1
|
Zhao X, Hu A, Wang Y, Zhao T, Xiang X. Paraventricular thalamus to nucleus accumbens circuit activation decreases long-term relapse of alcohol-seeking behaviour in male mice. Pharmacol Biochem Behav 2024; 237:173726. [PMID: 38360104 DOI: 10.1016/j.pbb.2024.173726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Some studies have highlighted the crucial role of aversion in addiction treatment. The pathway from the anterior paraventricular thalamus (PVT) to the shell of the nucleus accumbens (NAc) has been reported as an essential regulatory pathway for processing aversion and is also closely associated with substance addiction. However, its impact on alcohol addiction has been relatively underexplored. Therefore, this study focused on the role of the PVT-NAc pathway in the formation and relapse of alcohol addiction-like behaviour, offering a new perspective on the mechanisms of alcohol addiction. RESULTS The chemogenetic inhibition of the PVT-NAc pathway in male mice resulted in a notable decrease in the establishment of ethanol-induced conditioned place aversion (CPA), and NAc-projecting PVT neurons were recruited due to aversive effects. Conversely, activation of the PVT-NAc pathway considerably impeded the formation of ethanol-induced conditioned place preference (CPP). Furthermore, during the memory reconsolidation phase, activation of this pathway effectively disrupted the animals' preference for alcohol-associated contexts. Whether it was administered urgently 24 h later or after a long-term withdrawal of 10 days, a low dose of alcohol could still not induce the reinstatement of ethanol-induced CPP. CONCLUSIONS Our results demonstrated PVT-NAc circuit processing aversion, which may be one of the neurobiological mechanisms underlying aversive counterconditioning, and highlighted potential targets for inhibiting the development of alcohol addiction-like behaviour and relapse after long-term withdrawal.
Collapse
Affiliation(s)
- Xiaoxi Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Aqian Hu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yanyan Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Tianshu Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiaojun Xiang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
2
|
Booher WC, Hall LA, Thomas AL, Merhroff EA, Reyes Martínez GJ, Scanlon KE, Lowry CA, Ehringer MA. Anxiety-related defensive behavioral responses in mice selectively bred for High and Low Activity. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12730. [PMID: 33786989 PMCID: PMC10846611 DOI: 10.1111/gbb.12730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022]
Abstract
High and Low Activity strains of mice (displaying low and high anxiety-like behavior, respectively) with 7.8-20 fold differences in open-field activity were selected and subsequently inbred to use as a genetic model for studying anxiety-like behavior in mice (DeFries et al., 1978, Behavior Genetics, 8:3-13). These strains exhibited differences in other anxiety-related behaviors as assessed using the light-dark box, elevated plus-maze, mirror chamber, and elevated square-maze tests (Henderson et al., 2004, Behavior Genetics, 34: 267-293). The purpose of these experiments was three-fold. First, we repeated a 6-day behavioral battery using updated equipment and software to confirm the extreme differences in anxiety-like behaviors. Second, we tested novel object exploration, a measure of anxiety-like behavior that does not rely heavily on locomotion. Third, we conducted a home cage wheel running experiment to determine whether these strains differ in locomotor activity in a familiar, home cage environment. Our behavioral test battery confirmed extreme differences in multiple measures of anxiety-like behaviors. Furthermore, the novel object test demonstrated that the High Activity mice exhibited decreased anxiety-like behaviors (increased nose pokes) compared to Low Activity mice. Finally, male Low Activity mice ran nearly twice as far each day on running wheels compared to High Activity mice, while female High and Low Activity mice did not differ in wheel running. These results support the idea that the behavioral differences between High and Low Activity mice are likely to be due to anxiety-related factors and not simply generalized differences in locomotor activity.
Collapse
Affiliation(s)
- Winona C. Booher
- Department of Integrative Physiology, University of
Colorado, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado,
Boulder, CO, USA
| | - Lucy A. Hall
- Department of Integrative Physiology, University of
Colorado, Boulder, CO, USA
| | - Aimee L. Thomas
- Department of Integrative Physiology, University of
Colorado, Boulder, CO, USA
| | - Erika A. Merhroff
- Department of Integrative Physiology, University of
Colorado, Boulder, CO, USA
| | | | | | - Christopher A. Lowry
- Department of Integrative Physiology, Center for
Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder,
Boulder, CO 80309, USA
- Departments of Psychiatry, Neurology, and Physical
Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus,
Aurora, CO 80045, USA
- Rocky Mountain Mental Illness Research Education and
Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center
(RMRVAMC), Aurora, Colorado, 80045, USA
- Military and Veteran Microbiome: Consortium for Research
and Education (MVM-CoRE), Denver, CO 80220, USA
- Senior Fellow, inVIVO Planetary Health, of the Worldwide
Universities Network (WUN), West New York, NJ 07093, USA
| | - Marissa A. Ehringer
- Department of Integrative Physiology, University of
Colorado, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado,
Boulder, CO, USA
| |
Collapse
|
3
|
Bahi A, Dreyer JL. Environmental enrichment decreases chronic psychosocial stress-impaired extinction and reinstatement of ethanol conditioned place preference in C57BL/6 male mice. Psychopharmacology (Berl) 2020; 237:707-721. [PMID: 31786650 DOI: 10.1007/s00213-019-05408-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/18/2019] [Indexed: 12/27/2022]
Abstract
RATIONALE During the last few decades, alcohol use disorders (AUD) have reached an epidemic prevalence, yet social influences on alcoholism have not been fully addressed. Several factors can modulate alcohol intake. On one hand, stress can reinforce ethanol-induced behaviors and be an important component in AUD and alcoholism. On the other hand, environmental enrichment (EE) has a neuroprotective role and prevents the development of excessive ethanol intake in rodents. However, studies showing the role of EE in chronic psychosocial stress-impaired ethanol-conditioned rewards are nonexistent. AIM The purpose of the current study is to explore the potential protective role of EE on extinction and reinstatement of ethanol-conditioned place preference (EtOH-CPP) following chronic psychosocial stress. METHODS In the first experiment and after the EtOH-CPP test, the mice were subjected to 15 days of chronic stress, then housed in a standard (SE) or enriched environment (EE) while EtOH-CPP extinction was achieved by repeated exposure to the CPP chambers without ethanol injection. In the second experiment and after the EtOH-CPP test, extinction was achieved as described above. Mice were then exposed to chronic stress for 2 weeks before being housed in a SE or EE. EtOH-CPP reinstatement was induced by a single exposure to the conditioning chambers. RESULTS As expected, stress exposure increased anxiety-like behavior and reduced weight gain. More importantly, we found that EE significantly shortened chronic stress-delayed extinction and decreased the reinstatement of EtOH-CPP. CONCLUSION These results support the hypothesis that EE reduces the impact of alcohol-associated environmental stimuli, and hence it may be a general intervention for reducing cue-elicited craving and relapse in humans.
Collapse
Affiliation(s)
- Amine Bahi
- College of Medicine, Ajman University, Ajman, UAE. .,Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE.
| | - Jean-Luc Dreyer
- Division of Biochemistry, Department of Medicine, University of Fribourg, 1700, Fribourg, Switzerland
| |
Collapse
|
4
|
Schank JR. Neurokinin receptors in drug and alcohol addiction. Brain Res 2020; 1734:146729. [PMID: 32067964 DOI: 10.1016/j.brainres.2020.146729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/03/2020] [Accepted: 02/13/2020] [Indexed: 10/25/2022]
Abstract
The neurokinins are a class of peptide signaling molecules that mediate a range of central and peripheral functions including pain processing, gastrointestinal function, stress responses, and anxiety. Recent data have linked these neuropeptides with drug-related behaviors. Specifically, substance P (SP) and neurokinin B (NKB), have been shown to influence responses to alcohol, cocaine, and/or opiate drugs. SP and NKB preferentially bind to the neurokinin-1 receptor (NK1R) and neurokinin-3 receptor (NK3R), respectively, but do have some affinity for all classes of neurokinin receptor at high concentrations. NK1R activity has been shown to influence reward and reinforcement for opiate drugs, stimulatory and neurochemical responses to cocaine, and escalated and stress-induced alcohol seeking. In reinstatement models of relapse-like behavior, NK1R antagonism attenuates stress-induced reinstatement for all classes of drugs tested to date. The NK3R also influences alcohol intake and behavioral/neurochemical responses to cocaine, but less research has been performed in regard to this particular receptor in preclinical models of addiction. Clinically, agents targeting these receptors have shown some promise, but have produced mixed results. Here, the preclinical findings for the NK1R and NK3R are reviewed, and discussion is provided to interpret clinical findings. Additionally, important factors to consider in regards to future clinical work are suggested.
Collapse
Affiliation(s)
- Jesse R Schank
- University of Georgia, Department of Physiology and Pharmacology, 501 DW Brooks Drive, Athens, GA 30602, USA.
| |
Collapse
|
5
|
Interleukin-4 signalling pathway underlies the anxiolytic effect induced by 3-deoxyadenosine. Psychopharmacology (Berl) 2019; 236:2959-2973. [PMID: 30963194 DOI: 10.1007/s00213-019-5186-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/30/2019] [Indexed: 12/20/2022]
Abstract
RATIONALE Converging evidence suggests that neuroimmunity plays an important role in the pathophysiology of anxiety. Interleukin (IL)-4 is a key cytokine regulating neuroimmune functions in the central nervous system. More efficient anxiolytics with neuro-immune mechanisms are urgently needed. OBJECTIVE To determine whether 3'-deoxyadenosine (3'-dA) exerts an anxiolytic effect and to examine the role of IL-4 in the anxiolytic effect of 3'-dA in mice. METHODS We investigated the effects of 3'-dA on anxiety-like behaviors using elevated plus maze (EPM) or light-dark box (LDB) tests after 45 min or 5 days of treatment. Expression of IL-4, IL-10, IL-1β, TNF-α, and IL-6 in the prefrontal cortex (PFC) was detected by Western blot and/or double immunostaining. Intracerebroventricular injection of RIL-4Rα (an IL-4-specific inhibitor) and intraperitoneal injection of 3'-dA or imipramine were co-administered, followed by EPM test. RESULTS 3'-dA exhibited a stronger and faster anxiolytic effect than imipramine in behavioral tests. Furthermore, 3'-dA enhanced IL-4 expression after 45 min or 5 days, TNF-α and IL-1β expression decreased significantly after a 5-day treatment with 3'-dA, and IL-10 expression increased after a 5-day treatment with 3'-dA or imipramine in the PFC. IL-4 was expressed in neurons and in some astrocytes and microglia. IL-4 expression showed a strong positive correlation with reduced anxiety behaviors. RIL-4Rα completely blocked the anxiolytic effects induced by 3'-dA and imipramine. CONCLUSIONS This study identifies a novel and common anxiolytic IL-4 signaling pathway and provides an innovative drug with a novel neuro-immune mechanism for treating anxiety disorder.
Collapse
|
6
|
Zhang X, Sun L, Wang L, Wang M, Lu G, Wang Y, Li Q, Li C, Zhou J, Ma H, Sun H. The effects of histone deacetylase inhibitors on the attentional set-shifting task performance of alcohol-dependent rats. Brain Res Bull 2019; 149:208-215. [PMID: 31029598 DOI: 10.1016/j.brainresbull.2019.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/13/2019] [Accepted: 04/23/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVES Alcohol dependence causes extensive damage to the central nervous system, resulting in impaired brain structure and behavioral changes. Moreover, histone deacetylase (HDAC) inhibitors restrain the activity of HDAC and cause increased histone acetylation, which may be related to alcohol dependence. METHODS Ethanol dependence was modelled in animals by persistent alcohol exposure and tested in the conditioned place preference (CPP) paradigm. To induce CPP, the alcohol-treated rats were given orally gradient concentration (3%, 6%, and 9% v/v) alcohol administration for 20 consecutive days. The sodium butyrate (NaB)-treated rats were injected daily. Cognitive flexibility was evaluated using an attentional set-shifting task (ASST) in which the rats performed a series of seven consecutive discriminations after the final CPP paradigm. RESULTS Ethanol administration induced alcohol dependence behaviors, with more time spent in the ethanol-paired compartment. Compared with the CPP scores of the control group, the scores of the ethanol- and NaB-treated groups were significantly higher. In the ASST, alcohol-treated rats had significantly increased number of trials to reach criteria (TTC) in most phases, higher error rate, and lower cognitive levels compared to the control group. Moreover, the present findings demonstrated that NaB combined with ethanol caused cognitive deficits as the result of an increased number of TTC during the ASST. CONCLUSIONS The attentional/cognitive flexibility of the prefrontal cortex of alcohol-dependent rats was damaged and the NaB administration procedure itself did not produce cognitive deficits, but instead exacerbated cognitive impairment in alcohol-dependent rats.
Collapse
Affiliation(s)
- Xianqiang Zhang
- Department of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, China
| | - Lin Sun
- Department of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, China
| | - Li Wang
- Department of Reproductive Medicine Center, Affiliated Hospital of Weifang Medical University, China
| | - Mengting Wang
- Department of Clinical Medicine, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, China
| | - Guohua Lu
- Department of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, China
| | - Yanyu Wang
- Department of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, China
| | - Qi Li
- Department of Psychiatry and Centre for Reproduction Growth and Development, University of Hong Kong, China
| | - Changjiang Li
- Department of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, China
| | - Jin Zhou
- College of Pharmacy, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemsitry, Chinese Academy of Sciences, China
| | - Hongwei Sun
- Department of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, China.
| |
Collapse
|