1
|
Bilel S, Corli G, Tiziani E, Chirenti D, Dall'Acqua S, Comai S, Ferraro L, Marti M, Beggiato S. Kynurenine amplifies tetrahydrocannabinol-induced sensorimotor impairment and classic "tetrad" effects in mice. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111342. [PMID: 40139338 DOI: 10.1016/j.pnpbp.2025.111342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND L-kynurenine (KYN), a kynurenine pathway (KP) metabolite, is the main precursor for the neuroactive metabolite kynurenic acid (KYNA). Several studies suggest a patho-physiologically relevant association between increased brain KYNA levels and cognitive dysfunctions in individuals with schizophrenia. Δ9-tetrahydrocannabinol (Δ9-THC; i.e. the main psychoactive compound of cannabis) can worse schizophrenia-related psychosis, often leads to the development of cannabis use disorder in individuals with schizophrenia, and increases the risk of earlier onset of schizophrenia symptoms in those with a genetic predisposition. A role of KP alterations and, specifically, increased brain KYNA levels in Δ9-THC-induced psychotic symptoms has been previously proposed. The aim of the study was to investigate on the possible involvement of KP alterations in Δ9-THC-induced sensorimotor and "tetrad" responses in mice. METHODS Adult male CD-1 mice were treated with Δ9-THC (30 mg/ kg; i.p.) and KYN (20 mg/kg; i.p.), alone or in combination, and body temperature, acute mechanical and thermal analgesia, motor activity and sensorimotor responses were evaluated. Furthermore, brain KYNA levels as well as plasma Δ9-THC and its metabolites concentrations after the treatments were also evaluated. RESULTS Brain KYNA levels were significantly increased 1 h, but not 4 h, after KYN and KYN + Δ9-THC administration. KYN administration amplified the Δ9-THC-induced impairment of sensorimotor responses (visual placing, acoustic and tactile responses). Furthermore, KYN significantly increased Δ9-THC-induced motor activity impairment (bar test, drag test and rotarod test) and hypothermia (core and surface body temperature), but not Δ9-THC-induced analgesia. Finally, 1 h after Δ9-THC administration, Δ9-THC and its psychoactive metabolite 11-OH-THC plasma levels were higher in mice pretreated with KYN than in control mice. CONCLUSIONS The present data indicate for the first time that KYN amplifies the THC-induced sensorimotor impairment and classic "tetrad" response possibly through a pharmacokinetic interaction.
Collapse
Affiliation(s)
- Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Edoardo Tiziani
- Department of Life Sciences and Biotechnology, LTTA Center, University of Ferrara, Ferrara, Italy
| | - Daniele Chirenti
- Department of Life Sciences and Biotechnology, LTTA Center, University of Ferrara, Ferrara, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, LTTA Center, University of Ferrara, Ferrara, Italy; Psychiatric Department, School of Medicine, University of Maryland, Baltimore, MD, USA.
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy; Collaborative Center for the Italian National Early Warning System (NEWS-D), Department of Anti-Drug Policies, Presidency of the Council of Ministers, Italy
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnology, LTTA Center, University of Ferrara, Ferrara, Italy; Psychiatric Department, School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
2
|
Bassi M, Roda E, Tirri M, Corli G, Bilel S, Bernardi T, Boccuto F, Borsari M, Buscaglia E, De Luca F, Di Rosa F, Gregori A, Buccilli V, Maida P, Ambrogi D, Strano-Rossi S, Locatelli CA, Marti M. α-PHP: Acute effects and pharmacokinetic in male and female mice, and clinical data on related intoxications. Drug Alcohol Depend 2025; 269:112596. [PMID: 39987764 DOI: 10.1016/j.drugalcdep.2025.112596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/25/2025]
Abstract
Alpha-Pyrrolidinohexanophenone (α-PHP) is a synthetic pyrovalerone derivative with structural characteristics and stimulant effects on humans comparable to α-PVP and MDPV. Since its pharmaco-toxicological effects have been poorly investigated, the aim of this study was to evaluate the acute effects of α-PHP (0.1-30mg/kg; i.p.) on behavioral responses in CD-1 male and female mice. Sex-related differences in pharmacokinetic profile of α-PHP (30mg/kg; i.p.) in mice were evaluated by analyzing i) the urine concentration of α-PHP and its metabolites at different time points, and ii) α-PHP levels in plasma, brain, and kidneys at 35min after the injection. Clinical data related to α-PHP intoxications, recorded by the Pavia Poison Control Centre (PCC) are also described. The present study shows that female mice were more sensitive to the effects of α-PHP on visual object, tactile, mobility time, and hypothermia, but males showed a deeper effect on visual placing. Both sexes developed analgesia to the mechanical stimulation, but only males showed a slight increase in enduring the thermal stimulation. Male mice showed higher plasma levels of α-PHP and a different elimination of α-PHP and metabolites than females. Case reports highlighted severe toxidromes characterized by Central Nervous System alterations (psychomotor agitation, tremors/fasciculations, hallucinations), cardiovascular toxicity signs (tachycardia, tachypnoea, thoracic pain) and other peripheral symptoms (hyperthermia, rhabdomyolysis). Our findings highlight the importance of the in vivo investigation of the effects and pharmacokinetic differences in male and female mice, to make contribution to the translational toxicological and forensic sex-related value.
Collapse
Affiliation(s)
- Marta Bassi
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS Pavia, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Tatiana Bernardi
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara 44121, Italy
| | - Federica Boccuto
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Martina Borsari
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Eleonora Buscaglia
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS Pavia, Italy
| | - Fabrizio De Luca
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Fabiana Di Rosa
- Department of Scientific Investigation (RIS), Carabinieri, Rome 00191, Italy
| | - Adolfo Gregori
- Department of Scientific Investigation (RIS), Carabinieri, Rome 00191, Italy
| | - Valeria Buccilli
- Department of Scientific Investigation (RIS), Carabinieri, Messina 98122, Italy
| | - Pietro Maida
- Department of Scientific Investigation (RIS), Carabinieri, Messina 98122, Italy
| | | | - Sabina Strano-Rossi
- Institute of Public Health, Section of Legal Medicine, Università Cattolica del Sacro Cuore, L.go F. Vito 1, Rome 00168, Italy
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS Pavia, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy; Collaborative Center for the Italian National Early Warning System (NEWS-D), Department of Anti-Drug Policies, Presidency of the Council of Ministers, Italy.
| |
Collapse
|
3
|
Mejía-Méndez MG, Cifuentes-Delgado PC, Gómez SD, Segura CC, Ornelas-Soto N, Osma JF. Portable Miniaturized IoT-Enabled Point-of-Care Device for Electrochemical Sensing of Zopiclone in Cocktails. BIOSENSORS 2024; 14:557. [PMID: 39590016 PMCID: PMC11591615 DOI: 10.3390/bios14110557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024]
Abstract
This study proposes a portable and IoT-based electrochemical point-of-care sensing device for detecting zopiclone in cocktails. The system utilizes an electrochemical laccase biosensor and a potentiostat, offering a low-cost and portable device for detecting this sedative drug in cocktails. The sensor characterization experiments demonstrated the linear behavior of the oxidation and reduction currents for each of the targeted concentrations of zopiclone, enabling their detection and quantification even when mixed with an interfering substance. The proposed system could be used for the in situ analysis of cocktails, providing a valuable tool for monitoring the presence of hypnotic drugs in various social and clinical settings. The study utilized materials and reagents, including zopiclone, lab-made lemon juice, lab-made tequila, and lab-made triple sec, all prepared with reactants obtained in Bogotá, Colombia. The potentiostat used in the system was designed to manage cyclic voltammetry measurements. The electrochemical cells' durability and longevity were also tested and characterized, with all electrodes undergoing 200 tests and their performance degradation varying according to the molecule used. The study concludes that the proposed system offers a valuable tool for detecting and monitoring pharmaceutical substances in various interfering ingredients that build up cocktails. Further research and application of this system can help address the global concern surrounding the administration of hypnotic substances to unknowing consumers through food or drinks to enable robbery and sexual assault.
Collapse
Affiliation(s)
- María Gabriela Mejía-Méndez
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá D.C. 111711, Colombia; (M.G.M.-M.); (P.C.C.-D.)
| | - Paula C. Cifuentes-Delgado
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá D.C. 111711, Colombia; (M.G.M.-M.); (P.C.C.-D.)
| | - Sergio D. Gómez
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá D.C. 111711, Colombia; (S.D.G.); (C.C.S.)
| | - Crhistian C. Segura
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá D.C. 111711, Colombia; (S.D.G.); (C.C.S.)
| | - Nancy Ornelas-Soto
- Laboratorio de Nanotecnología Ambiental, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico;
| | - Johann F. Osma
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá D.C. 111711, Colombia; (M.G.M.-M.); (P.C.C.-D.)
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá D.C. 111711, Colombia; (S.D.G.); (C.C.S.)
| |
Collapse
|
4
|
Bassi M, Bilel S, Tirri M, Corli G, Di Rosa F, Gregori A, Alkilany AM, Rachid O, Roda E, De Luca F, Papa P, Buscaglia E, Zauli G, Locatelli CA, Marti M. The synthetic cathinones MDPHP and MDPV: Comparison of the acute effects in mice, in silico ADMET profiles and clinical reports. Neurotoxicology 2024; 103:230-255. [PMID: 38955288 DOI: 10.1016/j.neuro.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
The 3,4-methylenedioxy-alpha-pyrrolidinohexanophenone (MDPHP) is a synthetic cathinone closely related to 3,4-methylenedioxypyrovalerone (MDPV), one of the most common synthetic cathinones present in the "bath salts". MDPHP has recently gained attention due to increasing seizures and involvement in human intoxications which occurred in Europe and Italy in the last years, but currently there is a lack of information about its pharmaco-toxicological effects. With the aim at filling this gap, the present study is endeavoured to (i) evaluate the effects of acute administration of MDPHP (0.01-20 mg/kg; i.p.) on behaviour, cardiorespiratory and cardiovascular parameters in CD-1 male mice, comparing them to those observed after administration of MDPV; (ii) predict the ADMET profile of the two analogues using the Plus ADMET Predictor®; (iii) present clinical data related to MDPHP and MDPV-induced intoxications recorded between 2011 and 2023 by the Pavia Poison Control Centre (PCC) - National Toxicology Information Centre (Istituti Clinici Scientifici Maugeri, IRCCS Pavia, Italy). Our results substantiated that MDPHP and MDPV similarly affect sensorimotor and behavioural responses in mice, importantly increased locomotion and induced aggressive behaviour, and, at higher dosage, increased heart rate and blood pressure. These findings are in line with those observed in humans, revealing severe toxidromes typically characterized by Central Nervous System (CNS) alterations (behavioural/neuropsychiatric symptoms), including psychomotor agitation and aggressiveness, cardiovascular and respiratory disorders (e.g. tachycardia, hypertension, dyspnoea), and other peripheral symptoms (e.g. hyperthermia, acidosis, rhabdomyolysis).
Collapse
Affiliation(s)
- Marta Bassi
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Fabiana Di Rosa
- Department of Scientific Investigation (RIS), Carabinieri, Rome 00191, Italy
| | - Adolfo Gregori
- Department of Scientific Investigation (RIS), Carabinieri, Rome 00191, Italy
| | - Alaaldin M Alkilany
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Qatar
| | - Ousama Rachid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Qatar
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Fabrizio De Luca
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Pietro Papa
- Laboratory of Analytical Toxicology-Clinical Chemistry, IRCCS Fondazione Policlinico S. Matteo, Pavia, Italy
| | - Eleonora Buscaglia
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy; Department of Anti-Drug Policies, Collaborative Center for the Italian National Early Warning System, Presidency of the Council of Ministers, Ferrara, Italy.
| |
Collapse
|
5
|
Corli G, Tirri M, Bassi M, Bernardi T, Boccuto F, Borsari M, Zauli G, Bilel S, Marti M. 5-HT 2A receptors are involved in the pharmaco-toxicological effects of the synthetic cannabinoids JWH-018 and 5F-PB22: In vivo studies in mice. Eur J Pharmacol 2024; 971:176486. [PMID: 38458413 DOI: 10.1016/j.ejphar.2024.176486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Over the last years, Synthetic Cannabinoids (SCs) have been among the largest and most frequently seized groups of Novel Psychoactive Substances (NPS). These substances have been frequently detected in biological samples from patients involved in several intoxication and death cases. Their serious adverse effects have been related to their action as potent agonist of cannabinoid CB1 receptors. However, evidence concerning the potential interaction between SCs and serotoninergic mechanisms has emerged. Therefore, this study aims to evaluate the involvement of 5-HT2A receptors in the effects induced by acute systemic administration of 1-pentyl-3-(1-naphthoyl)indole (JWH-018; 1 mg/kg) and quinolin-8-yl 1-pentyfluoro-1H-indole-3-8-carboxylate (5F-PB22; 1 mg/kg). Sensorimotor (visual, acoustic, and tactile) responses, pain threshold (acute mechanical and thermal nociception), core temperature, breath rate and motor performance (stepping activity) have been assessed in CD-1 male mice. The present results pointed out that both substances deeply alter sensorimotor responses, nociceptive threshold, core temperature, breath rate and motor activity in mice. Noteworthy, pretreatment with the selective 5-HT2A receptors antagonist MDL100907 (0.1 mg/kg) at least partially prevented sensorimotor disruption, antinociception and hypothermic effects. Conversely, the respiratory and motor impairment was not prevented. Thus, it states the relevance of serotoninergic 5-HT2A mechanisms on pharmaco-toxicological effects induced by SCs.
Collapse
Affiliation(s)
- Giorgia Corli
- Department of Excellence of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Department of Excellence of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Marta Bassi
- Department of Excellence of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Tatiana Bernardi
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121, Ferrara, Italy
| | - Federica Boccuto
- Department of Excellence of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Martina Borsari
- Department of Excellence of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| | - Sabrine Bilel
- Department of Excellence of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Matteo Marti
- Department of Excellence of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy; Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Italy.
| |
Collapse
|
6
|
Corli G, Roda E, Tirri M, Bilel S, De Luca F, Strano-Rossi S, Gaudio RM, De-Giorgio F, Fattore L, Locatelli CA, Marti M. Sex-specific behavioural, metabolic, and immunohistochemical changes after repeated administration of the synthetic cannabinoid AKB48 in mice. Br J Pharmacol 2024; 181:1361-1382. [PMID: 38148741 DOI: 10.1111/bph.16311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/28/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND AND PURPOSE AKB48 is a synthetic cannabinoid illegally sold for its psychoactive cannabis-like effects that have been associated with acute intoxication and whose effects are poorly known. EXPERIMENTAL APPROACH Using a behavioural, neurochemical, and immunohistochemical approach, we investigated the pharmaco-toxicological effects, pharmacokinetics, and neuroplasticity at cannabinoid CB1 receptors in the cerebellum and cortex induced by repeated AKB48 administration in male and female mice. KEY RESULTS The effects of AKB48 varied significantly depending on sex and treatment duration. The first injection impaired sensorimotor responses and reduced body temperature, analgesia, and breath rate to a greater extent in females than in males; the second injection induced stronger effects in males while the third injection of AKB48 induced weaker responses in both sexes, suggesting emergence of tolerance. The CB1 receptor antagonist NESS-0327 prevented the effects induced by repeated AKB48, confirming a CB1 receptor-mediated action. Blood AKB48 levels were higher in females than in males and repeated administration caused a progressive rise of AKB48 levels in both sexes, suggesting an inhibitory effect on cytochrome activity. Finally, immunohistochemical analysis revealed higher expression of CB1 receptors in the cerebellum and cortex of females, and a rapid CB1 receptor down-regulation in cerebellar and cortical areas following repeated AKB48 injections, with neuroadaptation occurring generally more rapidly in females than in males. CONCLUSION AND IMPLICATIONS We have shown for the first time that AKB48 effects significantly vary with prolonged use and that sex affects the pharmacodynamic/pharmacokinetic responses to repeated administration, suggesting a sex-tailored approach in managing AKB48-induced intoxication.
Collapse
Affiliation(s)
- Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Fabrizio De Luca
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Sabina Strano-Rossi
- Institute of Public Health, Section of Legal Medicine, Catholic University of Rome, Rome, Italy
| | - Rosa Maria Gaudio
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
- University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Fabio De-Giorgio
- Department of Health Care Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Liana Fattore
- National Research Council, CNR Institute of Neuroscience-Cagliari, Cagliari, Italy
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
- Department of Anti-Drug Policies, Presidency of the Council of Ministers, Collaborative Center for the Italian National Early Warning System, Rome, Italy
| |
Collapse
|
7
|
Arfè R, Bilel S, Tirri M, Corli G, Bergamin E, Serpelloni G, Bassi M, Borsari M, Boccuto F, Bernardi T, Caruso L, Alkilany AM, Rachid O, Botrè F, De-Giorgio F, Marti M. Comprehensive evaluation of the pharmacological and toxicological effects of γ-valerolactone as compared to γ-hydroxybutyric acid: Insights from in vivo and in silico models. Drug Alcohol Depend 2023; 252:110951. [PMID: 37717308 DOI: 10.1016/j.drugalcdep.2023.110951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023]
Abstract
Γ-valerolactone (GVL), marketed online as "Tranquilli-G" and "excellent Valium", is used as a legal substitute for γ-hydroxybutyric acid (GHB); however, until now, GVL has only been connected to one Drug-Facilitated Sexual Assault (DFSA) case. Moreover, the pharmaco-toxicological effects of GVL are poorly studied. The aim of this study was to investigate the 1) in vivo effects of gavage administration of GVL (100-3000 mg/kg) on neurological (myoclonia, convulsions), sensorimotor (visual, acoustic, and overall tactile) responses, righting reflex, thermoregulation, motor activity (bar, drag, and accelerod test) and cardiorespiratory changes (heart rate, breath rate, oxygen saturation, and pulse distension) in CD-1 male mice and the 2) in silico ADMET profile of GVL in comparison to GHB and the open active form γ-hydroxyvaleric acid (GHV). The present study demonstrates that GVL inhibits, in a dose-dependent manner, sensorimotor and motor responses and induces cardiorespiratory depression (at a dose of 3000 mg/kg) in mice. The determination of the ED50 in sensorimotor and motor responses revealed that GVL is about 4-5 times less potent than GHB. In silico prediction of ADMET profiles revealed toxicokinetic similarities between GHB and GHV, and differences with GVL. These results suggest that GVL could be used as a substitute for GHB and should be added to forensic toxicology screenings.
Collapse
Affiliation(s)
- Raffaella Arfè
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Eva Bergamin
- Università Cattolica del Sacro Cuore, Roma, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | | | - Marta Bassi
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Martina Borsari
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Federica Boccuto
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Tatiana Bernardi
- Department of Environmental Sciences and Prevention University of Ferrara, Ferrara, Italy
| | - Lorenzo Caruso
- Department of Environmental Sciences and Prevention University of Ferrara, Ferrara, Italy
| | - Alaaldin M Alkilany
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Qatar
| | - Ousama Rachid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Qatar
| | - Francesco Botrè
- Antidoping Laboratory FMSI, Rome, Italy; REDs - Research and Expertise in antidoping Sciences, ISSUL - Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Fabio De-Giorgio
- Università Cattolica del Sacro Cuore, Roma, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy; Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Italy.
| |
Collapse
|
8
|
Frisoni P, Corli G, Bilel S, Tirri M, Gasparini LC, Alfieri L, Neri M, De-Giorgio F, Marti M. Effect of Repeated Administration of ɣ-Valerolactone (GVL) and GHB in the Mouse: Neuroadaptive Changes of the GHB and GABAergic System. Pharmaceuticals (Basel) 2023; 16:1225. [PMID: 37765033 PMCID: PMC10536195 DOI: 10.3390/ph16091225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Gamma-hydroxybutyric acid (GHB) at low dosages has anxiolytic effects and promotes REM sleep and low-wave deep sleep. In the U.S., the legal form of GHB is prescribed to adults suffering from narcolepsy-associated cataplexy; the sodium salt of GHB is reserved for alcohol-addiction treatment. GHB is also a molecule of abuse and recreational use, it is a controlled substance in several countries, so gamma-valerolactone (GVL) has frequently been used as a legal substitute for it. GHB's abuse profile is most likely attributable to its anxiolytic, hypnotic, and euphoric properties, as well as its widespread availability and inexpensive/low cost on the illicit market. METHODS Our study is focused on evaluating the potential effects on the mouse brain after repeated/prolonged administration of GHB and GVL at a pharmacologically active dose (100 mg/kg) through behavioral study and immunohistochemical analysis using the markers tetraspanin 17 (TSPAN17), aldehyde dehydrogenase 5 (ALDH5A1), Gamma-aminobutyric acid type A receptor (GABA-A), and Gamma-aminobutyric acid type B receptor (GABA-B). RESULTS Our findings revealed that prolonged administration of GHB and GVL at a pharmacologically active dose (100 mg/kg) can have effects on a component of the mouse brain, the intensity of which can be assessed using immunohistochemistry. The findings revealed that long-term GHB administration causes a significant plastic alteration of the GHB signaling system, with downregulation of the putative binding site (TSPAN17) and overexpression of ALDH5A1, especially in hippocampal neurons. Our findings further revealed that GABA-A and GABA-B receptors are downregulated in these brain locations, resulting in a greater decrease in GABA-B expression. CONCLUSIONS The goal of this study, from the point of view of forensic pathology, is to provide a new methodological strategy for better understanding the properties of this controversial substance, which could help us better grasp the unknown mechanism underlying its abuse profile.
Collapse
Affiliation(s)
- Paolo Frisoni
- Unit of Legal Medicine, AUSL of Ferrara, Via Arturo Cassoli 30, 44121 Ferrara, Italy;
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (G.C.); (S.B.); (M.T.); (M.M.)
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (G.C.); (S.B.); (M.T.); (M.M.)
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (G.C.); (S.B.); (M.T.); (M.M.)
| | - Laura Camilla Gasparini
- Department of Biomedical, Metabolic and Neural Sciences, Institute of Legal Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy;
| | - Letizia Alfieri
- Department of Medical Sciences, Section of Legal Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| | - Margherita Neri
- Department of Medical Sciences, Section of Legal Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| | - Fabio De-Giorgio
- Department of Health Care Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Rome, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (G.C.); (S.B.); (M.T.); (M.M.)
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 00186 Rome, Italy
| |
Collapse
|
9
|
Dufayet L, Bargel S, Bonnet A, Boukerma AK, Chevallier C, Evrard M, Guillotin S, Loeuillet E, Paradis C, Pouget AM, Reynoard J, Vaucel JA. Gamma-hydroxybutyrate (GHB), 1,4-butanediol (1,4BD), and gamma-butyrolactone (GBL) intoxication: A state-of-the-art review. Regul Toxicol Pharmacol 2023; 142:105435. [PMID: 37343712 DOI: 10.1016/j.yrtph.2023.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
γ-hydroxybutyrate (GHB) is synthesized endogenously from γ-aminobutyric acid (GABA) or exogenously from 1,4-butanediol (butane-1,4-diol; 1,4-BD) or γ-butyrolactone (GBL). GBL, and 1,4-BD are rapidly converted to GHB. The gastric absorption time, volume of distribution, and half-life of GHB are between 5 and 45 min, 0.49 ± 0.9 L/kg, and between 20 and 60 min, respectively. GHB and its analogues have a dose-dependent effect on the activation of GHB receptor, GABA-B, and GABA localized to the central nervous system. After ingestion, most patients present transient neurological disorders (lethal dose: 60 mg/kg). Chronic GHB consumption is associated with disorders of use and a withdrawal syndrome when the consumption is discontinued. GHB, GBL, and 1,4-BD are classified as narcotics but only the use of GHB is controlled internationally. They are used for drug facilitated (sexual) assault, recreational purposes, slamsex, and chemsex. To confirm an exogenous intake or administration of GHB, GBL, or 1-4-BD, the pre-analytical conservation is crucial. The antemortem cutoff doses for detection are 5 and 5-15 mg/L, with detection windows of 6 and 10 h in the blood and urine, respectively Control of GHB is essential to limit the number of users, abuse, associated risks, and death related to their consumption.
Collapse
Affiliation(s)
- Laurene Dufayet
- Unité Médico-judiciaire, Hôtel-Dieu, APHP, 75001, Paris, France; Centre Antipoison de Paris - Fédération de Toxicologie (FeTox), Hôpital Fernand-Widal, APHP, 75010, Paris, France; INSERM, UMRS-1144, Faculté de Pharmacie, 75006, Paris, France; UFR de Médecine, Université de Paris, 75010, Paris, France.
| | - Sophie Bargel
- Section Toxicologie - Sécurité Routière, Laboratoire de Police Scientifique de Lille, SNPS, France
| | - Anastasia Bonnet
- Centre Antipoison de Toulouse, CHU de Toulouse, Toulouse, France
| | | | | | - Marion Evrard
- Centre Antipoison de Nancy, CHRU de Nancy, Nancy, France
| | - Sophie Guillotin
- Centre Antipoison de Toulouse, CHU de Toulouse, Toulouse, France
| | | | - Camille Paradis
- Centre Antipoison de Bordeaux CHU de Bordeaux, Bordeaux, France
| | | | - Julien Reynoard
- Pharmacologie Clinique CAP-TV, APHM, Hôpitaux Sud, Marseille, France
| | | |
Collapse
|
10
|
Corli G, Tirri M, Bilel S, Giorgetti A, Bernardi T, Boccuto F, Borsari M, Giorgetti R, Marti M. Ethanol enhances JWH-018-induced impairment of sensorimotor and memory functions in mice: From preclinical evidence to forensic implication in Driving Under the Influence of Drugs. Drug Alcohol Depend 2023; 247:109888. [PMID: 37120918 DOI: 10.1016/j.drugalcdep.2023.109888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Several new Synthetic Cannabinoids have appeared each year since their introduction into the illicit drug market as recreational drugs. Among these, naphtalen-1-yl-(1-pentylindol-3-yl) methanone (JWH-018) is one of the most detected compounds in biological samples from patients involved in intoxication or death cases. Furthermore, consumption of JWH-018 has been linked to several cases of Driving Under the Influence of Drugs (DUID) suggesting that effects induced by this compound can affect individuals' ability to drive. METHODS Given the high spread of polydrug consumption and the wide number of alcohol-related traffic accidents, this study aims to investigate the acute effects induced by co-administration of JWH-018 with ethanol on sensorimotor and motor responses, grip strength and memory functions in CD-1 male mice. Acute impairments induced by JWH-018 and ethanol alone have also been investigated, in order to compare their effects with that induced by their concurrent administration. RESULTS In vivo behavioral experiments revealed a worsening of the cognitive and sensorimotor disruption after the co-administration of JWH-018 with ethanol compared to single compounds. CONCLUSIONS These animal-based findings suggest a potential increased impairment on psychomotor performances which could be related to driving abilities posed by poly-drug consumption involving SCs and ethanol.
Collapse
Affiliation(s)
- Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Arianna Giorgetti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Via Irnerio 49, Bologna, 40126, Italy
| | - Tatiana Bernardi
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, 44121, Italy
| | - Federica Boccuto
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Martina Borsari
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Raffaele Giorgetti
- Department of Excellence of Biomedical Science and Public Health, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy; Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Italy.
| |
Collapse
|
11
|
Corli G, Tirri M, Arfè R, Marchetti B, Bernardi T, Borsari M, Odoardi S, Mestria S, Strano-Rossi S, Neri M, Gaudio RM, Bilel S, Marti M. Pharmaco-Toxicological Effects of Atypical Synthetic Cathinone Mephtetramine (MTTA) in Mice: Possible Reasons for Its Brief Appearance over NPSs Scene. Brain Sci 2023; 13:brainsci13020161. [PMID: 36831704 PMCID: PMC9954072 DOI: 10.3390/brainsci13020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Over the last year, NPSs have been steadily on the rise in the illicit drug market. Among these, synthetic cathinones seem to become increasingly popular among young adults, mainly because of their ability to replicate the effects of traditional psychostimulant drugs, such as cocaine, MDMA and amphetamines. However, scarce data are available about the in vivo pharmaco-toxicology of these new substances. To this end, this study focused on evaluation of effects induced by repeated administration of mephtetramine (MTTA 0.1-30 mg/kg i.p.) in mice. This atypical cathinone highlighted a sensorial (inhibition of visual and acoustic reflexes) and transient physiological parameter (decrease in breath rate and temperature) change in mice. Regarding motor activity, both a dose-dependent increase (accelerod test) and biphasic effect (drag and mobility time test) have been shown. In addition, blood and urine samples have been analysed to enrich the experimental featuring of the present study with reference to evaluation of potential toxicity related to consumption of MTTA. The latter analysis has particularly revealed important changes in blood cells count and blood and urine physicochemical profile after repeated treatment with this atypical cathinone. Moreover, MTTA induced histological changes in heart, kidney and liver samples, emphasizing its potential toxicity.
Collapse
Affiliation(s)
- Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Raffaella Arfè
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Beatrice Marchetti
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Tatiana Bernardi
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Martina Borsari
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Sara Odoardi
- Forensic Toxicology Laboratory, Department of Health Surveillance and Bioethics, Università Cattolica del Sacro Cuore F. Policlinico Gemelli IRCCS, 00169 Rome, Italy
| | - Serena Mestria
- Forensic Toxicology Laboratory, Department of Health Surveillance and Bioethics, Università Cattolica del Sacro Cuore F. Policlinico Gemelli IRCCS, 00169 Rome, Italy
| | - Sabina Strano-Rossi
- Forensic Toxicology Laboratory, Department of Health Surveillance and Bioethics, Università Cattolica del Sacro Cuore F. Policlinico Gemelli IRCCS, 00169 Rome, Italy
| | - Margherita Neri
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Rosa Maria Gaudio
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 00186 Rome, Italy
- Correspondence:
| |
Collapse
|
12
|
Behavioral and Pharmacokinetics Studies of N-Methyl-2-Aminoindane (NM2AI) in Mice: An Aminoindane Briefly Used in the Illicit Drug Market. Int J Mol Sci 2023; 24:ijms24031882. [PMID: 36768197 PMCID: PMC9916073 DOI: 10.3390/ijms24031882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Drug forums are considered as the main platform sources that have contributed to the increase in NPS popularity, especially for those not yet known to law enforcement and therefore not yet illegal. An example is the new synthetic stimulant NM2AI, which has a very short history of human use and abuse. Little is known regarding this compound, but some information from internet forums and the scientific literature indicates NM2AI as a structural derivate of MDAI, which is known for its entactogenic activity. Indeed, the purpose of this study is to evaluate, for the first time, the in vivo acute effect induced by the intraperitoneal injection of NM2AI (1-10-30-100 mg/kg) in mice. We demonstrate the sensory (by visual placing and object tests) and physiological (core temperature measurement) function variations, nociceptor (by tail pinch test) and strength (grip test) alterations, and sensorimotor (time on rod and mobility) decrease. Moreover, we verify the mild hallucinogenic effect of NM2AI (by startle/prepulse inhibition test). Lastly, we perform a pharmacokinetic study on mice blood samples, highlighting that the main active metabolite of NM2AI is 2-aminoindane (2AI). Taken together, our data confirm the suspected entactogenic activity of NM2AI; however, these in vivo effects appear atypical and less intense with respect to those induced by the classic stimulants, in surprising analogy with what is reported by networked users.
Collapse
|
13
|
Acide γ-Hydroxybutyrique (GHB), γ-butyrolactone (GBL) et 1,4-butanediol (1,4-BD) : revue de la littérature des aspects pharmacologiques, cliniques, analytiques et médico-légaux. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2022. [DOI: 10.1016/j.toxac.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Tirri M, Arfè R, Bilel S, Corli G, Marchetti B, Fantinati A, Vincenzi F, De-Giorgio F, Camuto C, Mazzarino M, Barbieri M, Gaudio RM, Varani K, Borea PA, Botrè F, Marti M. In Vivo Bio-Activation of JWH-175 to JWH-018: Pharmacodynamic and Pharmacokinetic Studies in Mice. Int J Mol Sci 2022; 23:ijms23148030. [PMID: 35887377 PMCID: PMC9318133 DOI: 10.3390/ijms23148030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022] Open
Abstract
3-(1-Naphthalenylmethyl)-1-pentyl-1H-indole (JWH-175) is a synthetic cannabinoid illegally marketed for its psychoactive cannabis-like effects. This study aimed to investigate and compare in vitro and in vivo pharmacodynamic activity of JWH-175 with that of 1-naphthalenyl (1-pentyl-1H-indol-3-yl)-methanone (JWH-018), as well as evaluate the in vitro (human liver microsomes) and in vivo (urine and plasma of CD-1 male mice) metabolic profile of JWH-175. In vitro binding studies showed that JWH-175 is a cannabinoid receptor agonist less potent than JWH-018 on mouse and human CB1 and CB2 receptors. In agreement with in vitro data, JWH-175 reduced the fESPS in brain hippocampal slices of mice less effectively than JWH-018. Similarly, in vivo behavioral studies showed that JWH-175 impaired sensorimotor responses, reduced breath rate and motor activity, and increased pain threshold to mechanical stimuli less potently than JWH-018. Metabolic studies demonstrated that JWH-175 is rapidly bioactivated to JWH-018 in mice blood, suggesting that in vivo effects of JWH-175 are also due to JWH-018 formation. The pharmaco-toxicological profile of JWH-175 was characterized for the first time, proving its in vivo bio-activation to the more potent agonist JWH-018. Thus, it highlighted the great importance of investigating the in vivo metabolism of synthetic cannabinoids for both clinical toxicology and forensic purposes.
Collapse
Affiliation(s)
- Micaela Tirri
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Raffaella Arfè
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Sabrine Bilel
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Giorgia Corli
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Beatrice Marchetti
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Anna Fantinati
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Fabrizio Vincenzi
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Fabio De-Giorgio
- Section of Legal Medicine, Department of Health Care Surveillance and Bioetics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- A. Gemelli University Polyclinic Foundation IRCCS, 00168 Rome, Italy
| | - Cristian Camuto
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
| | - Monica Mazzarino
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
| | - Mario Barbieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Rosa Maria Gaudio
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
- University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Katia Varani
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Pier Andrea Borea
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Francesco Botrè
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
- Institute of Sport Science, University of Lausanne (ISSUL), Synathlon, CH-1015 Lausanne, Switzerland
| | - Matteo Marti
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
- University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 00186 Rome, Italy
- Correspondence:
| |
Collapse
|
15
|
Epigenetic Studies for Evaluation of NPS Toxicity: Focus on Synthetic Cannabinoids and Cathinones. Biomedicines 2022; 10:biomedicines10061398. [PMID: 35740419 PMCID: PMC9219842 DOI: 10.3390/biomedicines10061398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
In the recent decade, numerous new psychoactive substances (NPSs) have been added to the illicit drug market. These are synthetized to mimic the effects of classic drugs of abuse (i.e., cannabis, cocaine, etc.), with the purpose of bypassing substance legislations and increasing the pharmacotoxicological effects. To date, research into the acute pharmacological effects of new NPSs is ongoing and necessary in order to provide an appropriate contribution to public health. In fact, multiple examples of NPS-related acute intoxication and mortality have been recorded in the literature. Accordingly, several in vitro and in vivo studies have investigated the pharmacotoxicological profiles of these compounds, revealing that they can cause adverse effects involving various organ systems (i.e., cardiovascular, respiratory effects) and highlighting their potential increased consumption risks. In this sense, NPSs should be regarded as a complex issue that requires continuous monitoring. Moreover, knowledge of long-term NPS effects is lacking. Because genetic and environmental variables may impact NPS responses, epigenetics may aid in understanding the processes behind the harmful events induced by long-term NPS usage. Taken together, “pharmacoepigenomics” may provide a new field of combined study on genetic differences and epigenetic changes in drug reactions that might be predictive in forensic implications.
Collapse
|
16
|
Barbieri M, Tirri M, Bilel S, Arfè R, Corli G, Marchetti B, Caruso L, Soukupova M, Cristofori V, Serpelloni G, Marti M. Synthetic cannabinoid JWH-073 alters both acute behavior and in vivo/vitro electrophysiological responses in mice. Front Psychiatry 2022; 13:953909. [PMID: 36339851 PMCID: PMC9634257 DOI: 10.3389/fpsyt.2022.953909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022] Open
Abstract
JWH-073 is a synthetic cannabinoid (SCB) that is illegally marketed within an "herbal blend", causing psychoactive effects more intense than those produced by Cannabis. Users report that JWH-073 causes less harmful effects than other SCBs, misrepresenting it as a "safe JWH-018 alternative", which in turn prompts its recreational use. The present study is aimed to investigate the in vivo pharmacological activity on physiological and neurobehavioral parameters in male CD-1 mice after acute 1 mg/kg JWH-073 administration. To this aim we investigate its effect on sensorimotor (visual, acoustic, and tactile), motor (spontaneous motor activity and catalepsy), and memory functions (novel object recognition; NOR) in mice coupling behavioral and EEG data. Moreover, to clarify how memory function is affected by JWH-073, we performed in vitro electrophysiological studies in hippocampal preparations using a Long-Term Potentiation (LTP) stimulation paradigm. We demonstrated that acute administration of JWH-073 transiently decreased motor activity for up to 25 min and visual sensorimotor responses for up to 105 min, with the highest effects at 25 min (~48 and ~38%, respectively), while the memory function was altered up to 24 h (~33%) in treated-mice as compared to the vehicle. EEG in the somatosensory cortex showed a maximal decrease of α (~23%) and γ (~26%) bands at 15 min, β (~26%) band at 25 min, a maximal increase of θ (~14%) band at 25 min and δ (~35%) band at 2 h, and a significant decrease of θ (~18%), α (~26%), and β (~10%) bands during 24 h. On the other hand, EEG in the hippocampus showed a significant decrease of all bands from 10 min to 2 h, with the maximal effect at 30 min for θ (~34%) and γ (~26%) bands and 2 h for α (~36%), β (~29%), and δ (~15%) bands. Notably, the δ band significant increase both at 5 min (~12%) and 24 h (~19%). Moreover, in vitro results support cognitive function impairment (~60% of decrease) by interfering with hippocampal synaptic transmission and LTP generation. Our results suggest that JWH-073 deeply alters brain electrical responsiveness with minor behavioral symptoms. Thus, it poses a subtle threat to consumers who mistakenly consider it safer than other SCBs.
Collapse
Affiliation(s)
- Mario Barbieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Raffaella Arfè
- Department of Translational Medicine, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Beatrice Marchetti
- Department of Translational Medicine, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Lorenzo Caruso
- Department of Environment and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Marie Soukupova
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Virginia Cristofori
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Serpelloni
- Neuroscience Clinical Center and Transcranial Magnetic Stimulation (TMS) Unit, Verona, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy.,Department for Anti-Drug Policies, Collaborative Center of the National Early Warning System, Presidency of the Council of Ministers, Rome, Italy
| |
Collapse
|