larger samples, which naturally increases statistical power. An alternative is to increase the precision of measurements, which is the focus of this review. This option is often overlooked, even though statistical power benefits from increasing precision as much as from increasing sample size. Nonetheless, precision has always been at the heart of good scientific practice in human neuroscience, with researchers relying on lab traditions or rules of thumb to ensure sufficient precision for their studies. In this review, we encourage a more systematic approach to precision. We start by introducing measurement precision and its importance for well-powered studies in human neuroscience. Then, determinants for precision in a range of neuroscientific methods (MRI, M/EEG, EDA, Eye-Tracking, and Endocrinology) are elaborated. We end by discussing how a more systematic evaluation of precision and the application of respective insights can lead to an increase in reproducibility in human neuroscience.
Collapse
Affiliation(s)
- Stephan Nebe
- Zurich Center for Neuroeconomics, Department of Economics, University of ZurichZurichSwitzerland
| | - Mario Reutter
- Department of Psychology, Julius-Maximilians-UniversityWürzburgGermany
| | - Daniel H Baker
- Department of Psychology and York Biomedical Research Institute, University of YorkYorkUnited Kingdom
| | - Jens Bölte
- Institute for Psychology, University of Münster, Otto-Creuzfeldt Center for Cognitive and Behavioral NeuroscienceMünsterGermany
| | - Gregor Domes
- Department of Biological and Clinical Psychology, University of TrierTrierGermany
- Institute for Cognitive and Affective NeuroscienceTrierGermany
| | - Matthias Gamer
- Department of Psychology, Julius-Maximilians-UniversityWürzburgGermany
| | - Anne Gärtner
- Faculty of Psychology, Technische Universität DresdenDresdenGermany
| | - Carsten Gießing
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of OldenburgOldenburgGermany
| | - Caroline Gurr
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe UniversityFrankfurtGermany
- Brain Imaging Center, Goethe UniversityFrankfurtGermany
| | - Kirsten Hilger
- Department of Psychology, Julius-Maximilians-UniversityWürzburgGermany
- Department of Psychology, Psychological Diagnostics and Intervention, Catholic University of Eichstätt-IngolstadtEichstättGermany
| | - Philippe Jawinski
- Department of Psychology, Humboldt-Universität zu BerlinBerlinGermany
| | - Louisa Kulke
- Department of Developmental with Educational Psychology, University of BremenBremenGermany
| | - Alexander Lischke
- Department of Psychology, Medical School HamburgHamburgGermany
- Institute of Clinical Psychology and Psychotherapy, Medical School HamburgHamburgGermany
| | - Sebastian Markett
- Department of Psychology, Humboldt-Universität zu BerlinBerlinGermany
| | - Maria Meier
- Department of Psychology, University of KonstanzKonstanzGermany
- University Psychiatric Hospitals, Child and Adolescent Psychiatric Research Department (UPKKJ), University of BaselBaselSwitzerland
| | - Christian J Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University BochumBochumGermany
| | - Tzvetan Popov
- Department of Psychology, Methods of Plasticity Research, University of ZurichZurichSwitzerland
| | - Lara MC Puhlmann
- Leibniz Institute for Resilience ResearchMainzGermany
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Daniel S Quintana
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- NevSom, Department of Rare Disorders & Disabilities, Oslo University HospitalOsloNorway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), University of OsloOsloNorway
| | - Tim Schäfer
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe UniversityFrankfurtGermany
- Brain Imaging Center, Goethe UniversityFrankfurtGermany
| | | | - Matthias FJ Sperl
- Department of Clinical Psychology and Psychotherapy, University of GiessenGiessenGermany
- Center for Mind, Brain and Behavior, Universities of Marburg and GiessenGiessenGermany
| | - Antonia Vehlen
- Department of Biological and Clinical Psychology, University of TrierTrierGermany
| | - Tina B Lonsdorf
- Department of Systems Neuroscience, University Medical Center Hamburg-EppendorfHamburgGermany
- Department of Psychology, Biological Psychology and Cognitive Neuroscience, University of BielefeldBielefeldGermany
| | - Gordon B Feld
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
- Department of Psychology, Heidelberg UniversityHeidelbergGermany
- Department of Addiction Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
| |
Collapse
|
2
|
Jawinski P, Markett S, Sander C, Huang J, Ulke C, Hegerl U, Hensch T. The Big Five Personality Traits and Brain Arousal in the Resting State. Brain Sci 2021; 11:brainsci11101272. [PMID: 34679337 DOI: 10.3390/brainsci11101272/s1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 05/25/2023] Open
Abstract
Based on Eysenck's biopsychological trait theory, brain arousal has long been considered to explain individual differences in human personality. Yet, results from empirical studies remained inconclusive. However, most published results have been derived from small samples and, despite inherent limitations, EEG alpha power has usually served as an exclusive indicator for brain arousal. To overcome these problems, we here selected N = 468 individuals of the LIFE-Adult cohort and investigated the associations between the Big Five personality traits and brain arousal by using the validated EEG- and EOG-based analysis tool VIGALL. Our analyses revealed that participants who reported higher levels of extraversion and openness to experience, respectively, exhibited lower levels of brain arousal in the resting state. Bayesian and frequentist analysis results were especially convincing for openness to experience. Among the lower-order personality traits, we obtained the strongest evidence for neuroticism facet 'impulsivity' and reduced brain arousal. In line with this, both impulsivity and openness have previously been conceptualized as aspects of extraversion. We regard our findings as well in line with the postulations of Eysenck and consistent with the recently proposed 'arousal regulation model'. Our results also agree with meta-analytically derived effect sizes in the field of individual differences research, highlighting the need for large (collaborative) studies.
Collapse
Affiliation(s)
- Philippe Jawinski
- Department of Psychology, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
- LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, 04103 Leipzig, Germany
- Depression Research Centre, German Depression Foundation, 04109 Leipzig, Germany
| | - Sebastian Markett
- Department of Psychology, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Christian Sander
- LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, 04103 Leipzig, Germany
- Depression Research Centre, German Depression Foundation, 04109 Leipzig, Germany
- Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Jue Huang
- Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Christine Ulke
- LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, 04103 Leipzig, Germany
- Depression Research Centre, German Depression Foundation, 04109 Leipzig, Germany
- Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Ulrich Hegerl
- LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, 04103 Leipzig, Germany
- Depression Research Centre, German Depression Foundation, 04109 Leipzig, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Frankfurt, 60323 Frankfurt, Germany
| | - Tilman Hensch
- LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, 04103 Leipzig, Germany
- Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, 04103 Leipzig, Germany
- Department of Psychology, IU International University of Applied Science, 99084 Erfurt, Germany
| |
Collapse
|
3
|
Jawinski P, Markett S, Sander C, Huang J, Ulke C, Hegerl U, Hensch T. The Big Five Personality Traits and Brain Arousal in the Resting State. Brain Sci 2021; 11:brainsci11101272. [PMID: 34679337 PMCID: PMC8533901 DOI: 10.3390/brainsci11101272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/14/2022] Open
Abstract
Based on Eysenck's biopsychological trait theory, brain arousal has long been considered to explain individual differences in human personality. Yet, results from empirical studies remained inconclusive. However, most published results have been derived from small samples and, despite inherent limitations, EEG alpha power has usually served as an exclusive indicator for brain arousal. To overcome these problems, we here selected N = 468 individuals of the LIFE-Adult cohort and investigated the associations between the Big Five personality traits and brain arousal by using the validated EEG- and EOG-based analysis tool VIGALL. Our analyses revealed that participants who reported higher levels of extraversion and openness to experience, respectively, exhibited lower levels of brain arousal in the resting state. Bayesian and frequentist analysis results were especially convincing for openness to experience. Among the lower-order personality traits, we obtained the strongest evidence for neuroticism facet 'impulsivity' and reduced brain arousal. In line with this, both impulsivity and openness have previously been conceptualized as aspects of extraversion. We regard our findings as well in line with the postulations of Eysenck and consistent with the recently proposed 'arousal regulation model'. Our results also agree with meta-analytically derived effect sizes in the field of individual differences research, highlighting the need for large (collaborative) studies.
Collapse
Affiliation(s)
- Philippe Jawinski
- Department of Psychology, Humboldt-Universität zu Berlin, 10099 Berlin, Germany;
- LIFE—Leipzig Research Center for Civilization Diseases, University of Leipzig, 04103 Leipzig, Germany; (C.S.); (C.U.); (U.H.); (T.H.)
- Depression Research Centre, German Depression Foundation, 04109 Leipzig, Germany
- Correspondence: ; Tel.: +49-30-2093-9391
| | - Sebastian Markett
- Department of Psychology, Humboldt-Universität zu Berlin, 10099 Berlin, Germany;
| | - Christian Sander
- LIFE—Leipzig Research Center for Civilization Diseases, University of Leipzig, 04103 Leipzig, Germany; (C.S.); (C.U.); (U.H.); (T.H.)
- Depression Research Centre, German Depression Foundation, 04109 Leipzig, Germany
- Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, 04103 Leipzig, Germany;
| | - Jue Huang
- Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, 04103 Leipzig, Germany;
| | - Christine Ulke
- LIFE—Leipzig Research Center for Civilization Diseases, University of Leipzig, 04103 Leipzig, Germany; (C.S.); (C.U.); (U.H.); (T.H.)
- Depression Research Centre, German Depression Foundation, 04109 Leipzig, Germany
- Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, 04103 Leipzig, Germany;
| | - Ulrich Hegerl
- LIFE—Leipzig Research Center for Civilization Diseases, University of Leipzig, 04103 Leipzig, Germany; (C.S.); (C.U.); (U.H.); (T.H.)
- Depression Research Centre, German Depression Foundation, 04109 Leipzig, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Frankfurt, 60323 Frankfurt, Germany
| | - Tilman Hensch
- LIFE—Leipzig Research Center for Civilization Diseases, University of Leipzig, 04103 Leipzig, Germany; (C.S.); (C.U.); (U.H.); (T.H.)
- Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, 04103 Leipzig, Germany;
- Department of Psychology, IU International University of Applied Science, 99084 Erfurt, Germany
| |
Collapse
|
4
|
Tobacco and Nervous System Development and Function-New Findings 2015-2020. Brain Sci 2021; 11:brainsci11060797. [PMID: 34208753 PMCID: PMC8234722 DOI: 10.3390/brainsci11060797] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/07/2021] [Accepted: 06/12/2021] [Indexed: 12/13/2022] Open
Abstract
Tobacco is a one of the most common addictive stimulants used by people around the world. The smoke generated during tobacco combustion is a toxic mixture of more than 5000 chemicals of which over 30 are known human carcinogens. While its negative effects on the human body are well understood, it remains a serious public health problem. One of the multiple effects of smoking is tobacco’s effect on the nervous system—its development and function. This review aims to summarize the progress made in research on the effects of tobacco on the nervous system both of the perinatal period and adults and both in animals and humans in 2015–2020. The 1245 results that corresponded to the keywords “tobacco, cigarette, nervous system, brain, morphology, function” were reviewed, of which 200 abstracts were considered significant. Most of those articles broadened the knowledge about the negative effects of smoking on the human nervous system. Tobacco has a significant negative impact on the development of nervous structures, neurotransmission and cognitive functions, and promotes the development of neurodegenerative diseases, insomnia and cerebrovascular diseases. The only exception is the protective effect of the dopaminergic system in Parkinson’s disease. In conclusion, in recent years much effort has been devoted to describing, revealing and uncovering new aspects of tobacco detrimental to human life. The nicotine contained in tobacco smoke affects the human body in a multidimensional way, including a serious impact on the broadly understood neurological health.
Collapse
|
5
|
Ruglass LM, Root JC, Dambreville N, Shevorykin A, Sheffer CE, Melara RD. Examining differences in attentional bias to smoking-related cues among black and white cigarette smokers: An event-related potential pilot study. Neurosci Lett 2020; 735:135241. [PMID: 32659312 PMCID: PMC8075105 DOI: 10.1016/j.neulet.2020.135241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
Black cigarette smokers experience higher craving, lower cessation rates, and increased health complications from tobacco use than Whites. We examined psychophysiological and behavioral differences in attentional bias to smoking cues between Black and White smokers. Thirty-one participants (Blacks, n = 20; MAge = 45 and Whites, n = 11, MAge = 47.64) discriminated line orientations while ignoring temporally flanking lines and smoking-related, positive-, negative-, and neutral-images as behavioral responses and event-related potentials (ERPs) were recorded. Results revealed a three-way interaction in reaction time among Group (White, Black), Congruity (congruent vs. incongruent flankers) and Cue (smoking-related, positive, negative) factors, F(2,58) = 3.63, p = .03, MSe = .001, η2 = .002. Smoking-related cues yielded the largest congruity effects in Whites, but the smallest congruity effects in Blacks. Random presentation of smoking-related cues (re: baseline) weakened P1 ERP amplitude (125 ms after stimulus onset) in Whites, but not Blacks (Cue x Group x Task, F(3,87) = 3.44, p < .05, MSe = 65.96, η2 = .01), suggesting an early sensory effect of smoking cues in Whites. The difference between Whites and Blacks in P2 amplitude (226 ms; amplitude weaker in Whites) was greatest to the smoking-related cues (Cue x Group, F(3,87) = 2.81, p < .05, MSe = 60.68, η2 = .01), indicating a stronger draw in attention from smoking cues in Whites. Findings suggest White and Black smokers respond differently to smoking-related cues during early sensory processing. Findings need to be replicated.
Collapse
Affiliation(s)
- Lesia M Ruglass
- Department of Psychology, The City College of New York, 160 Convent Avenue, NAC 7/120, NY, NY 10031, United States
| | - James C Root
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, 1300 York Avenue, NY, NY 10065, United States
| | - Naomi Dambreville
- Department of Psychology, The City College of New York, 160 Convent Avenue, NAC 7/120, NY, NY 10031, United States
| | - Alina Shevorykin
- Department of Psychology and Mental Health Counseling, Pace University, 861 Bedford Rd., Pleasantville, NY 10570, United States
| | - Christine E Sheffer
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, 665 Elm Street, Buffalo, NY 14203, United States
| | - Robert D Melara
- Department of Psychology, The City College of New York, 160 Convent Avenue, NAC 7/120, NY, NY 10031, United States
| |
Collapse
|
6
|
Habelt B, Arvaneh M, Bernhardt N, Minev I. Biomarkers and neuromodulation techniques in substance use disorders. Bioelectron Med 2020; 6:4. [PMID: 32232112 PMCID: PMC7098236 DOI: 10.1186/s42234-020-0040-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/29/2020] [Indexed: 01/10/2023] Open
Abstract
Addictive disorders are a severe health concern. Conventional therapies have just moderate success and the probability of relapse after treatment remains high. Brain stimulation techniques, such as transcranial Direct Current Stimulation (tDCS) and Deep Brain Stimulation (DBS), have been shown to be effective in reducing subjectively rated substance craving. However, there are few objective and measurable parameters that reflect neural mechanisms of addictive disorders and relapse. Key electrophysiological features that characterize substance related changes in neural processing are Event-Related Potentials (ERP). These high temporal resolution measurements of brain activity are able to identify neurocognitive correlates of addictive behaviours. Moreover, ERP have shown utility as biomarkers to predict treatment outcome and relapse probability. A future direction for the treatment of addiction might include neural interfaces able to detect addiction-related neurophysiological parameters and deploy neuromodulation adapted to the identified pathological features in a closed-loop fashion. Such systems may go beyond electrical recording and stimulation to employ sensing and neuromodulation in the pharmacological domain as well as advanced signal analysis and machine learning algorithms. In this review, we describe the state-of-the-art in the treatment of addictive disorders with electrical brain stimulation and its effect on addiction-related neurophysiological markers. We discuss advanced signal processing approaches and multi-modal neural interfaces as building blocks in future bioelectronics systems for treatment of addictive disorders.
Collapse
Affiliation(s)
- Bettina Habelt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mahnaz Arvaneh
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK
| | - Nadine Bernhardt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ivan Minev
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
7
|
Jawinski P, Kirsten H, Sander C, Spada J, Ulke C, Huang J, Burkhardt R, Scholz M, Hensch T, Hegerl U. Human brain arousal in the resting state: a genome-wide association study. Mol Psychiatry 2019; 24:1599-1609. [PMID: 29703947 DOI: 10.1038/s41380-018-0052-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 01/22/2018] [Accepted: 02/19/2018] [Indexed: 12/20/2022]
Abstract
Arousal affects cognition, emotion, and behavior and has been implicated in the etiology of psychiatric disorders. Although environmental conditions substantially contribute to the level of arousal, stable interindividual characteristics are well-established and a genetic basis has been suggested. Here we investigated the molecular genetics of brain arousal in the resting state by conducting a genome-wide association study (GWAS). We selected N = 1877 participants from the population-based LIFE-Adult cohort. Participants underwent a 20-min eyes-closed resting state EEG, which was analyzed using the computerized VIGALL 2.1 (Vigilance Algorithm Leipzig). At the SNP-level, GWAS analyses revealed no genome-wide significant locus (p < 5E-8), although seven loci were suggestive (p < 1E-6). The strongest hit was an expression quantitative trait locus (eQTL) of TMEM159 (lead-SNP: rs79472635, p = 5.49E-8). Importantly, at the gene-level, GWAS analyses revealed significant evidence for TMEM159 (p = 0.013, Bonferroni-corrected). By mapping our SNPs to the GWAS results from the Psychiatric Genomics Consortium, we found that all corresponding markers of TMEM159 showed nominally significant associations with Major Depressive Disorder (MDD; 0.006 ≤ p ≤ 0.011). More specifically, variants associated with high arousal levels have previously been linked to an increased risk for MDD. In line with this, the MetaXcan database suggests increased expression levels of TMEM159 in MDD, as well as Autism Spectrum Disorder, and Alzheimer's Disease. Furthermore, our pathway analyses provided evidence for a role of sodium/calcium exchangers in resting state arousal. In conclusion, the present GWAS identifies TMEM159 as a novel candidate gene which may modulate the risk for psychiatric disorders through arousal mechanisms. Our results also encourage the elaboration of the previously reported interrelations between ion-channel modulators, sleep-wake behavior, and psychiatric disorders.
Collapse
Affiliation(s)
- Philippe Jawinski
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany. .,Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany. .,Depression Research Centre, German Depression Foundation, Leipzig, Germany.
| | - Holger Kirsten
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Christian Sander
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany.,Depression Research Centre, German Depression Foundation, Leipzig, Germany
| | - Janek Spada
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Depression Research Centre, German Depression Foundation, Leipzig, Germany
| | - Christine Ulke
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Depression Research Centre, German Depression Foundation, Leipzig, Germany
| | - Jue Huang
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Ralph Burkhardt
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Markus Scholz
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Tilman Hensch
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Ulrich Hegerl
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany.,Depression Research Centre, German Depression Foundation, Leipzig, Germany
| |
Collapse
|
8
|
Rangel-Gomez M, Cruz-Cano R, Van Wagoner C, Kidanu A, McDonald CG, Clark PI. Dissociating the effect of flavor and nicotine in smokeless tobacco products using electroencephalography: The case of wintergreen flavors. Addict Behav 2019; 91:82-89. [PMID: 30553545 DOI: 10.1016/j.addbeh.2018.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 11/29/2022]
Abstract
The increased consumption of tobacco products in recent years has been linked, among other factors, to the presence of added flavors. Although flavors are important in explaining consumption, their effects in the brain have until now been unexplored. In the present study, we investigated how electrophysiology can serve to dissociate the effects of nicotine and flavor. Participants attended 4 sessions (2-by-2 factorial design, with flavor and nicotine as within-subject factors), in each session an oddball task was performed before and after smokeless tobacco consumption. We explored the dissociation of neural responses to flavor and nicotine. While event-related potentials did not show modulation due to flavors, time-frequency showed a flavor-nicotine dissociation. Low-frequency activity (delta, theta and alpha) showed only effects of nicotine, and high-frequency activity (beta1, beta2 and gamma) showed effects only susceptible to flavor. Flavors in smokeless tobacco not only made the product more desirable but also triggered the allocation of cognitive resources. This long-lasting effect of flavor may enhance the addictive potential of the tobacco product. Further research is being developed to determine the precise role of flavors in contributing to addiction. This is the first study investigating the neural effects of flavor (specifically wintergreen) in smokeless tobacco products. By understanding the effects of flavors in the brain we can explain the precipitants of tobacco consumption behaviors, and the addictive potential of flavors. Regulators will be able to determine if and in which amount flavors should be allowed in tobacco products.
Collapse
Affiliation(s)
- Mauricio Rangel-Gomez
- Department of Behavioral and Community Health, School of Public Health, University of Maryland, College Park, MD 4200 Valley Road, Suite 1242, MD 20742, USA.
| | - Raul Cruz-Cano
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, MD 4200 Valley Road, Suite 2242, College Park, MD 20742, USA
| | - Carly Van Wagoner
- Department of Behavioral and Community Health, School of Public Health, University of Maryland, College Park, MD 4200 Valley Road, Suite 1242, MD 20742, USA
| | - Azieb Kidanu
- Department of Behavioral and Community Health, School of Public Health, University of Maryland, College Park, MD 4200 Valley Road, Suite 1242, MD 20742, USA
| | - Craig G McDonald
- Department of Psychology, George Mason University, 4400 University Drive, 3F5, Fairfax, VA 22030, USA
| | - Pamela I Clark
- Department of Behavioral and Community Health, School of Public Health, University of Maryland, College Park, MD 4200 Valley Road, Suite 1242, MD 20742, USA
| |
Collapse
|
9
|
Jawinski P, Kittel J, Sander C, Huang J, Spada J, Ulke C, Wirkner K, Hensch T, Hegerl U. Recorded and Reported Sleepiness: The Association Between Brain Arousal in Resting State and Subjective Daytime Sleepiness. Sleep 2017; 40:3866822. [DOI: 10.1093/sleep/zsx099] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
10
|
Huang J, Hensch T, Ulke C, Sander C, Spada J, Jawinski P, Hegerl U. Evoked potentials and behavioral performance during different states of brain arousal. BMC Neurosci 2017; 18:21. [PMID: 28122495 PMCID: PMC5267455 DOI: 10.1186/s12868-017-0340-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/20/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Previous studies compared evoked potentials (EPs) between several sleep stages but only one uniform wake state. However, using electroencephalography (EEG), several arousal states can be distinguished before sleep onset. Recently, the Vigilance Algorithm Leipzig (VIGALL 2.0) has been developed, which automatically attributes one out of seven EEG-vigilance stages to each 1-s EEG segment, ranging from stage 0 (associated with cognitively active wakefulness), to stages A1, A2 and A3 (associated with relaxed wakefulness), to stages B1 and B2/3 (associated with drowsiness) up to stage C (indicating sleep onset). Applying VIGALL, we specified the effects of these finely differentiated EEG-vigilance stages (indicating arousal states) on EPs (P1, N1, P2, N300, MMN and P3) and behavioral performance. Subjects underwent an ignored and attended condition of a 2-h eyes-closed oddball-task. Final analysis included 43 subjects in the ignored and 51 subjects in the attended condition. First, the effect of brain arousal states on EPs and performance parameters were analyzed between EEG-vigilance stages A (i.e. A1, A2 and A3 combined), B1 and B2/3&C (i.e. B2/3 and C combined). Then, in a second step, the effects of the finely differentiated EEG-vigilance stages were further specified. RESULTS Comparing stages A versus B1 versus B2/3&C, a significant effect of EEG-vigilance stages on all behavioral parameters and all EPs, with exception of MMN and P3, was found. By applying VIGALL, a more detailed view of arousal effects on EP and performance was possible, such as the finding that the P2 showed no further significant increase in stages deeper than B1. Stage 0 did not differ from any of the A-stages. Within more fine-graded stages, such as the A-substages, EPs and performance only partially differed. However, these analyses were partly based on small sample sizes and future studies should take effort to get enough epochs of rare stages (such as A3 and C). CONCLUSIONS A clear impact of arousal on EPs and behavioral performance was obtained, which emphasize the necessity to consider arousal effects when interpreting EPs.
Collapse
Affiliation(s)
- Jue Huang
- Department of Psychiatry and Psychotherapy, University of Leipzig, Semmelweisstrasse 10, 04103 Leipzig, Germany
| | - Tilman Hensch
- Department of Psychiatry and Psychotherapy, University of Leipzig, Semmelweisstrasse 10, 04103 Leipzig, Germany
| | - Christine Ulke
- Department of Psychiatry and Psychotherapy, University of Leipzig, Semmelweisstrasse 10, 04103 Leipzig, Germany
- Depression Research Centre, German Depression Foundation, Leipzig, Germany
| | - Christian Sander
- Department of Psychiatry and Psychotherapy, University of Leipzig, Semmelweisstrasse 10, 04103 Leipzig, Germany
- Depression Research Centre, German Depression Foundation, Leipzig, Germany
| | - Janek Spada
- Depression Research Centre, German Depression Foundation, Leipzig, Germany
| | - Philippe Jawinski
- Department of Psychiatry and Psychotherapy, University of Leipzig, Semmelweisstrasse 10, 04103 Leipzig, Germany
- Depression Research Centre, German Depression Foundation, Leipzig, Germany
| | - Ulrich Hegerl
- Department of Psychiatry and Psychotherapy, University of Leipzig, Semmelweisstrasse 10, 04103 Leipzig, Germany
- Depression Research Centre, German Depression Foundation, Leipzig, Germany
| |
Collapse
|