1
|
Faingold CL. Lethal Interactions of neuronal networks in epilepsy mediated by both synaptic and volume transmission indicate approaches to prevention. Prog Neurobiol 2025; 249:102770. [PMID: 40258456 PMCID: PMC12103271 DOI: 10.1016/j.pneurobio.2025.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/24/2025] [Accepted: 04/17/2025] [Indexed: 04/23/2025]
Abstract
Neuronal network interactions are important in normal brain physiology and also in brain disorders. Many mesoscopic networks, including the auditory and respiratory network, mediate a single brain function. Macroscopic networks, including the locomotor network, central autonomic network (CAN), and many seizure networks involve interactions among multiple mesoscopic networks. Network interactions are mediated by neuroactive substances, acting via synaptic transmission, which mediate rapid interactions between networks. Slower, but vitally important network interactions, are mediated by volume transmission. Changes in the interactions between networks, mediated by neuroactive substances, can significantly alter network function and interactions. The acoustic startle response involves interactions between auditory and locomotor networks, and also includes brainstem reticular formation (BRF) nuclei, which participate in many different networks. In the fear-potentiated startle paradigm this network interacts positively with the amygdala, induced by conditioning. Seizure networks can interact negatively with the respiratory network, which becomes lethal in sudden unexpected death in epilepsy (SUDEP), a tragic emergent property of the seizure network. SUDEP models that exhibit audiogenic seizures (AGSz) involve interactions between the auditory and locomotor networks with BRF nuclei. In the DBA/1 mouse SUDEP model the AGSz network interacts negatively with the respiratory network, resulting in postictal apnea. The apnea is lethal unless the CAN is able to initiate autoresuscitation. These network interactions involve synaptic transmission, mediated by GABA and glutamate and volume transmission mediated by adenosine, CO2 and serotonin. Altering these interaction mechanisms may prevent SUDEP. These epilepsy network interactions illustrate the complex mechanisms that can occur among neuronal networks.
Collapse
Affiliation(s)
- Carl L Faingold
- Departments of Pharmacology and Neurology, Southern Illinois University, School of Medicine, Springfield, IL 62701 USA, United States.
| |
Collapse
|
2
|
Debs SR, Conn I, Navaneethan B, Penklis AG, Meyer U, Killcross S, Weickert CS, Purves-Tyson TD. Maternal immune activation and estrogen receptor modulation induce sex-specific dopamine-related behavioural and molecular alterations in adult rat offspring. Brain Behav Immun 2024; 118:236-251. [PMID: 38431238 DOI: 10.1016/j.bbi.2024.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/08/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
Dopamine dysregulation contributes to psychosis and cognitive deficits in schizophrenia that can be modelled in rodents by inducing maternal immune activation (MIA). The selective estrogen receptor (ER) modulator, raloxifene, can improve psychosis and cognition in men and women with schizophrenia. However, few studies have examined how raloxifene may exert its therapeutic effects in mammalian brain in both sexes during young adulthood (age relevant to most prevalent age at diagnosis). Here, we tested the extent to which raloxifene alters dopamine-related behaviours and brain transcripts in young adult rats, both control and MIA-exposed females and males. We found that raloxifene increased amphetamine (AMPH)-induced locomotor activity in female controls, and in contrast, raloxifene reduced AMPH-induced locomotor activity in male MIA offspring. We did not detect overt prepulse inhibition (PPI) deficits in female or male MIA offspring, yet raloxifene enhanced PPI in male MIA offspring. Whereas, raloxifene ameliorated increased startle responsivity in female MIA offspring. In the substantia nigra (SN), we found reduced Drd2s mRNA in raloxifene-treated female offspring with or without MIA, and increased Comt mRNA in placebo-treated male MIA offspring relative to placebo-treated controls. These data demonstrate an underlying dopamine dysregulation in MIA animals that can become more apparent with raloxifene treatment, and may involve selective alterations in dopamine receptor levels and dopamine breakdown processes in the SN. Our findings support sex-specific, differential behavioural responses to ER modulation in MIA compared to control offspring, with beneficial effects of raloxifene treatment on dopamine-related behaviours relevant to schizophrenia found in male MIA offspring only.
Collapse
Affiliation(s)
- Sophie R Debs
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia; Discipline of Psychiatry & Mental Health, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Illya Conn
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia
| | - Brendan Navaneethan
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia
| | - Andriane G Penklis
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland; Switzerland Neuroscience Centre Zürich, Zürich, Switzerland
| | - Simon Killcross
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia; Discipline of Psychiatry & Mental Health, Faculty of Medicine, University of New South Wales, Sydney, Australia; Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, USA
| | - Tertia D Purves-Tyson
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia; Discipline of Psychiatry & Mental Health, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
3
|
Jiang T, Wang J, Wang Y, Jiang J, Zhou J, Wang X, Zhang D, Xu J. Mitochondrial protein prohibitin promotes learning memory recovery in mice following intracerebral hemorrhage via CAMKII/CRMP signaling pathway. Neurochem Int 2023; 171:105637. [PMID: 37923298 DOI: 10.1016/j.neuint.2023.105637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Prohibitin (PHB) is a mitochondrial inner membrane protein with neuroprotective, antioxidant, and apoptosis-reducing effects. This study aimed to explore the role of PHB in pathological symptoms, behavioral deficits, and cognitive impairment in a collagenase-IV-induced intracerebral hemorrhage (ICH) murine model. In this study, mice that received collagenase IV injection were pretreated with PHB or saline 21 days prior to modeling. The role of PHB in memory and learning ability was monitored using the Morris water maze, Y-maze, and rotarod, social, startle, and nest-building tests. The effect of PHB on depression-like symptoms was examined using the forced swimming, tail suspension, and sucrose preference tests. Subsequently, mouse samples were analyzed using immunohistochemistry, western blotting, Perls staining, Nissl staining, and gene sequencing. Results showed that collagenase IV significantly induced behavioral deficits, brain edema, cognitive impairment, and depressive symptoms. PHB overexpression effectively alleviated memory, learning, and motor deficits in mice with ICH. PHB markedly inhibited the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling-positive cells and protein levels of ionized calcium-binding adapter molecule 1, glial fibrillary acidic protein, and interleukin-1β in the perihematomal region of ICH mice. PHB overexpression also remarkably promoted production of neurologin1 (NLGL1), and upregulated levels of Ca2+-calmodulin-dependent kinase II (CaMKII) and collapsin response mediator protein-1 (CRMP1) proteins. In conclusion, PHB overexpression can effectively alleviate the neurological deficits and neurodegeneration around the hematoma region. This may play a protective role by upregulating the expression of NLGL1 and promoting expression of CaMKII and CRMP1.
Collapse
Affiliation(s)
- Tianlin Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Jiahua Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Department of Anesthesia, Affiliated Hospital of Yangzhou University, Yangzhou, 225001, China
| | - Yanli Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiwei Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiawei Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, YangZhou, 225001, China
| | - Xiaohong Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, YangZhou, 225001, China.
| | - Deke Zhang
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Lixia district, Jinan City, Shandong Province, China.
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Zhao H, Zhou M, Liu Y, Jiang J, Wang Y. Recent advances in anxiety disorders: Focus on animal models and pathological mechanisms. Animal Model Exp Med 2023; 6:559-572. [PMID: 38013621 PMCID: PMC10757213 DOI: 10.1002/ame2.12360] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/09/2023] [Indexed: 11/29/2023] Open
Abstract
Anxiety disorders have become one of the most severe psychiatric disorders, and the incidence is increasing every year. They impose an extraordinary personal and socioeconomic burden. Anxiety disorders are influenced by multiple complex and interacting genetic, psychological, social, and environmental factors, which contribute to disruption or imbalance in homeostasis and eventually cause pathologic anxiety. The selection of a suitable animal model is important for the exploration of disease etiology and pathophysiology, and the development of new drugs. Therefore, a more comprehensive understanding of the advantages and limitations of existing animal models of anxiety disorders is helpful to further study the underlying pathological mechanisms of the disease. This review summarizes animal models and the pathogenesis of anxiety disorders, and discusses the current research status to provide insights for further study of anxiety disorders.
Collapse
Affiliation(s)
- Hongqing Zhao
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| | - Mi Zhou
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| | - Yang Liu
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| | - Jiaqi Jiang
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| | - Yuhong Wang
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| |
Collapse
|
5
|
Robinson E, Bangasser DA. Innovating translational models of affective disorders. Psychopharmacology (Berl) 2023; 240:2217-2220. [PMID: 37843593 DOI: 10.1007/s00213-023-06472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Affiliation(s)
- Emma Robinson
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK.
| | - Debra A Bangasser
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| |
Collapse
|