1
|
Ell MA, Schiele MA, Iovino N, Domschke K. Epigenetics of Fear, Anxiety and Stress - Focus on Histone Modifications. Curr Neuropharmacol 2024; 22:843-865. [PMID: 36946487 PMCID: PMC10845084 DOI: 10.2174/1570159x21666230322154158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 03/23/2023] Open
Abstract
Fear-, anxiety- and stress-related disorders are among the most frequent mental disorders. Given substantial rates of insufficient treatment response and often a chronic course, a better understanding of the pathomechanisms of fear-, anxiety- and stress-related disorders is urgently warranted. Epigenetic mechanisms such as histone modifications - positioned at the interface between the biological and the environmental level in the complex pathogenesis of mental disorders - might be highly informative in this context. The current state of knowledge on histone modifications, chromatin-related pharmacology and animal models modified for genes involved in the histone-related epigenetic machinery will be reviewed with respect to fear-, anxiety- and stress-related states. Relevant studies, published until 30th June 2022, were identified using a multi-step systematic literature search of the Pub- Med and Web of Science databases. Animal studies point towards histone modifications (e.g., H3K4me3, H3K9me1/2/3, H3K27me2/3, H3K9ac, H3K14ac and H4K5ac) to be dynamically and mostly brain region-, task- and time-dependently altered on a genome-wide level or gene-specifically (e.g., Bdnf) in models of fear conditioning, retrieval and extinction, acute and (sub-)chronic stress. Singular and underpowered studies on histone modifications in human fear-, anxiety- or stress-related phenotypes are currently restricted to the phenotype of PTSD. Provided consistent validation in human phenotypes, epigenetic biomarkers might ultimately inform indicated preventive interventions as well as personalized treatment approaches, and could inspire future innovative pharmacological treatment options targeting the epigenetic machinery improving treatment response in fear-, anxiety- and stressrelated disorders.
Collapse
Affiliation(s)
- Marco A. Ell
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Miriam A. Schiele
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Nicola Iovino
- Department of Chromation Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Li Y, Zhi W, Qi B, Wang L, Hu X. Update on neurobiological mechanisms of fear: illuminating the direction of mechanism exploration and treatment development of trauma and fear-related disorders. Front Behav Neurosci 2023; 17:1216524. [PMID: 37600761 PMCID: PMC10433239 DOI: 10.3389/fnbeh.2023.1216524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Fear refers to an adaptive response in the face of danger, and the formed fear memory acts as a warning when the individual faces a dangerous situation again, which is of great significance to the survival of humans and animals. Excessive fear response caused by abnormal fear memory can lead to neuropsychiatric disorders. Fear memory has been studied for a long time, which is of a certain guiding effect on the treatment of fear-related disorders. With continuous technological innovations, the study of fear has gradually shifted from the level of brain regions to deeper neural (micro) circuits between brain regions and even within single brain regions, as well as molecular mechanisms. This article briefly outlines the basic knowledge of fear memory and reviews the neurobiological mechanisms of fear extinction and relapse, which aims to provide new insights for future basic research on fear emotions and new ideas for treating trauma and fear-related disorders.
Collapse
Affiliation(s)
- Ying Li
- College of Education, Hebei University, Baoding, China
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Weijia Zhi
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bing Qi
- College of Education, Hebei University, Baoding, China
| | - Lifeng Wang
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiangjun Hu
- College of Education, Hebei University, Baoding, China
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
3
|
Lavertu-Jolin M, Chattopadhyaya B, Chehrazi P, Carrier D, Wünnemann F, Leclerc S, Dumouchel F, Robertson D, Affia H, Saba K, Gopal V, Patel AB, Andelfinger G, Pineyro G, Di Cristo G. Acan downregulation in parvalbumin GABAergic cells reduces spontaneous recovery of fear memories. Mol Psychiatry 2023; 28:2946-2963. [PMID: 37131076 PMCID: PMC10615765 DOI: 10.1038/s41380-023-02085-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/04/2023]
Abstract
While persistence of fear memories is essential for survival, a failure to inhibit fear in response to harmless stimuli is a feature of anxiety disorders. Extinction training only temporarily suppresses fear memory recovery in adults, but it is highly effective in juvenile rodents. Maturation of GABAergic circuits, in particular of parvalbumin-positive (PV+) cells, restricts plasticity in the adult brain, thus reducing PV+ cell maturation could promote the suppression of fear memories following extinction training in adults. Epigenetic modifications such as histone acetylation control gene accessibility for transcription and help couple synaptic activity to changes in gene expression. Histone deacetylase 2 (Hdac2), in particular, restrains both structural and functional synaptic plasticity. However, whether and how Hdac2 controls the maturation of postnatal PV+ cells is not well understood. Here, we show that PV+- cell specific Hdac2 deletion limits spontaneous fear memory recovery in adult mice, while enhancing PV+ cell bouton remodeling and reducing perineuronal net aggregation around PV+ cells in prefrontal cortex and basolateral amygdala. Prefrontal cortex PV+ cells lacking Hdac2, show reduced expression of Acan, a critical perineuronal net component, which is rescued by Hdac2 re-expression. Pharmacological inhibition of Hdac2 before extinction training is sufficient to reduce both spontaneous fear memory recovery and Acan expression in wild-type adult mice, while these effects are occluded in PV+-cell specific Hdac2 conditional knockout mice. Finally, a brief knock-down of Acan expression mediated by intravenous siRNA delivery before extinction training but after fear memory acquisition is sufficient to reduce spontaneous fear recovery in wild-type mice. Altogether, these data suggest that controlled manipulation of PV+ cells by targeting Hdac2 activity, or the expression of its downstream effector Acan, promotes the long-term efficacy of extinction training in adults.
Collapse
Affiliation(s)
- Marisol Lavertu-Jolin
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | | | - Pegah Chehrazi
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Denise Carrier
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, QC, Canada
| | - Florian Wünnemann
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, QC, Canada
- Heidelberg University, Faculty of Medicine & Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Séverine Leclerc
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, QC, Canada
| | - Félix Dumouchel
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Derek Robertson
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, QC, Canada
| | - Hicham Affia
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, QC, Canada
| | - Kamal Saba
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vijaya Gopal
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Anant Bahadur Patel
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gregor Andelfinger
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
| | - Graçiela Pineyro
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, QC, Canada
- Department of Pharmacology, Université de Montréal, Montréal, QC, Canada
| | - Graziella Di Cristo
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, QC, Canada.
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
4
|
Usmani MT, Krattli RP, El-Khatib SM, Le ACD, Smith SM, Baulch JE, Ng DQ, Acharya MM, Chan A. BDNF Augmentation Using Riluzole Reverses Doxorubicin-Induced Decline in Cognitive Function and Neurogenesis. Neurotherapeutics 2023; 20:838-852. [PMID: 36720792 PMCID: PMC10275819 DOI: 10.1007/s13311-022-01339-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2022] [Indexed: 02/02/2023] Open
Abstract
Cancer-related cognitive impairment (CRCI) considerably affects the quality of life of millions of cancer survivors. Brain-derived neurotrophic factor (BDNF) has been shown to promote survival, differentiation, and maintenance of in vivo dentate neurogenesis, and chemotherapy induces a plethora of physiological and cellular alterations, including a decline in neurogenesis and increased neuroinflammation linked with cognitive impairments. In our clinical studies, breast cancer patients treated with doxorubicin (Adriamycin®, ADR) experienced a significant reduction in the blood levels of BDNF that was associated with a higher risk of CRCI. Our past rodent studies in CRCI have also shown a significant reduction in dentate neurogenesis accompanied by cognitive impairment. In this study, using a female mouse model of ADR-induced cognitive decline, we tested the impact of riluzole (RZ), an orally active BDNF-enhancing medication that is FDA-approved for amyotrophic lateral sclerosis. ADR-treated mice receiving RZ in the drinking water for 1 month showed significant improvements in hippocampal-dependent learning and memory function (spatial recognition), fear extinction memory consolidation, and reduced anxiety-like behavior. RZ prevented chemotherapy-induced reductions of BDNF levels in the hippocampus. Importantly, RZ mitigated chemotherapy-induced loss of newly born, immature neurons, dentate neurogenesis, and neuroinflammation. In conclusion, this data provides pre-clinical evidence for a translationally feasible approach to enhance the neuroprotective effects of RZ treatment to prevent CRCI.
Collapse
Affiliation(s)
- Manal T Usmani
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, USA
| | - Robert P Krattli
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, USA
| | - Sanad M El-Khatib
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, USA
| | - Anh C D Le
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, USA
| | - Sarah M Smith
- Department of Radiation Oncology, School of Medicine, University of California, Irvine, CA, USA
| | - Janet E Baulch
- Department of Radiation Oncology, School of Medicine, University of California, Irvine, CA, USA
| | - Ding Quan Ng
- Department of Clinical Pharmacy Practice, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, CA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Munjal M Acharya
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, USA.
- Department of Radiation Oncology, School of Medicine, University of California, Irvine, CA, USA.
| | - Alexandre Chan
- Department of Clinical Pharmacy Practice, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, USA.
| |
Collapse
|
5
|
Wisłowska-Stanek A, Lehner M, Tomczuk F, Gawryluk A, Kołosowska K, Sułek A, Krząśnik P, Sobolewska A, Wawer A, Płaźnik A, Skórzewska A. The effects of the recurrent social isolation stress on fear extinction and dopamine D 2 receptors in the amygdala and the hippocampus. Pharmacol Rep 2023; 75:119-127. [PMID: 36385611 PMCID: PMC9889440 DOI: 10.1007/s43440-022-00430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND The present study assessed the influence of recurrent social isolation stress on the aversive memory extinction and dopamine D2 receptors (D2R) expression in the amygdala and the hippocampus subnuclei. We also analyzed the expression of epigenetic factors potentially associated with fear extinction: miRNA-128 and miRNA-142 in the amygdala. METHODS Male adult fear-conditioned rats had three episodes of 48 h social isolation stress before each fear extinction session in weeks intervals. Ninety minutes after the last extinction session, the D2R expression in the nuclei of the amygdala and the hippocampus (immunocytochemical technique), and mRNA levels for D2R in the amygdala were assessed (PCR). Moreover, we evaluated the levels of miRNA-128 and miRNA-142 in the amygdala. RESULTS It was found that recurrent social isolation stress decreased the fear extinction rate. The extinguished isolated rats were characterized by higher expression of D2R in the CA1 area of the hippocampus compared to the extinguished and the control rats. In turn, the isolated group presented higher D2R immunoreactivity in the CA1 area compared to the extinguished, the control, and the extinguished isolated animals. Moreover, the extinguished animals had higher expression of D2R in the central amygdala than the control and the extinguished isolated rats. These changes were accompanied by the increase in miRNA-128 level in the amygdala in the extinguished isolated rats compared to the control, the extinguished, and the isolated rats. Moreover, the extinguished rats had lower expression of miRNA-128 compared to the control and the isolated animals. CONCLUSIONS Our results suggest that social isolation stress impairs aversive memory extinction and coexists with changes in the D2R expression in the amygdala and hippocampus and increased expression of miRNA-128 in the amygdala.
Collapse
Affiliation(s)
- Aleksandra Wisłowska-Stanek
- grid.13339.3b0000000113287408Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, 1B Banacha Street, 02-097 Warsaw, Poland
| | - Małgorzata Lehner
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Filip Tomczuk
- grid.418955.40000 0001 2237 2890Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Aleksandra Gawryluk
- grid.419305.a0000 0001 1943 2944Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Karolina Kołosowska
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Anna Sułek
- grid.418955.40000 0001 2237 2890Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Paweł Krząśnik
- grid.13339.3b0000000113287408Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, 1B Banacha Street, 02-097 Warsaw, Poland
| | - Alicja Sobolewska
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Adriana Wawer
- grid.13339.3b0000000113287408Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, 1B Banacha Street, 02-097 Warsaw, Poland
| | - Adam Płaźnik
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Anna Skórzewska
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| |
Collapse
|
6
|
Pedraza LK, Sierra RO, de Oliveira Alvares L. Systems consolidation and fear memory generalisation as a potential target for trauma-related disorders. World J Biol Psychiatry 2022; 23:653-665. [PMID: 35001808 DOI: 10.1080/15622975.2022.2027010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fear memory generalisation is a central hallmark in the broad range of anxiety and trauma-related disorders. Recent findings suggest that fear generalisation is closely related to hippocampal dependency during retrieval. In this review, we describe the current understanding about memory generalisation and its potential influence in fear attenuation through pharmacological and behavioural interventions. In light of systems consolidation framework, we propose that keeping memory precision could be a key step to enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Lizeth K Pedraza
- Laboratório de Neurobiologia da Memória, Biophysics Department, Biosciences Institute, 91.501-970, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Physiology, University of Szeged, Szeged, Hungary
| | - Rodrigo O Sierra
- Laboratório de Neurobiologia da Memória, Biophysics Department, Biosciences Institute, 91.501-970, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Physiology, University of Szeged, Szeged, Hungary
| | - Lucas de Oliveira Alvares
- Laboratório de Neurobiologia da Memória, Biophysics Department, Biosciences Institute, 91.501-970, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Neuroscience, Institute of Health Sciences, Porto Alegre, Brazil
| |
Collapse
|
7
|
Shang A, Bieszczad KM. Epigenetic mechanisms regulate cue memory underlying discriminative behavior. Neurosci Biobehav Rev 2022; 141:104811. [PMID: 35961385 DOI: 10.1016/j.neubiorev.2022.104811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/15/2022] [Accepted: 08/01/2022] [Indexed: 12/01/2022]
Abstract
The burgeoning field of neuroepigenetics has introduced chromatin modification as an important interface between experience and brain function. For example, epigenetic mechanisms like histone acetylation and DNA methylation operate throughout a lifetime to powerfully regulate gene expression in the brain that is required for experiences to be transformed into long-term memories. This review highlights emerging evidence from sensory models of memory that converge on the premise that epigenetic regulation of activity-dependent transcription in the sensory brain facilitates highly precise memory recall. Chromatin modifications may be key for neurophysiological responses to transient sensory cue features experienced in the "here and now" to be recapitulated over the long term. We conclude that the function of epigenetic control of sensory system neuroplasticity is to regulate the amount and type of sensory information retained in long-term memories by regulating neural representations of behaviorally relevant cues that guide behavior. This is of broad importance in the neuroscience field because there are few circumstances in which behavioral acts are devoid of an initiating sensory experience.
Collapse
Affiliation(s)
- Andrea Shang
- Dept. of Psychology - Behavioral and Systems Neuroscience, Rutgers University - New Brunswick, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Kasia M Bieszczad
- Dept. of Psychology - Behavioral and Systems Neuroscience, Rutgers University - New Brunswick, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA; Rutgers Center for Cognitive Science (RuCCS), Rutgers University, Piscataway, NJ 08854, USA; Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA.
| |
Collapse
|
8
|
Wei W, Zhao Q, Wang Z, Liau WS, Basic D, Ren H, Marshall PR, Zajaczkowski EL, Leighton LJ, Madugalle SU, Musgrove M, Periyakaruppiah A, Shi J, Zhang J, Mattick JS, Mercer TR, Spitale RC, Li X, Bredy TW. ADRAM is an experience-dependent long noncoding RNA that drives fear extinction through a direct interaction with the chaperone protein 14-3-3. Cell Rep 2022; 38:110546. [PMID: 35320727 PMCID: PMC9015815 DOI: 10.1016/j.celrep.2022.110546] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/03/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
Here, we used RNA capture-seq to identify a large population of lncRNAs that are expressed in the infralimbic prefrontal cortex of adult male mice in response to fear-related learning. Combining these data with cell-type-specific ATAC-seq on neurons that had been selectively activated by fear extinction learning, we find inducible 434 lncRNAs that are derived from enhancer regions in the vicinity of protein-coding genes. In particular, we discover an experience-induced lncRNA we call ADRAM (activity-dependent lncRNA associated with memory) that acts as both a scaffold and a combinatorial guide to recruit the brain-enriched chaperone protein 14-3-3 to the promoter of the memory-associated immediate-early gene Nr4a2 and is required fear extinction memory. This study expands the lexicon of experience-dependent lncRNA activity in the brain and highlights enhancer-derived RNAs (eRNAs) as key players in the epigenomic regulation of gene expression associated with the formation of fear extinction memory.
Collapse
Affiliation(s)
- Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Research Institute, Wuhan University, Wuhan, China.
| | - Qiongyi Zhao
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Ziqi Wang
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Wei-Siang Liau
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Dean Basic
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Haobin Ren
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Paul R Marshall
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Esmi L Zajaczkowski
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Laura J Leighton
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Sachithrani U Madugalle
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Mason Musgrove
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Ambika Periyakaruppiah
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Jichun Shi
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianjian Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - John S Mattick
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Timothy R Mercer
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, USA
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Research Institute, Wuhan University, Wuhan, China
| | - Timothy W Bredy
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
9
|
Mohammadi-Farani A, Limoee M, Shirooie S. Sodium butyrate enhances fear extinction and rescues hippocampal acetylcholinesterase activity in a rat model of posttraumatic stress disorder. Behav Pharmacol 2021; 32:413-421. [PMID: 33883448 DOI: 10.1097/fbp.0000000000000633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
It is believed that impaired extinction of fear memories is an underlying cause for the development of posttraumatic stress disorder (PTSD). Histone deacetylases (HDAC) are enzymes that modulate extinction by changing the chromatin structure and altering protein synthesis in the brain. Studies show that stress modifies both HDAC activity and cerebral cholinergic neurotransmission. The present work aims to evaluate the effect of sodium butyrate (NaBu), an HDAC inhibitor, on behavioral markers of extinction and biochemical changes in HDAC and acetylcholinesterase activity in the hippocampus. NaBu was administered for 7 days in a group of rats that were exposed to single prolonged stress (SPS), as a model for PTSD. Contextual fear conditioning was performed on the 8th day, and fear extinction was measured in the next 4 consecutive days. Other behavioral tests to measure anxiety, locomotor activity and working memory were performed for further interpretation of the results. Hippocampal acetylcholinesterase and HDAC activity were also measured through biochemical tests. Behavioral results showed that treatment with NaBu can reverse the SPS-induced extinction deficits. Biochemical data indicated that while SPS induced overactivity in hippocampal HDAC, it decreased acetylcholinesterase activity in the region. Both effects were reversed after NaBu treatment. It seems that at least part of extinction deficiency in SPS exposed rats is related to hypoacetylation of acetylcholinesterase in the hippocampus. Preemptive therapy with an HDAC inhibitor reverses this process and is worth further evaluation as a possible therapeutic approach in PTSD.
Collapse
Affiliation(s)
- Ahmad Mohammadi-Farani
- Pharmaceutical Sciences Research Centre, Health Institute
- Department of Pharmacology and Toxicology, School of Pharmacy
| | - Mazdak Limoee
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | |
Collapse
|
10
|
Novikov DA, Beletsky AP, Kolosov PM. The Putative Role of m6A-RNA Methylation in Memory Consolidation. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Dynamic regulation of Z-DNA in the mouse prefrontal cortex by the RNA-editing enzyme Adar1 is required for fear extinction. Nat Neurosci 2020; 23:718-729. [PMID: 32367065 PMCID: PMC7269834 DOI: 10.1038/s41593-020-0627-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 03/19/2020] [Indexed: 01/06/2023]
Abstract
DNA forms conformational states beyond the right-handed double-helix; however, the functional relevance of these non-canonical structures in the brain remains unknown. We show that, in the prefrontal cortex of mice, the formation of one such structure, Z-DNA, is involved in the regulation of extinction memory. Z-DNA is formed during fear learning, and reduced during extinction learning, which is mediated, in part, by a direct interaction between Z-DNA and the RNA editing enzyme Adar1. Adar1 binds to Z-DNA during fear extinction learning which leads to a reduction in Z-DNA at sites where Adar1 is recruited. Knockdown of Adar1 leads to an inability to modify a previously acquired fear memory and blocks activity-dependent changes in DNA structure and RNA state; effects that are fully rescued by the introduction of full-length Adar1. These findings suggest a novel mechanism of learning-induced gene regulation dependent on both proteins which recognize DNA structure, and the state.
Collapse
|
12
|
Affiliation(s)
- Amy L Milton
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK.
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| |
Collapse
|