1
|
Cousijn J, Toenders YJ, Kaag AM, Filbey F, Kroon E. The role of sex in the association between cannabis use disorder and resting-state functional connectivity. Neuropsychopharmacology 2025; 50:991-999. [PMID: 40102266 PMCID: PMC12032362 DOI: 10.1038/s41386-025-02078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/20/2025]
Abstract
While Cannabis use disorder (CUD) is twice as prevalent in males, females transition more quickly from heavy use to CUD and experience more severe withdrawal. These clinically relevant sex differences contrast the lack of knowledge about the underlying brain mechanisms. This study investigated the relationship between CUD and resting-state functional brain connectivity (RSFC), assessing potential sex differences herein. RSFC of the Salience Network (SN), Basal Ganglia Network (BGN), Executive Control Network (ECN), and Default Mode Network (DMN) was compared between 152 individuals (76 males) with CUD and 114 matched controls (47 males). Within the CUD group, relationships between RSFC and heaviness of cannabis use, age of onset, and CUD symptom severity, along with their associations with sex, were investigated. CUD and control groups showed similar RSFC across all networks, regardless of sex. In the CUD group, heavier cannabis use correlated with higher RSFC across all networks and earlier age of onset was related to higher RSFC in the anterior SN, BGN, left ECN, and dorsal DMN. These associations were similar for males and females. CUD severity was related to higher RSFC in the anterior SN, which was moderated by sex, with a positive association seen only in males. In conclusion, CUD may not necessarily be associated with altered RSFC. Individual use characteristics such age of onset and severity of use may determine the potential impact of cannabis use on RSFC in a largely similar way in males and females.
Collapse
Affiliation(s)
- Janna Cousijn
- Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| | - Yara J Toenders
- Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Anne Marije Kaag
- Department of Clinical, Neuro and Developmental Psychology, Faculty of Behavioral and Movement Sciences, Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Francesca Filbey
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Emese Kroon
- Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Lorenzetti V, McTavish E, Broyd S, van Hell H, Thomson D, Ganella E, Kottaram AR, Beale C, Martin J, Galettis P, Solowij N, Greenwood LM. Daily Cannabidiol Administration for 10 Weeks Modulates Hippocampal and Amygdalar Resting-State Functional Connectivity in Cannabis Users: A Functional Magnetic Resonance Imaging Open-Label Clinical Trial. Cannabis Cannabinoid Res 2024; 9:e1108-e1121. [PMID: 37603080 DOI: 10.1089/can.2022.0336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023] Open
Abstract
Introduction: Cannabis use is associated with brain functional changes in regions implicated in prominent neuroscientific theories of addiction. Emerging evidence suggests that cannabidiol (CBD) is neuroprotective and may reverse structural brain changes associated with prolonged heavy cannabis use. In this study, we examine how an ∼10-week exposure of CBD in cannabis users affected resting-state functional connectivity in brain regions functionally altered by cannabis use. Materials and Methods: Eighteen people who use cannabis took part in a ∼10 weeks open-label pragmatic trial of self-administered daily 200 mg CBD in capsules. They were not required to change their cannabis exposure patterns. Participants were assessed at baseline and post-CBD exposure with structural magnetic resonance imaging (MRI) and a functional MRI resting-state task (eyes closed). Seed-based connectivity analyses were run to examine changes in the functional connectivity of a priori regions-the hippocampus and the amygdala. We explored if connectivity changes were associated with cannabinoid exposure (i.e., cumulative cannabis dosage over trial, and plasma CBD concentrations and Δ9-tetrahydrocannabinol (THC) plasma metabolites postexposure), and mental health (i.e., severity of anxiety, depression, and positive psychotic symptom scores), accounting for cigarette exposure in the past month, alcohol standard drinks in the past month and cumulative CBD dose during the trial. Results: Functional connectivity significantly decreased pre-to-post the CBD trial between the anterior hippocampus and precentral gyrus, with a strong effect size (d=1.73). Functional connectivity increased between the amygdala and the lingual gyrus pre-to-post the CBD trial, with a strong effect size (d=1.19). There were no correlations with cannabinoids or mental health symptom scores. Discussion: Prolonged CBD exposure may restore/reduce functional connectivity differences reported in cannabis users. These new findings warrant replication in a larger sample, using robust methodologies-double-blind and placebo-controlled-and in the most vulnerable people who use cannabis, including those with more severe forms of Cannabis Use Disorder and experiencing worse mental health outcomes (e.g., psychosis, depression).
Collapse
Affiliation(s)
- Valentina Lorenzetti
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Center, School of Health and Behavioral Sciences, Australian Catholic University, Melbourne, Victoria, Australia
| | - Eugene McTavish
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Center, School of Health and Behavioral Sciences, Australian Catholic University, Melbourne, Victoria, Australia
| | - Samantha Broyd
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
- Illawarra Shoalhaven Local Health District, Wollongong, New South Wales, Australia
| | - Hendrika van Hell
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Diny Thomson
- Turner Institute for Brain and Mental Health, School of Psychological Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia
| | - Eleni Ganella
- Melbourne Neuropsychiatry Center, Department of Psychiatry, The University of Melbourne, Carlton South, Victoria, Australia
- Orygen, the National Center of Excellence in Youth Mental Health, Parkville, Victoria, Australia
| | - Akhil Raja Kottaram
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Center, School of Health and Behavioral Sciences, Australian Catholic University, Melbourne, Victoria, Australia
- Melbourne Neuropsychiatry Center, Department of Psychiatry, The University of Melbourne, Carlton South, Victoria, Australia
| | - Camilla Beale
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Jennifer Martin
- John Hunter Hospital, Newcastle, New South Wales, Australia
- Center for Drug Repurposing and Medicines Research, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
- The Australian Center for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, New South Wales, Australia
| | - Peter Galettis
- Center for Drug Repurposing and Medicines Research, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
- The Australian Center for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, New South Wales, Australia
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
- The Australian Center for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, New South Wales, Australia
| | - Lisa-Marie Greenwood
- The Australian Center for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, New South Wales, Australia
- Research School of Psychology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
3
|
Meza C, Stefan C, Staines WR, Feinstein A. The effects of cannabis abstinence on cognition and resting state network activity in people with multiple sclerosis: A preliminary study. Neuroimage Clin 2024; 43:103622. [PMID: 38815510 PMCID: PMC11166868 DOI: 10.1016/j.nicl.2024.103622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/01/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
We previously reported that people with multiple sclerosis (pwMS) who have been using cannabis frequently over many years can have significant cognitive improvements accompanied by concomitant task-specific changes in brain activation following 28 days of cannabis abstinence. We now hypothesize that the default Mode Network (DMN), known to modulate cognition, would also show an improved pattern of activation align with cognitive improvement following 28 days of drug abstinence. Thirty three cognitively impaired pwMS who were frequent cannabis users underwent a neuropsychological assessment and fMRI at baseline. Individuals were then assigned to a cannabis continuation (CC, n = 15) or withdrawal (CW, n = 18) group and the cognitive and imaging assessments were repeated after 28 days. Compliance with cannabis withdrawal was checked with regular urine monitoring. Following acquisition of resting state fMRI (rs-fMRI), data were processed using independent component analysis (ICA) to identify the DMN spatial map. Between and within group analyses were carried out using dual regression for voxel-wise comparisons of the DMN. Clusters of voxels were considered statistically significant if they survived threshold-free cluster enhancement (TFCE) correction at p < 0.05. The two groups were well matched demographically and neurologically at baseline. The dual regression analysis revealed no between group differences at baseline in the DMN. By day 28, the CW group in comparison to the CC group had increased activation in the left posterior cingulate, and right, angular gyrus (p < 0.05 for both, TFCE). A within group analysis for the CC group revealed no changes in resting state (RS) networks. Within group analysis of the CW group revealed increased activation at day 28 versus baseline in the left posterior cingulate, right angular gyrus, left hippocampus (BA 36), and the right medial prefrontal cortex (p < 0.05). The CW group showed significant improvements in multiple cognitive domains. In summary, our study revealed that abstaining from cannabis for 28 days reverses activation of DMN activity in pwMS in association with improved cognition across several domains.
Collapse
Affiliation(s)
- Cecilia Meza
- Sunnybrook Research Institute, Division of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Cristiana Stefan
- Clinical Laboratory and Diagnostic Services, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - W Richard Staines
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Anthony Feinstein
- Sunnybrook Research Institute, Division of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Ertl N, Lawn W, Mokrysz C, Freeman TP, Alnagger N, Borissova A, Fernandez-Vinson N, Lees R, Ofori S, Petrilli K, Trinci K, Viding E, Curran HV, Wall MB. Associations between regular cannabis use and brain resting-state functional connectivity in adolescents and adults. J Psychopharmacol 2023; 37:904-919. [PMID: 37515469 DOI: 10.1177/02698811231189441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
BACKGROUND/AIM Cannabis use is highly prevalent in adolescents; however, little is known about its effects on adolescent brain function. METHOD Resting-state functional magnetic resonance imaging was used in matched groups of regular cannabis users (N = 70, 35 adolescents: 16-17 years old, 35 adults: 26-29 years old) and non-regular-using controls (N = 70, 35 adolescents/35 adults). Pre-registered analyses examined the connectivity of seven major cortical and sub-cortical brain networks (default mode network, executive control network (ECN), salience network, hippocampal network and three striatal networks) using seed-based analysis methods with cross-sectional comparisons between user groups and age groups. RESULTS The regular cannabis use group (across both age groups), relative to controls, showed localised increases in connectivity only in the ECN analysis. All networks showed localised connectivity differences based on age group, with the adolescents generally showing weaker connectivity than adults, consistent with the developmental effects. Mean connectivity across entire network regions of interest (ROIs) was also significantly decreased in the ECN in adolescents. However, there were no significant interactions found between age group and user group in any of the seed-based or ROI analyses. There were also no associations found between cannabis use frequency and any of the derived connectivity measures. CONCLUSION Regular cannabis use is associated with changes in connectivity of the ECN, which may reflect allostatic or compensatory changes in response to regular cannabis intoxication. However, these associations were not significantly different in adolescents compared to adults.
Collapse
Affiliation(s)
- Natalie Ertl
- Invicro London, Hammersmith Hospital, London, UK
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Will Lawn
- Department of Psychology, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
- Department of Addictions, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Claire Mokrysz
- Clinical Psychopharmacology Unit, University College London, London, UK
| | - Tom P Freeman
- Clinical Psychopharmacology Unit, University College London, London, UK
- Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath, Bath, UK
| | - Naji Alnagger
- Clinical Psychopharmacology Unit, University College London, London, UK
| | - Anna Borissova
- Clinical Psychopharmacology Unit, University College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry Psychology and Neuroscience, King's College London, UK
| | | | - Rachel Lees
- Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath, Bath, UK
| | - Shelan Ofori
- Clinical Psychopharmacology Unit, University College London, London, UK
| | - Kat Petrilli
- Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath, Bath, UK
| | - Katie Trinci
- Clinical Psychopharmacology Unit, University College London, London, UK
| | - Essi Viding
- Clinical, Educational, and Health Psychology Research Department, University College London, London, UK
| | - H Valerie Curran
- Clinical Psychopharmacology Unit, University College London, London, UK
| | - Matthew B Wall
- Invicro London, Hammersmith Hospital, London, UK
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
- Clinical Psychopharmacology Unit, University College London, London, UK
| |
Collapse
|
5
|
Lorenzetti V, Gaillard A, Thomson D, Englund A, Freeman TP. Effects of cannabinoids on resting state functional brain connectivity: A systematic review. Neurosci Biobehav Rev 2023; 145:105014. [PMID: 36563921 DOI: 10.1016/j.neubiorev.2022.105014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Cannabis products are widely used for medical and non-medical reasons worldwide and vary in content of cannabinoids such as delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Resting state functional connectivity offers a powerful tool to investigate the effects of cannabinoids on the human brain. We systematically reviewed functional neuroimaging evidence of connectivity during acute cannabinoid administration. A pre-registered (PROSPERO ID: CRD42020184264) systematic review of 13 studies comprising 318 participants (mean age of 25 years) was conducted and reported using the PRISMA checklist. During THC and THCv exposure vs placebo reduced connectivity with the NAcc was widely reported. Limited evidence shows that such effects are offset by co-administration of CBD. NAcc-frontal region connectivity was associated with intoxication levels. Cannabis intoxication vs placebo was associated with lower striatal-ACC connectivity. CBD and CBDv vs placebo were associated with both higher and lower connectivity between striatal-prefrontal/other regions. Overall, cannabis and cannabinoids change functional connectivity in the human brain during resting state as a function of the type of cannabinoid examined.
Collapse
Affiliation(s)
- Valentina Lorenzetti
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Australia.
| | - Alexandra Gaillard
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Australia
| | - Diny Thomson
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Australia; Turner Institute for Brain and Mental Health, School of Psychological Science, Medicine, Nursing and Health Sciences, Monash University, Australia
| | - Amir Englund
- Addictions Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK
| | - Tom P Freeman
- Addiction and Mental Health Group, Department of Psychology, Faculty of Humanities and Social Sciences, University of Bath, UK
| |
Collapse
|
6
|
Peng W, Hao Q, Gao H, Wang Y, Wang J, Tu Y, Yu S, Li H, Zhu T. Functional Neural Alterations in Pathological Internet Use: A Meta-Analysis of Neuroimaging Studies. Front Neurol 2022; 13:841514. [PMID: 35518207 PMCID: PMC9062178 DOI: 10.3389/fneur.2022.841514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Previous resting-state functional MRI (fMRI) studies found spontaneous neural activity in the brains of Pathological Internet Use (PIU) subjects. However, the findings were inconsistent in studies using different neuroimaging analyses. This meta-analytic study aimed to identify a common pattern of altered brain activity from different studies. Resting-state fMRI studies, based on whole-brain analysis methods published before July 1, 2021, were searched in multiple databases (PubMed, EMBASE, MEDLINE, and Web of Science). A voxel-based signed differential mapping (SDM) method was used to clarify brain regions, which showed anomalous activity in PIU subjects compared with healthy controls (HCs). Ten eligible publications consisting of 306 PIU subjects and 314 HCs were included in the SDM meta-analysis. Compared with HCs, subjects with PIU showed increased spontaneous neural functional activity in the left temporal pole of the superior temporal cortex, left amygdala, bilateral median cingulate cortex, and right insula. Meanwhile, a decreased spontaneous neural activity was identified in the left dorsolateral superior frontal gyrus and right middle frontal gyrus in the subjects with PIU. These abnormal brain regions are associated with cognitive executive control and emotional regulation. The consistent changes under different functional brain imaging indicators found in our study may provide important targets for the future diagnosis and intervention of PIU. Systematic Review Registration:www.crd.york.ac.uk/PROSPERO, identifier: CRD42021258119.
Collapse
Affiliation(s)
- Wei Peng
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinghong Hao
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Heng Gao
- Medical Quality Control Department, Chengdu Seventh People's Hospital, Chengdu, China
| | - Yang Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Jun Wang
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Tu
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyi Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Li
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Tianmin Zhu
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|