1
|
Bhattacharyya S, Ghosh S, Wategaonkar S. O-H stretching frequency red shifts do not correlate with the dissociation energies in the dimethylether and dimethylsulfide complexes of phenol derivatives. Phys Chem Chem Phys 2021; 23:5718-5739. [PMID: 33662068 DOI: 10.1039/d0cp01589j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this perspective, we present a comprehensive report on the spectroscopic and computational investigations of the hydrogen bonded (H-bonded) complexes of Me2O and Me2S with seven para-substituted H-bond donor phenols. The salient finding was that although the dissociation energies, D0, of the Me2O complexes were consistently higher than those of the analogous Me2S complexes, the red-shifts in phenolic O-H frequencies, Δν(O-H), showed the exactly opposite trend. This is in contravention of the general perception that the red shift in the X-H stretching frequency in the X-HY hydrogen bonded complexes is a reliable indicator of H-bond strength (D0), a concept popularly known as the Badger-Bauer rule. This is also in contrast to the trend reported for the H-bonded complexes of H2S/H2O with several para substituted phenols of different pKa values wherein the oxygen centered hydrogen bonded (OCHB) complexes consistently showed higher Δν(O-H) and D0 compared to those of the analogous sulfur centered hydrogen bonded (SCHB) complexes. Our effort was to understand these intriguing observations based on the spectroscopic investigations of 1 : 1 complexes in combination with a variety of high level quantum chemical calculations. Ab initio calculations at the MP2 level and the DFT calculations using various dispersion corrected density functionals (including DFT-D3) were performed on counterpoise corrected surfaces to compute the dissociation energy, D0, of the H-bonded complexes. The importance of anharmonic frequency computations is underscored as they were able to correctly reproduce the observed trend in the relative OH frequency shifts unlike the harmonic frequency computations. We have attempted to find a unified correlation that would globally fit the observed red shifts in the O-H frequency with the H-bonding strength for the four bases, namely, H2S, H2O, Me2O, and Me2S, in this set of H-bond donors. It was found that the proton affinity normalized Δν(O-H) values scale very well with the H-bond strength.
Collapse
Affiliation(s)
- Surjendu Bhattacharyya
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India.
| | - Sanat Ghosh
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India.
| | - Sanjay Wategaonkar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India.
| |
Collapse
|
2
|
Abstract
The heavier chalcogen atoms S, Se, and Te can each participate in a range of different noncovalent interactions. They can serve as both proton donor and acceptor in H-bonds. Each atom can also act as electron acceptor in a chalcogen bond.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA
| |
Collapse
|
3
|
Internal rotation and intramolecular hydrogen bonding in thiosalicylamide: gas phase electron diffraction study supported by quantum chemical calculations. Struct Chem 2019. [DOI: 10.1007/s11224-019-01369-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
Structural, intramolecular hydrogen bonding and vibrational studies on 3-amino-4-methoxy benzamide using density functional theory. J CHEM SCI 2017. [DOI: 10.1007/s12039-017-1227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Equilibrium molecular structure of benzamide from gas-phase electron diffraction and theoretical calculations. Struct Chem 2015. [DOI: 10.1007/s11224-015-0592-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Błaziak K, Panek JJ, Jezierska A. Molecular reorganization of selected quinoline derivatives in the ground and excited states—Investigations via static DFT. J Chem Phys 2015. [PMID: 26203021 DOI: 10.1063/1.4926649] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Quinoline derivatives are interesting objects to study internal reorganizations due to the observed excited-state-induced intramolecular proton transfer (ESIPT). Here, we report on computations for selected 12 quinoline derivatives possessing three kinds of intramolecular hydrogen bonds. Density functional theory was employed for the current investigations. The metric and electronic structure simulations were performed for the ground state and first excited singlet and triplet states. The computed potential energy profiles do not show a spontaneous proton transfer in the ground state, whereas excited states exhibit this phenomenon. Atoms in Molecules (AIM) theory was applied to study the nature of hydrogen bonding, whereas Harmonic Oscillator Model of aromaticity index (HOMA) provided data of aromaticity evolution as a derivative of the bridge proton position. The AIM-based topological analysis confirmed the presence of the intramolecular hydrogen bonding. In addition, using the theory, we were able to provide a quantitative illustration of bonding transformation: from covalent to the hydrogen. On the basis of HOMA analysis, we showed that the aromaticity of both rings is dependent on the location of the bridge proton. Further, the computed results were compared with experimental data available. Finally, ESIPT occurrence was compared for the three investigated kinds of hydrogen bridges, and competition between two bridges in one molecule was studied.
Collapse
Affiliation(s)
- Kacper Błaziak
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Jarosław J Panek
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Aneta Jezierska
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
7
|
Jezierska A, Panek JJ. “Zwitterionic Proton Sponge” Hydrogen Bonding Investigations on the Basis of Car–Parrinello Molecular Dynamics. J Chem Inf Model 2015; 55:1148-57. [DOI: 10.1021/ci500560g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Aneta Jezierska
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Jarosław J. Panek
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
8
|
Biswal HS, Bhattacharyya S, Bhattacherjee A, Wategaonkar S. Nature and strength of sulfur-centred hydrogen bonds: laser spectroscopic investigations in the gas phase and quantum-chemical calculations. INT REV PHYS CHEM 2015. [DOI: 10.1080/0144235x.2015.1022946] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Jezierska A. N-H⋯O versus O-H⋯O: density functional calculation and first principle molecular dynamics study on a quinoline-2-carboxamide N-oxide. J Mol Model 2015; 21:47. [PMID: 25690363 PMCID: PMC4333232 DOI: 10.1007/s00894-015-2587-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/19/2015] [Indexed: 11/26/2022]
Abstract
N-oxide-type compounds are the object of current research interest due to the presence of resonance-assisted N–H⋯O hydrogen bonds. Here, the metric and spectroscopic parameters of N-methyl-quinoline-2-carboxamide 1-oxide were computed on the basis of density functional theory and Car-Parrinello molecular dynamics. Computations were performed in vacuo and in solid state; for both phases additional simulations with Grimme’s dispersion correction were carried out. The approaches used were able to reproduce correctly the structural aspects of the studied compound and shed more light on the hydrogen bonding with special focus on bridge proton mobility. Proton transfer phenomena were found not to occur in the investigated compound, and the bridge proton was localized to the donor site. This observation is in agreement with the classical theory of the acidity of donor–acceptor sites. The presence of hydrogen bonding was confirmed using atoms-in-molecules theory. The computational results were compared with available experimental data.
Collapse
Affiliation(s)
- Aneta Jezierska
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland,
| |
Collapse
|
10
|
Hydrogen bridges of polycyclic aromatic systems with O-H···O bonds--a gas-phase vs. solid-state Car-Parrinello study. J Mol Model 2015; 21:15. [PMID: 25617206 PMCID: PMC4305098 DOI: 10.1007/s00894-014-2550-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/30/2014] [Indexed: 11/26/2022]
Abstract
The current study belongs to a series of investigations of polycyclic aromatic compounds containing intramolecular hydrogen bonds. Close proximity of the coupled aromatic system and hydrogen bridges gives rise to resonance-assisted hydrogen bonding phenomena. Substituted naphthols are ideally suited for this kind of investigation. The parent compound, 1-hydroxy-8-methoxy-3-methylnaphthalene, and its derivative, 1-bromo-5-hydroxy-4-isopropoxy-7-methylnaphthalene, both with known crystal structure, are investigated. Car-Parrinello molecular dynamics (CPMD) is chosen as a theoretical background for this study. Gas phase and solid state simulations are carried out. The effect of Grimme’s dispersion corrections is also included. The report presents time evolution of structural parameters, spectroscopic signatures based on the CPMD simulations, and comparison with available experimental data. We show that the proton transfer phenomena do not occur within the simulations, which is consistent with evaluation based on the acidity of the donor and acceptor sites. The effects of the substitution in the aromatic system and change of the environment (gas vs. condensed phase) are of similar magnitude.
Collapse
|
11
|
Hydrogen Bonds Involving Sulfur: New Insights from ab Initio Calculations and Gas Phase Laser Spectroscopy. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2015. [DOI: 10.1007/978-3-319-14163-3_2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Martyniak A, Panek J, Jezierska-Mazzarello A, Filarowski A. Triple hydrogen bonding in a circular arrangement: ab initio, DFT and first-principles MD studies of tris-hydroxyaryl enamines. J Comput Aided Mol Des 2012; 26:1045-53. [PMID: 22955961 PMCID: PMC3474916 DOI: 10.1007/s10822-012-9597-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 08/29/2012] [Indexed: 11/17/2022]
Abstract
First-principles Car-Parrinello molecular dynamics, ab initio (MP2) and density functional schemes have been used to explore the tautomeric equilibrium in three tris(amino(R)methylidene)cyclohexane-1,3,5-triones (R = hydrogen, methyl or phenyl group). The dynamic nature of the cyclic hydrogen bonding has been studied by the first-principles MD method. The comparison of the results obtained by aforesaid methods has been accomplished on the basis of calculations of structural and spectroscopic characteristics of the compounds. The conformational analysis of the studied compounds has been carried out at the MP2/6-31+G(d,p) and B3LYP/6-31+G(d,p) levels of theory. The influence of steric and electronic effects on the cyclic hydrogen bonding has been analysed. The extent of the proton delocalization has been modified by the substituents according to the sequence: hydrogen < phenyl < methyl. This fact is verified by the spectroscopic and structural data as well as the energy potential curve. A prevalence of the keto-enamine tautomeric form has been observed in the static ab initio and DFT models, and confirmed by the first-principles MD.
Collapse
Affiliation(s)
- Agata Martyniak
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie str., 50-383 Wrocław, Poland
| | - Jarosław Panek
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie str., 50-383 Wrocław, Poland
| | | | - Aleksander Filarowski
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie str., 50-383 Wrocław, Poland
| |
Collapse
|
13
|
|
14
|
Jezierska-Mazzarello A, Panek JJ, Szatyłowicz H, Krygowski TM. Hydrogen Bonding as a Modulator of Aromaticity and Electronic Structure of Selected ortho-Hydroxybenzaldehyde Derivatives. J Phys Chem A 2011; 116:460-75. [DOI: 10.1021/jp205730t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Jarosław J. Panek
- University of Wrocław, Faculty of Chemistry, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Halina Szatyłowicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | | |
Collapse
|
15
|
Jezierska-Mazzarello A, Szatyłowicz H, Krygowski TM. Interference of H-bonding and substituent effects in nitro- and hydroxy-substituted salicylaldehydes. J Mol Model 2011; 18:127-35. [PMID: 21523547 PMCID: PMC3249548 DOI: 10.1007/s00894-011-1044-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 03/16/2011] [Indexed: 11/25/2022]
Abstract
Two intramolecular interactions, i.e., (1) hydrogen bond and (2) substituent effect, were analyzed and compared. For this purpose, the geometry of 4- and 5-X-substituted salicylaldehyde derivatives (X = NO2, H or OH) was optimized by means of B3LYP/6-311 + G(d,p) and MP2/aug-cc-pVDZ methods. The results obtained allowed us to show that substituents (NO2 or OH) in the para or meta position with respect to either OH or CHO in H-bonded systems interact more strongly than in the case of di-substituted species: 4- and 3-nitrophenol or 4- and 3-hydroxybenzaldehyde by ∼31%. The substituent effect due to the intramolecular charge transfer from the para-counter substituent (NO2) to the proton-donating group (OH) is ∼35% greater than for the interaction of para-OH with the proton-accepting group (CHO). The total energy of H-bonding for salicylaldehyde, and its derivatives, is composed of two contributions: ∼80% from the energy of H-bond formation and ∼20% from the energy associated with reorganization of the electron structure of the systems in question. Substituent effect stabilization energy (SESE) estimation for the salicylaldehyde and its 4- and 5-X-substituted derivatives ![]()
Collapse
|