1
|
Chiacchierini G, Naneix F, Apergis-Schoute J, McCutcheon JE. Restriction of dietary protein in rats increases progressive-ratio motivation for protein. Physiol Behav 2022; 254:113877. [PMID: 35700813 DOI: 10.1016/j.physbeh.2022.113877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/10/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022]
Abstract
Low-protein diets can impact food intake and appetite, but it is not known if motivation for food is changed. In the present study, we used an operant behavioral task - the progressive ratio test - to assess whether motivation for different foods was affected when rats were maintained on a protein-restricted diet (REST, 5% protein diet) compared to non-restricted control rats (CON, 18% protein). Rats were tested either with nutritionally-balanced pellets (18.7% protein, Experiment 1) or protein-rich pellets (35% protein, Experiment 2) as reinforcers. Protein restriction increased breakpoint for protein-rich pellets, relative to CON rats, whereas no difference in breakpoint for nutritionally-balanced pellets was observed between groups. When given free access to either nutritionally-balanced pellets or protein-rich pellets, REST and CON rats did not differ in their intake. We also tested whether a previous history of protein restriction might affect present motivation for different types of food by assessing breakpoint of previously REST animals that were subsequently put on standard maintenance chow (protein-repleted rats, REPL, Experiment 2). REPL rats did not show increased breakpoint, relative to their initial encounter with protein-rich pellets while they were protein-restricted. This study demonstrates that restriction of dietary protein induces a selective increased motivation for protein-rich food, a behavior that disappears once rats are not in need of protein.
Collapse
Affiliation(s)
- Giulia Chiacchierini
- Dept. of Neuroscience, Psychology & Behaviour, University of Leicester, University Road, Leicester, LE1 9HN, United Kingdom; Present address: Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy.
| | - Fabien Naneix
- Rowett Institute, University of Aberdeen, AB25 2ZD, United Kingdom
| | - John Apergis-Schoute
- Dept. of Neuroscience, Psychology & Behaviour, University of Leicester, University Road, Leicester, LE1 9HN, United Kingdom; Department of Biological and Experimental Psychology, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - James E McCutcheon
- Dept. of Neuroscience, Psychology & Behaviour, University of Leicester, University Road, Leicester, LE1 9HN, United Kingdom; Dept. of Psychology, UiT The Arctic University of Norway, Huginbakken 32, 9037, Tromsø, Norway
| |
Collapse
|
2
|
Xie X, Li Y, Xu S, Zhou P, Yang L, Xu Y, Qiu Y, Yang Y, Li Y. Genetic Blockade of NAAA Cell-specifically Regulates Fatty Acid Ethanolamides (FAEs) Metabolism and Inflammatory Responses. Front Pharmacol 2022; 12:817603. [PMID: 35069223 PMCID: PMC8777083 DOI: 10.3389/fphar.2021.817603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022] Open
Abstract
N-Acylethanolamine acid amidase (NAAA) is a lysosomal enzyme responsible for the hydrolysis of fatty acid ethanolamides (FAEs). However, the role of NAAA in FAEs metabolism and regulation of pain and inflammation remains mostly unknown. Here, we generated NAAA-deficient (NAAA-/-) mice using CRISPR-Cas9 technique, and found that deletion of NAAA increased PEA and AEA levels in bone marrow (BM) and macrophages, and elevated AEA levels in lungs. Unexpectedly, genetic blockade of NAAA caused moderately effective anti-inflammatory effects in lipopolysaccharides (LPS)-induced acute lung injury (ALI), and poor analgesic effects in carrageenan-induced hyperalgesia and sciatic nerve injury (SNI)-induced mechanical allodynia. These data contrasted with acute (single dose) or chronic NAAA inhibition by F96, which produced marked anti-inflammation and analgesia in these models. BM chimera experiments indicated that these phenotypes were associated with the absence of NAAA in non-BM cells, whereas deletion of NAAA in BM or BM-derived cells in rodent models resulted in potent analgesic and anti-inflammatory phenotypes. When combined, current study suggested that genetic blockade of NAAA regulated FAEs metabolism and inflammatory responses in a cell-specifical manner.
Collapse
Affiliation(s)
- Xiaohua Xie
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, China.,School of Medicine, Institute of Pediatrics, Xiamen University, Xiamen, China
| | - Yitian Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Clinical Pharmacy, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Sennan Xu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China
| | - Pan Zhou
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Longhe Yang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yaping Xu
- Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Medical College, Fujian Province University, Xiamen, China
| | - Yan Qiu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Clinical Pharmacy, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Yungang Yang
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, China.,School of Medicine, Institute of Pediatrics, Xiamen University, Xiamen, China
| | - Yuhang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, China.,Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Fujian, China
| |
Collapse
|
3
|
Fotio Y, Sasso O, Ciccocioppo R, Piomelli D. Antinociceptive Profile of ARN19702, (2-Ethylsulfonylphenyl)-[(2S)-4-(6-fluoro-1,3-benzothiazol-2-yl)-2-methylpiperazin-1-yl]methanone, a Novel Orally Active N-Acylethanolamine Acid Amidase Inhibitor, in Animal Models. J Pharmacol Exp Ther 2021; 378:70-76. [PMID: 33986036 DOI: 10.1124/jpet.121.000674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/11/2021] [Indexed: 12/31/2022] Open
Abstract
N-Acylethanolamine acid amidase (NAAA) is an N-terminal cysteine hydrolase that stops the physiologic actions of palmitoylethanolamide, an endogenous lipid messenger that activates the transcription factor, peroxisome proliferator-activated receptor-α We have previously reported that the compound ARN19702 [(2-ethylsulfonylphenyl)-[(2S)-4-(6-fluoro-1,3-benzothiazol-2-yl)-2-methylpiperazin-1-yl]methanone] is an orally active, reversible NAAA inhibitor (IC50 on human NAAA = 230 nM) that produces remarkable protective effects against multiple sclerosis in mice. In the present study, we assessed the profile of ARN19702 in mouse and rat models of acute and neuropathic pain. Oral administration in male mice attenuated in a dose-dependent manner the spontaneous nocifensive response elicited by intraplantar formalin injection and the hypersensitivity caused by intraplantar carrageenan injection, paw incision, or sciatic nerve ligation. In male rats, ARN19702 reduced nociception associated with paclitaxel-induced neuropathy without development of subacute antinociceptive tolerance. Finally, ARN19702 (30 mg/kg, oral) did not produce place preference or alter exploratory motor behavior in male mice. The findings support the conclusion that NAAA is a suitable molecular target for the discovery of efficacious analgesic drugs devoid of rewarding potential. SIGNIFICANCE STATEMENT: This study evaluated the pharmacological profile of the orally bioavailable N-acylethanolamine acid amidase (NAAA) inhibitor (2-ethylsulfonylphenyl)-[(2S)-4-(6-fluoro-1,3-benzothiazol-2-yl)-2-methylpiperazin-1-yl]methanone (ARN19702) in mouse and rat models of neurogenic and inflammatory pain. The compound's potential rewarding and sedative effects were also examined. It is concluded that ARN19702 exhibits a broad analgesic profile that can be generalized across rodent species. The findings point to NAAA as a control node in the processing of neuropathic and inflammatory pain and to ARN19702 as a lead to uncover novel pain therapeutics devoid of addictive potential .
Collapse
Affiliation(s)
- Yannick Fotio
- Departments of Anatomy and Neurobiology (Y.F., D.P.), Biological Chemistry (D.P.), and Pharmaceutical Sciences (D.P.), University of California, Irvine, California; Drug Discovery and Development, Istituto Italiano di Technologia, Genova, Italy (O.S.); and School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy (R.C.)
| | - Oscar Sasso
- Departments of Anatomy and Neurobiology (Y.F., D.P.), Biological Chemistry (D.P.), and Pharmaceutical Sciences (D.P.), University of California, Irvine, California; Drug Discovery and Development, Istituto Italiano di Technologia, Genova, Italy (O.S.); and School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy (R.C.)
| | - Roberto Ciccocioppo
- Departments of Anatomy and Neurobiology (Y.F., D.P.), Biological Chemistry (D.P.), and Pharmaceutical Sciences (D.P.), University of California, Irvine, California; Drug Discovery and Development, Istituto Italiano di Technologia, Genova, Italy (O.S.); and School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy (R.C.)
| | - Daniele Piomelli
- Departments of Anatomy and Neurobiology (Y.F., D.P.), Biological Chemistry (D.P.), and Pharmaceutical Sciences (D.P.), University of California, Irvine, California; Drug Discovery and Development, Istituto Italiano di Technologia, Genova, Italy (O.S.); and School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy (R.C.)
| |
Collapse
|
4
|
Stopponi S, Fotio Y, Cifani C, Li H, Haass-Koffler CL, Cannella N, Demopulos G, Gaitanaris G, Ciccocioppo R. Andrographis paniculata and Its Main Bioactive Ingredient Andrographolide Decrease Alcohol Drinking and Seeking in Rats Through Activation of Nuclear PPARγ Pathway. Alcohol Alcohol 2021; 56:240-249. [PMID: 33401299 DOI: 10.1093/alcalc/agaa136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND AIMS Andrographis paniculata is an annual herbaceous plant which belongs to the Acanthaceae family. Extracts from this plant have shown hepatoprotective, anti-inflammatory and antidiabetic properties, at least in part, through activation of the nuclear receptor Peroxisome Proliferator-Activated Receptor-gamma (PPAR γ). Recent evidence has demonstrated that activation of PPARγ reduces alcohol drinking and seeking in Marchigian Sardinian (msP) alcohol-preferring rats. METHODS The present study evaluated whether A. paniculata reduces alcohol drinking and relapse in msP rats by activating PPARγ. RESULTS Oral administration of an A. paniculata dried extract (0, 15, 150 mg/kg) lowered voluntary alcohol consumption in a dose-dependent manner and achieved ~65% reduction at the dose of 450 mg/kg. Water and food consumption were not affected by the treatment. Administration of Andrographolide (5 and 10 mg/kg), the main active component of A. paniculata, also reduced alcohol drinking. This effect was suppressed by the selective PPARγ antagonist GW9662. Subsequently, we showed that oral administration of A. paniculata (0, 150, 450 mg/kg) prevented yohimbine- but not cues-induced reinstatement of alcohol seeking. CONCLUSIONS Results point to A. paniculata-mediated PPARγactivation as a possible therapeutic strategy to treat alcohol use disorder.
Collapse
Affiliation(s)
- Serena Stopponi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Yannick Fotio
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy.,Department of Anatomy and Neurobiology, School of Medicine, University of California, 807 Health Science Road, 92617 Irvine, USA
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Hongwu Li
- College of Chemical Engineering, Changchun University of Technology, 2055 Yan An Road, Chao Yang District, 130021 Changchun, China
| | - Carolina L Haass-Koffler
- Center Alcohol and Addiction Studies, Department Psychiatry and Human Behavior Department Behavioral and Social Sciences Brow University 121 S. Main Street, Providence, RI 02931, USA
| | - Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Gregory Demopulos
- Center Alcohol and Addiction Studies, Department Psychiatry and Human Behavior Department Behavioral and Social Sciences Brow University 121 S. Main Street, Providence, RI 02931, USA
| | - George Gaitanaris
- Center Alcohol and Addiction Studies, Department Psychiatry and Human Behavior Department Behavioral and Social Sciences Brow University 121 S. Main Street, Providence, RI 02931, USA.,Omeros Corporation, 201 Elliot Avenue West, Seattle, WA 98119, USA
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| |
Collapse
|