1
|
Zong W, Zhou J, Gardner MPH, Zhang Z, Costa KM, Schoenbaum G. Hippocampal output suppresses orbitofrontal cortex schema cell formation. Nat Neurosci 2025; 28:1048-1060. [PMID: 40229506 DOI: 10.1038/s41593-025-01928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
Both the orbitofrontal cortex (OFC) and the hippocampus (HC) are implicated in the formation of cognitive maps and their generalization into schemas. However, how these areas interact in supporting this function remains unclear, with some proposals supporting a serial model in which the OFC draws on task representations created by the HC to extract key behavioral features and others suggesting a parallel model in which both regions construct representations that highlight different types of information. In the present study, we tested between these two models by asking how schema correlates in rat OFC would be affected by inactivating the output of the HC, after learning and during transfer across problems. We found that the prevalence and content of schema correlates were unaffected by inactivating one major HC output area, the ventral subiculum, after learning, whereas inactivation during transfer accelerated their formation. These results favor the proposal that the OFC and HC operate in parallel to extract different features defining cognitive maps and schemas.
Collapse
Affiliation(s)
- Wenhui Zong
- Intramural Research Program of the National Institute on Drug Abuse, Baltimore, MD, USA.
| | - Jingfeng Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University & Chinese Institute of Brain Research, Beijing, China
| | | | - Zhewei Zhang
- Intramural Research Program of the National Institute on Drug Abuse, Baltimore, MD, USA
| | | | - Geoffrey Schoenbaum
- Intramural Research Program of the National Institute on Drug Abuse, Baltimore, MD, USA.
| |
Collapse
|
2
|
Elston TW, Wallis JD. Context-dependent decision-making in the primate hippocampal-prefrontal circuit. Nat Neurosci 2025; 28:374-382. [PMID: 39762657 PMCID: PMC11802454 DOI: 10.1038/s41593-024-01839-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 10/24/2024] [Indexed: 02/08/2025]
Abstract
What is good in one scenario may be bad in another. Despite the ubiquity of such contextual reasoning in everyday choice, how the brain flexibly uses different valuation schemes across contexts remains unknown. We addressed this question by monitoring neural activity from the hippocampus (HPC) and orbitofrontal cortex (OFC) of two monkeys performing a state-dependent choice task. We found that HPC neurons encoded state information as it became available and then, at the time of choice, relayed this information to the OFC via theta synchronization. During choice, the OFC represented value in a state-dependent manner; many OFC neurons uniquely coded for value in only one state but not the other. This suggests a functional dissociation whereby the HPC encodes contextual information that is broadcast to the OFC via theta synchronization to select a state-appropriate value subcircuit, thereby allowing for contextual reasoning in value-based choice.
Collapse
Affiliation(s)
- Thomas W Elston
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA.
- Department of Neuroscience, University of Texas at Austin, Austin, TX, USA.
| | - Joni D Wallis
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
3
|
Peterson S, Chavira J, Garcia Arango JA, Seamans D, Cimino ED, Keiflin R. Partially dissociable roles of the orbitofrontal cortex and dorsal hippocampus in context-dependent hierarchical associations. Curr Biol 2024; 34:5532-5545.e3. [PMID: 39571579 DOI: 10.1016/j.cub.2024.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024]
Abstract
Reward cues are often ambiguous; what is good in one context is not necessarily good in another. To solve this ambiguity, animals form hierarchical associations in which the context gates the retrieval of appropriate cue-evoked memories. These hierarchical associations regulate cue-elicited behavior and influence subsequent learning, promoting the inference of context-dependency. The orbitofrontal cortex (OFC) and dorsal hippocampus (DH) are both proposed to encode a "cognitive map" encompassing hierarchical, context-dependent associations. However, OFC- and DH-specific contributions to the different functional properties of hierarchical associations remain controversial. Using chemogenetic inactivation in rats, we show that the OFC is essential to both properties of hierarchical associations (performance regulation and learning bias). In contrast, DH's role appears limited to the contextual learning bias conferred by hierarchical associations. This work establishes the OFC as a critical orchestrator of hierarchical associations and provides insights into the extended circuits mediating the functional properties of these associations.
Collapse
Affiliation(s)
- Sophie Peterson
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jose Chavira
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jesus Alejandro Garcia Arango
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - David Seamans
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Emma D Cimino
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ronald Keiflin
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
4
|
Ottenheimer DJ, Vitale KR, Ambroggi F, Janak PH, Saunders BT. Orbitofrontal Cortex Mediates Sustained Basolateral Amygdala Encoding of Cued Reward-Seeking States. J Neurosci 2024; 44:e0013242024. [PMID: 39353730 PMCID: PMC11561866 DOI: 10.1523/jneurosci.0013-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024] Open
Abstract
Basolateral amygdala (BLA) neurons are engaged by emotionally salient stimuli. An area of increasing interest is how BLA dynamics relate to evolving reward-seeking behavior, especially under situations of uncertainty or ambiguity. Here, we recorded the activity of individual BLA neurons in male rats across the acquisition and extinction of conditioned reward seeking. We assessed ongoing neural dynamics in a task where long reward cue presentations preceded an unpredictable, variably time reward delivery. We found that, with training, BLA neurons discriminated the CS+ and CS- cues with sustained cue-evoked activity that correlated with behavior and terminated only after reward receipt. BLA neurons were bidirectionally modulated, with a majority showing prolonged inhibition during cued reward seeking. Strikingly, population-level analyses revealed that neurons showing cue-evoked inhibitions and those showing excitations similarly represented the CS+ and behavioral state. This sustained population code rapidly extinguished in parallel with conditioned behavior. We next assessed the contribution of the orbitofrontal cortex (OFC), a major reciprocal partner to the BLA. Inactivation of the OFC while simultaneously recording in the BLA revealed a blunting of sustained cue-evoked activity in the BLA that accompanied reduced reward seeking. Optogenetic disruption of BLA activity and OFC terminals in the BLA also reduced reward seeking. Our data indicate that the BLA represents reward-seeking states via sustained, bidirectional cue-driven neural encoding. This code is regulated by cortical input and is important for the maintenance of vigilant reward-seeking behavior.
Collapse
Affiliation(s)
- David J Ottenheimer
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland 21218
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington 98195
| | - Katherine R Vitale
- Neuroscience Graduate Program, University of California at San Francisco, San Francisco, California 94143
| | - Frederic Ambroggi
- Institut de Neurosciences de la Timone, Aix-Marseille Universite, CNRS, INT, Marseille 13005, France
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland 21218
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| | - Benjamin T Saunders
- Department of Neuroscience, University of Minnesota, Minnesota, Minneapolis 55455
- Medical Discovery Team on Addiction, University of Minnesota, Minnesota, Minneapolis 55455
| |
Collapse
|
5
|
Peart DR, Nolan CJ, Stone AP, Williams MA, Karlovcec JM, Murray JE. Disruption of positive- and negative-feature morphine interoceptive occasion setters by dopamine receptor agonism and antagonism in male and female rats. Psychopharmacology (Berl) 2024; 241:1597-1615. [PMID: 38580732 DOI: 10.1007/s00213-024-06584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
RATIONALE Internally perceived stimuli evoked by morphine administration can form Pavlovian associations such that they can function as occasion setters (OSs) for externally perceived reward cues in rats, coming to modulate reward-seeking behaviour. Though much research has investigated mechanisms underlying opioid-related reinforcement and analgesia, neurotransmitter systems involved in the functioning of opioids as Pavlovian interoceptive discriminative stimuli remain to be disentangled despite documented differences in the development of tolerance to analgesic versus discriminative stimulus effects. OBJECTIVES Dopamine has been implicated in many opioid-related behaviours, so we aimed to investigate the role of this neurotransmitter in expression of morphine occasion setting. METHODS Male and female rats were assigned to positive- (FP) or negative-feature (FN) groups and received an injection of morphine or saline before each training session. A 15-s white noise conditioned stimulus (CS) was presented 8 times during every training session; offset of this stimulus was followed by 4-s access to liquid sucrose on morphine, but not saline, sessions for FP rats. FN rats learned the reverse contingency. Following stable discrimination, rats began generalization testing for expression of morphine-guided sucrose seeking after systemic pretreatment with different doses of the non-selective dopamine receptor antagonist, flupenthixol, and the non-selective dopamine receptor agonist, apomorphine, combined with training doses of morphine or saline in a Latin-square design. RESULTS The morphine discrimination was acquired under both FP and FN contingencies by males and females. Neither flupenthixol nor apomorphine at any dose substituted for morphine, but both apomorphine and flupenthixol disrupted expression of the morphine OS. This inhibition was specific to sucrose seeking during CS presentations rather than during the period before CS onset and, in the case of apomorphine more so than flupenthixol, to trials on which access to sucrose was anticipated. CONCLUSIONS Our findings lend support to a mechanism of occasion setting involving gating of CS-induced dopamine release rather than by direct dopaminergic modulation by the morphine stimulus.
Collapse
Affiliation(s)
- Davin R Peart
- Department of Psychology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Collaborative Neurosciences Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Caitlin J Nolan
- Collaborative Neurosciences Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Adiia P Stone
- Department of Psychology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Collaborative Neurosciences Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Mckenna A Williams
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Jessica M Karlovcec
- Department of Psychology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Collaborative Neurosciences Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Jennifer E Murray
- Department of Psychology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
- Collaborative Neurosciences Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
6
|
Peterson S, Maheras A, Wu B, Chavira J, Keiflin R. Sex differences in discrimination behavior and orbitofrontal engagement during context-gated reward prediction. eLife 2024; 12:RP93509. [PMID: 39046898 PMCID: PMC11268887 DOI: 10.7554/elife.93509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Animals, including humans, rely on contextual information to interpret ambiguous stimuli. Impaired context processing is a hallmark of several neuropsychiatric disorders, including schizophrenia, autism spectrum disorders, post-traumatic stress disorder, and addiction. While sex differences in the prevalence and manifestations of these disorders are well established, potential sex differences in context processing remain uncertain. Here, we examined sex differences in the contextual control over cue-evoked reward seeking and its neural correlates, in rats. Male and female rats were trained in a bidirectional occasion-setting preparation in which the validity of two auditory reward-predictive cues was informed by the presence, or absence, of a visual contextual feature (LIGHT: X+/DARK: X-/LIGHT: Y-/DARK: Y+). Females were significantly slower to acquire contextual control over cue-evoked reward seeking. However, once established, the contextual control over behavior was more robust in female rats; it showed less within-session variability (less influence of prior reward) and greater resistance to acute stress. This superior contextual control achieved by females was accompanied by an increased activation of the orbitofrontal cortex (OFC) compared to males. Critically, these behavioral and neural sex differences were specific to the contextual modulation process and not observed in simple, context-independent, reward prediction tasks. These results indicate a sex-biased trade-off between the speed of acquisition and the robustness of performance in the contextual modulation of cued reward seeking. The different distribution of sexes along the fast learning ↔ steady performance continuum might reflect different levels of engagement of the OFC, and might have implications for our understanding of sex differences in psychiatric disorders.
Collapse
Affiliation(s)
- Sophie Peterson
- Department of Psychological & Brain Sciences, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Amanda Maheras
- Department of Molecular, Cellular & Developmental Biology, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Brenda Wu
- Department of Psychological & Brain Sciences, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Jose Chavira
- Department of Psychological & Brain Sciences, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Ronald Keiflin
- Department of Psychological & Brain Sciences, University of California, Santa BarbaraSanta BarbaraUnited States
- Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
7
|
Ottenheimer DJ, Vitale KR, Ambroggi F, Janak PH, Saunders BT. Basolateral amygdala population coding of a cued reward seeking state depends on orbitofrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.31.573789. [PMID: 38260546 PMCID: PMC10802313 DOI: 10.1101/2023.12.31.573789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Basolateral amygdala (BLA) neuronal responses to conditioned stimuli are closely linked to the expression of conditioned behavior. An area of increasing interest is how the dynamics of BLA neurons relate to evolving behavior. Here, we recorded the activity of individual BLA neurons across the acquisition and extinction of conditioned reward seeking and employed population-level analyses to assess ongoing neural dynamics. We found that, with training, sustained cue-evoked activity emerged that discriminated between the CS+ and CS- and correlated with conditioned responding. This sustained population activity continued until reward receipt and rapidly extinguished along with conditioned behavior during extinction. To assess the contribution of orbitofrontal cortex (OFC), a major reciprocal partner to BLA, to this component of BLA neural activity, we inactivated OFC while recording in BLA and found blunted sustained cue-evoked activity in BLA that accompanied reduced reward seeking. Optogenetic disruption of BLA activity and OFC terminals in BLA also reduced reward seeking. Our data suggest that sustained cue-driven activity in BLA, which in part depends on OFC input, underlies conditioned reward-seeking states.
Collapse
Affiliation(s)
- David J Ottenheimer
- Department of Psychological and Brain Sciences, Johns Hopkins University
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington
| | | | - Frederic Ambroggi
- Institut de Neurosciences de la Timone, Aix-Marseilles Universite, CNRS, INT
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Johns Hopkins University
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University
| | - Benjamin T Saunders
- Department of Neuroscience, University of Minnesota
- Medical Discovery Team on Addiction, University of Minnesota
| |
Collapse
|
8
|
Fraser KM, Collins VL, Wolff AR, Ottenheimer DJ, Bornhoft KN, Pat F, Chen BJ, Janak PH, Saunders BT. Contexts facilitate dynamic value encoding in the mesolimbic dopamine system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.05.565687. [PMID: 37961363 PMCID: PMC10635154 DOI: 10.1101/2023.11.05.565687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Adaptive behavior in a dynamic environment often requires rapid revaluation of stimuli that deviates from well-learned associations. The divergence between stable value-encoding and appropriate behavioral output remains a critical test to theories of dopamine's function in learning, motivation, and motor control. Yet how dopamine neurons are involved in the revaluation of cues when the world changes to alter our behavior remains unclear. Here we make use of pharmacology, in vivo electrophysiology, fiber photometry, and optogenetics to resolve the contributions of the mesolimbic dopamine system to the dynamic reorganization of reward-seeking. Male and female rats were trained to discriminate when a conditioned stimulus would be followed by sucrose reward by exploiting the prior, non-overlapping presentation of a separate discrete cue - an occasion setter. Only when the occasion setter's presentation preceded the conditioned stimulus did the conditioned stimulus predict sucrose delivery. As a result, in this task we were able to dissociate the average value of the conditioned stimulus from its immediate expected value on a trial-to-trial basis. Both the activity of ventral tegmental area dopamine neurons and dopamine signaling in the nucleus accumbens were essential for rats to successfully update behavioral responding in response to the occasion setter. Moreover, dopamine release in the nucleus accumbens following the conditioned stimulus only occurred when the occasion setter indicated it would predict reward. Downstream of dopamine release, we found that single neurons in the nucleus accumbens dynamically tracked the value of the conditioned stimulus. Together these results reveal a novel mechanism within the mesolimbic dopamine system for the rapid revaluation of motivation.
Collapse
Affiliation(s)
- Kurt M Fraser
- Department of Psychological and Brain Sciences, Johns Hopkins University
| | | | - Amy R Wolff
- Department of Neuroscience, University of Minnesota
| | | | | | - Fiona Pat
- Department of Psychological and Brain Sciences, Johns Hopkins University
| | - Bridget J Chen
- Department of Psychological and Brain Sciences, Johns Hopkins University
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Johns Hopkins University
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University
| | - Benjamin T Saunders
- Department of Neuroscience, University of Minnesota
- Medical Discovery Team on Addiction, University of Minnesota
| |
Collapse
|