1
|
Dourron HM, Strauss C, Hendricks PS. Self-Entropic Broadening Theory: Toward a New Understanding of Self and Behavior Change Informed by Psychedelics and Psychosis. Pharmacol Rev 2022; 74:982-1027. [PMID: 36113878 DOI: 10.1124/pharmrev.121.000514] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 03/21/2025] Open
Abstract
The extremes of human experiences, such as those occasioned by classic psychedelics and psychosis, provide a rich contrast for understanding how components of these experiences impact well-being. In recent years, research has suggested that classic psychedelics display the potential to promote positive enduring psychologic and behavioral changes in clinical and nonclinical populations. Paradoxically, classic psychedelics have been described as psychotomimetics. This review offers a putative solution to this paradox by providing a theory of how classic psychedelics often facilitate persistent increases in well-being, whereas psychosis leads down a "darker" path. This will be done by providing an overview of the overlap between the states (i.e., entropic processing) and their core differences (i.e., self-focus). In brief, entropic processing can be defined as an enhanced overall attentional scope and decreased predictability in processing stimuli facilitating a hyperassociative style of thinking. However, the outcomes of entropic states vary depending on level of self-focus, or the degree to which the associations and information being processed are evaluated in a self-referential manner. We also describe potential points of overlap with less extreme experiences, such as creative thinking and positive emotion-induction. Self-entropic broadening theory offers a heuristically valuable perspective on classic psychedelics and their lasting effects and relation to other states by creating a novel synthesis of contemporary theories in psychology. SIGNIFICANCE STATEMENT: Self-entropic broadening theory provides a novel theory examining the psychedelic-psychotomimetic paradox, or how classic psychedelics can be therapeutic, yet mimic symptoms of psychosis. It also posits a framework for understanding the transdiagnostic applicability of classic psychedelics. We hope this model invigorates the field to provide more rigorous comparisons between classic psychedelic-induced states and psychosis and further examinations of how classic psychedelics facilitate long-term change. As a more psychedelic future of psychiatry appears imminent, a model that addresses these long-standing questions is crucial.
Collapse
Affiliation(s)
- Haley Maria Dourron
- Drug Use & Behavior Laboratory, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama (H.M.D., P.S.H.) and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey (C.S.)
| | - Camilla Strauss
- Drug Use & Behavior Laboratory, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama (H.M.D., P.S.H.) and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey (C.S.)
| | - Peter S Hendricks
- Drug Use & Behavior Laboratory, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama (H.M.D., P.S.H.) and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey (C.S.)
| |
Collapse
|
2
|
Wainio-Theberge S, Wolff A, Gomez-Pilar J, Zhang J, Northoff G. Variability and task-responsiveness of electrophysiological dynamics: scale-free stability and oscillatory flexibility. Neuroimage 2022; 256:119245. [PMID: 35477021 DOI: 10.1016/j.neuroimage.2022.119245] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
Cortical oscillations and scale-free neural activity are thought to influence a variety of cognitive functions, but their differential relationships to neural stability and flexibility has never been investigated. Based on the existing literature, we hypothesize that scale-free and oscillatory processes in the brain exhibit different trade-offs between stability and flexibility; specifically, cortical oscillations may reflect variable, task-responsive aspects of brain activity, while scale-free activity is proposed to reflect a more stable and task-unresponsive aspect. We test this hypothesis using data from two large-scale MEG studies (HCP: n = 89; CamCAN: n = 195), operationalizing stability and flexibility by task-responsiveness and spontaneous intra-subject variability in resting state. We demonstrate that the power-law exponent of scale-free activity is a highly stable parameter, which responds little to external cognitive demands and shows minimal spontaneous fluctuations over time. In contrast, oscillatory power, particularly in the alpha range (8-13 Hz), responds strongly to tasks and exhibits comparatively large spontaneous fluctuations over time. In sum, our data support differential roles for oscillatory and scale-free activity in the brain with respect to neural stability and flexibility. This result carries implications for criticality-based theories of scale-free activity, state-trait models of variability, and homeostatic views of the brain with regulated variables vs. effectors.
Collapse
Affiliation(s)
- Soren Wainio-Theberge
- Mind, Brain Imaging, and Neuroethics Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre, University of Ottawa, 1145 Carling Avenue, Rm. 6435, Ottawa, ON K1Z 7K4, Canada; Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada.
| | - Annemarie Wolff
- Mind, Brain Imaging, and Neuroethics Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre, University of Ottawa, 1145 Carling Avenue, Rm. 6435, Ottawa, ON K1Z 7K4, Canada
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, Valladolid 47011, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Valladolid, Spain
| | - Jianfeng Zhang
- Mental Health Centre/7th Hospital, Zhejiang University School of Medicine, Tianmu Road 305, Hangzhou, Zhejiang 310013, China; College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, China
| | - Georg Northoff
- Mind, Brain Imaging, and Neuroethics Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre, University of Ottawa, 1145 Carling Avenue, Rm. 6435, Ottawa, ON K1Z 7K4, Canada; Mental Health Centre/7th Hospital, Zhejiang University School of Medicine, Tianmu Road 305, Hangzhou, Zhejiang 310013, China; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|