1
|
Zhao XG, Zhao YX, He SG. Reactivity of Atomic Oxygen Radical Anions in Metal Oxide Clusters. Chempluschem 2024; 89:e202400085. [PMID: 39161047 DOI: 10.1002/cplu.202400085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
Atomic oxygen radical anion (O⋅-) represents an important type of reactive centre that exists in both chemical and biological systems. Gas-phase atomic clusters can be studied under isolated and well controlled conditions. Studies of O⋅--containing clusters in the gas-phase provide a unique strategy to interpret the chemistry of O⋅- radicals at a strictly molecular level. This review summarizes the research progresses made since 2013 for the reactivity of O⋅- radicals in the atomically precise metal oxide clusters including negatively charged, nanosized, and neutral heteronuclear metal clusters benefitting from the development of advanced experimental techniques. New electronic and geometric factors to control the reactivity and product selectivity of O⋅- radicals under dark and photo-irradiation conditions have been revealed. The detailed mechanisms of O⋅- generation have been discussed for the reaction systems of nanosized and heteroatom-doped metal oxide clusters. The catalytic reactions mediated by the O⋅- radicals in metal clusters have also been successfully established and the microscopic mechanisms about the dynamic generation and depletion of O⋅- radicals have been clearly understood. The studies of O⋅- containing metal oxide clusters in the gas-phase provided new insights into the chemistry of reactive oxygen species in related condensed-phase systems.
Collapse
Affiliation(s)
- Xi-Guan Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
2
|
Boshoman SB, Fatoba OS. Data pertaining to the catalytic capabilities of transition metal oxides for fuel cell applications. Data Brief 2024; 57:110988. [PMID: 39957742 PMCID: PMC11827082 DOI: 10.1016/j.dib.2024.110988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/15/2024] [Accepted: 09/25/2024] [Indexed: 02/18/2025] Open
Abstract
The burning of fossil fuels produces pollutants and has a negative effect on the environment; however, it is still the primary source of energy for much of the globe today. This is why there has been a surge in interest in studying how to generate energy in a more environmentally friendly and long-term fashion. The widespread use of fuel cell technology-which efficiently converts electrochemical energy to electrical energy while producing almost no carbon emissions-is a prime illustration of this effort. The oxygen reduction reaction (ORR), which is utilized for catalysis inside fuel cell membranes, is slow, and platinum (Pt) is expensive and unstable, which limits the efficiency and broad application of fuel cell technology. This work investigates nanomaterials made of titanium, cobalt, and tungsten oxides as potential inexpensive and active electrocatalysts. Nanomaterials made of cobalt, tungsten, and titanium oxides have become increasingly popular as potential materials with catalytic capabilities that are both inexpensive and effective, especially when compared to conventional platinum catalysts. When used as fuel cell catalysts, the bimetallic compositions of these transition metals and oxygen have been the subject of surprisingly little theoretical and experimental investigation. Crystallographic surfaces of CoWO4 (011), CoWO4 (100), CoWO4 (111), Co3WO8 (001), Co3WO8 (101), Co3WO8 (011), TiWO4 (100), TiWO4 (101), and TiWO4 (110) are the principal focus of this investigation into their catalytic capacities. The electronic characteristics of the structures were studied using Density Functional Theory (DFT) with CASTEP and DMol3, and oxygen adsorption on the different surface configurations was done using the Adsorption Locator module.
Collapse
Affiliation(s)
- Salaminah Bonolo Boshoman
- Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa
| | - Olawale Samuel Fatoba
- Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
3
|
Hu YZ, Wei GP, Zhao YX, Liu QY, He SG. Experimental Reactivity of (MoO 3) NO - ( N = 1-21) Cluster Anions with C 1-C 4 Alkanes: A Simple Model to Predict the Reactivity with Methane. J Phys Chem A 2024; 128:5253-5259. [PMID: 38937133 DOI: 10.1021/acs.jpca.4c01163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Metal oxide clusters with atomic oxygen radical anions are important model systems to study the mechanisms of activating and transforming very stable alkane molecules under ambient conditions. It is extremely challenging to characterize the activation and conversion of methane, the most stable alkane molecule, by metal oxide cluster anions due to the low reactivity of the anionic species. In this study, using a ship-lock type reactor that could be run at relatively high pressure conditions to provide a high number of collisions in ion-molecule reactions, the rate constants of the reactions between (MoO3)NO- (N = 1-21) cluster anions and the light alkanes (C1-C4) were measured under thermal collision conditions. The relationships among the reaction rates of different alkanes were obtained to establish a model to predict the low rate constants with methane from the high rate constants with C2-C4 alkanes. The model was tested by using available experimental results in literature. This study provides a new method to estimate the relatively low reactivity of atomic oxygen radical anions with methane on metal oxide clusters.
Collapse
Affiliation(s)
- Yu-Zhe Hu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Gong-Ping Wei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
4
|
da Silva Santos M, Medel R, Flach M, Ablyasova OS, Timm M, von Issendorff B, Hirsch K, Zamudio-Bayer V, Riedel S, Lau JT. Exposing the Oxygen-Centered Radical Character of the Tetraoxido Ruthenium(VIII) Cation [RuO 4 ] . Chemphyschem 2023; 24:e202300390. [PMID: 37589334 DOI: 10.1002/cphc.202300390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
The tetraoxido ruthenium(VIII) radical cation, [RuO4 ]+ , should be a strong oxidizing agent, but has been difficult to produce and investigate so far. In our X-ray absorption spectroscopy study, in combination with quantum-chemical calculations, we show that [RuO4 ]+ , produced via oxidation of ruthenium cations by ozone in the gas phase, forms the oxygen-centered radical ground state. The oxygen-centered radical character of [RuO4 ]+ is identified by the chemical shift at the ruthenium M3 edge, indicative of ruthenium(VIII), and by the presence of a characteristic low-energy transition at the oxygen K edge, involving an oxygen-centered singly-occupied molecular orbital, which is suppressed when the oxygen-centered radical is quenched by hydrogenation of [RuO4 ]+ to the closed-shell [RuO4 H]+ ion. Hydrogen-atom abstraction from methane is calculated to be only slightly less exothermic for [RuO4 ]+ than for [OsO4 ]+ .
Collapse
Affiliation(s)
- Mayara da Silva Santos
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Robert Medel
- Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - Max Flach
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Olesya S Ablyasova
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Martin Timm
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Bernd von Issendorff
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
| | - Konstantin Hirsch
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Vicente Zamudio-Bayer
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Sebastian Riedel
- Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - J Tobias Lau
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| |
Collapse
|
5
|
Yuan B, Tang SY, Zhou S. Size Effects in Gas-phase C-H Activation. Chemphyschem 2023; 24:e202200769. [PMID: 36420565 DOI: 10.1002/cphc.202200769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
The gas-phase clusters reaction permits addressing fundamental aspects of the challenges related to C-H activation. The size effect plays a key role in the activation processes as it may substantially affect both the reactivity and selectivity. In this paper, we reviewed the size effect related to the hydrocarbon oxidation by early transition metal oxides and main group metal oxides, methane activation mediated by late transition metals. Based on mass-spectrometry experiments in conjunction with quantum chemical calculations, mechanistic discussions were reviewed to present how and why the size greatly regulates the reactivity and product distribution.
Collapse
Affiliation(s)
- Bowei Yuan
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, P. R. China.,Institute of Zhejiang University - Quzhou, Zheda Rd. #99, 324000, Quzhou, P.R. China
| | - Shi-Ya Tang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, 266000, P. R. China
| | - Shaodong Zhou
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, P. R. China.,Institute of Zhejiang University - Quzhou, Zheda Rd. #99, 324000, Quzhou, P.R. China
| |
Collapse
|
6
|
|
7
|
Mason JL, Folluo CN, Jarrold CC. More than little fragments of matter: Electronic and molecular structures of clusters. J Chem Phys 2021; 154:200901. [DOI: 10.1063/5.0054222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jarrett L. Mason
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Carley N. Folluo
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| |
Collapse
|
8
|
Ruan M, Zhao YX, He SG. Study on the Reaction of Nanosized Yttrium Oxide Cluster Anions with n-Butane in the Gas Phase. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20110511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Abou Taka A, Babin MC, Sheng X, DeVine JA, Neumark DM, Hratchian HP. Unveiling the coexistence of cis- and trans-isomers in the hydrolysis of ZrO2: A coupled DFT and high-resolution photoelectron spectroscopy study. J Chem Phys 2020; 153:244308. [DOI: 10.1063/5.0037636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Ali Abou Taka
- Department of Chemistry & Chemical Biology, Center for Chemical Computation and Theory, University of California, Merced, California 95343, USA
| | - Mark C. Babin
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Xianghai Sheng
- Department of Chemistry & Chemical Biology, Center for Chemical Computation and Theory, University of California, Merced, California 95343, USA
| | - Jessalyn A. DeVine
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Daniel M. Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Hrant P. Hratchian
- Department of Chemistry & Chemical Biology, Center for Chemical Computation and Theory, University of California, Merced, California 95343, USA
| |
Collapse
|
10
|
McMahon AJ, Jarrold CC. Using anion photoelectron spectroscopy of cluster models to gain insights into mechanisms of catalyst-mediated H 2 production from water. Phys Chem Chem Phys 2020; 22:27936-27948. [PMID: 33201956 DOI: 10.1039/d0cp05055e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metal oxide cluster models of catalyst materials offer a powerful platform for probing the molecular-scale features and interactions that govern catalysis. This perspective gives an overview of studies implementing the combination of anion photoelectron (PE) spectroscopy and density functional theory calculations toward exploring cluster models of metal oxides and metal-oxide supported Pt that catalytically drive the hydrogen evolution reaction (HER) or the water-gas shift reaction. The utility in the combination of these experimental and computational techniques lies in our ability to unambiguously determine electronic and molecular structures, which can then connect to results of reactivity studies. In particular, we focus on the activity of oxygen vacancies modeled by suboxide clusters, the critical mechanistic step of forming proximal metal hydride and hydroxide groups as a prerequisite for H2 production, and the structural features that lead to trapped dihydroxide groups. The pronounced asymmetric oxidation found in heterometallic group 6 oxides and near-neighbor group 5/group 6 results in higher activity toward water, while group 7/group 6 oxides form very specific stoichiometries that suggest facile regeneration. Studies on the trans-periodic combination of cerium oxide and platinum as a model for ceria supported Pt atoms and nanoparticles reveal striking negative charge accumulation by Pt, which, combined with the ionic conductivity of ceria, suggests a mechanism for the exceptionally high activity of this system towards the water-gas shift reaction.
Collapse
Affiliation(s)
- Abbey J McMahon
- Indiana University, Department of Chemistry, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA.
| | | |
Collapse
|
11
|
Boyle TJ, Rimsza JM, Farrell J, Robinson XJ, Guerrero F, Cramer R, Perales D, Renehan P. Synthesis, characterization, and computational modeling of 6,6'-(((2-hydroxyethyl)azanediyl)bis(methylene))bis(2,4-di-tert-butylphenol) modified group 4 metal alkoxides. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1786074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Timothy J. Boyle
- Advanced Materials Laboratory, Sandia National Laboratories, Albuquerque, NM, USA
| | - Jessica M. Rimsza
- Geochemistry Department, Sandia National Laboratories, Albuquerque, NM, USA
| | - Joshua Farrell
- Department of Chemistry, College of the Holy Cross, Worcester, MA, USA
| | - Xavier J. Robinson
- Advanced Materials Laboratory, Sandia National Laboratories, Albuquerque, NM, USA
| | - Fernando Guerrero
- Advanced Materials Laboratory, Sandia National Laboratories, Albuquerque, NM, USA
| | - Roger Cramer
- Department of Chemistry, University of Hawaii - Manoa, Honolulu, HI, USA
| | - Diana Perales
- Advanced Materials Laboratory, Sandia National Laboratories, Albuquerque, NM, USA
| | - Peter Renehan
- Department of Chemistry, College of the Holy Cross, Worcester, MA, USA
| |
Collapse
|
12
|
Mason JL, Gupta AK, McMahon AJ, Folluo CN, Raghavachari K, Jarrold CC. The striking influence of oxophilicity differences in heterometallic Mo–Mn oxide cluster reactions with water. J Chem Phys 2020; 152:054301. [DOI: 10.1063/1.5142398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Jarrett L. Mason
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Ankur K. Gupta
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Abbey J. McMahon
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Carley N. Folluo
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| |
Collapse
|
13
|
Kaur N, Gupta S, Goel N. Understanding structure-activity relation in V xO y clusters of varied stoichiometry and sizes through conceptual density functional approach. J Mol Model 2019; 25:319. [PMID: 31598882 DOI: 10.1007/s00894-019-4168-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/15/2019] [Indexed: 11/27/2022]
Abstract
Computations have been performed on VxOy clusters (with x = 1-8, y = 1-21) to explore their structure, stability, and reactivity based on local and global reactivity descriptors defined within the formalism of density functional theory (DFT). The vertical and adiabatic ionization energies and electron affinities are in accordance with Franck-Condon principle and suggest that the VxOy clusters are more likely to be electron acceptors than donors. The structure and reactivity of VxOy clusters delicately depend on their oxygen content and environment. Distinct active sites have been identified for each cluster species on the basis of coordination, symmetry, and charge distribution. The propensity of all the reactive sites towards an approaching electrophile and/or nucleophile has been studied using local reactivity descriptor. In oxygen-poor clusters, the vanadium atoms are more prone to nucleophilic attack. With an increase in oxygen concentration, the coordination number of vanadium increases and reaches four-fold, the site for nucleophilic attack shifts to terminal oxygens. We conclude that of all the stoichiometries, the stable VxOy clusters have the (VO3)a(V2O5)b formula unit. The localization of positive charge density in cubic cage structure of V8O20 successfully traps halide ions (F-, Cl-, and Br-). In view of increasing use of metal oxide clusters in heterogeneous catalysis, the understanding of structure-activity relationship in vanadium oxides' clusters provided in the current study is highly desirable.
Collapse
Affiliation(s)
- Navjot Kaur
- Theoretical & Computational Chemistry Group, Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Shuchi Gupta
- University Institute of Engineering and Technology, Panjab University, Chandigarh, 160014, India.
| | - Neetu Goel
- Theoretical & Computational Chemistry Group, Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
14
|
Wang M, Sun CX, Zhao Y, Cui JT, Ma JB. Efficient Liberation of Ammonia from Thermal Reaction of ScNH + Cations and Water. J Phys Chem A 2019; 123:7576-7581. [PMID: 31393727 DOI: 10.1021/acs.jpca.9b05890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ammonia synthesis by using water as a hydrogen source is a challenging task. Laser-ablation-generated ScNH+ cations have been mass-selected using a quadrupole mass filter and reacted with H2O in a linear ion trap reactor under thermal collision conditions. Through mass spectrometry in conjunction with density functional theory calculations, we found that ammonia is released as the product in the reaction of ScNH+ with H2O, and this reaction is with high efficiency and selectivity, and the rate constant for the reaction is (1.14 ± 0.23) × 10-10 cm3 molecule-1 s-1, corresponding to the reaction efficiency of 15%. Metal imido complexes (*MNH) are one of the important intermediates in the currently reported NH3 synthetic reactions. The gas-phase ScNH+ cation can be a simplified model of *MNH over catalysts of NH3 synthesis, and the facile proton transfer mechanism obtained in this model system may offer fundamental mechanistic insights into how to design catalysts for ammonia production by using water as the hydrogen source under ambient conditions.
Collapse
Affiliation(s)
- Ming Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Chuan-Xin Sun
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Yue Zhao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Jia-Tong Cui
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Jia-Bi Ma
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| |
Collapse
|
15
|
Hirabayashi S, Ichihashi M. Dehydrogenation of Methane by Partially Oxidized Tungsten Cluster Cations: High Reactivity Comparable to That of Platinum Cluster Cations. J Phys Chem A 2019; 123:6840-6847. [DOI: 10.1021/acs.jpca.9b04606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Masahiko Ichihashi
- Cluster Research Laboratory, Toyota Technological Institute: in East Tokyo Laboratory, Genesis Research Institute, Inc., 717-86 Futamata, Ichikawa, Chiba 272-0001, Japan
| |
Collapse
|
16
|
Sampathkumar S, Paranthaman S. Performance of density functionals for the structure and energetics of (M–O)0,± (M=Al, Si, Sc–Zn). MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1557331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Suresh Sampathkumar
- Department of Physics and International Research Centre, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil, India
| | - Selvarengan Paranthaman
- Department of Physics and International Research Centre, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil, India
| |
Collapse
|
17
|
Boyle TJ, Farrell J, Yonemoto DT, Sears JM, Rimsza JM, Perales D, Bell NS, Cramer RE, Treadwell LJ, Renehan P, Adams CJ, Bender MT, Crowley W. Synthesis, Characterization, and Nanomaterials Generated from 6,6′-(((2-Hydroxyethyl)azanediyl)bis(methylene))bis(2,4-di-tert-butylphenol) Modified Group 4 Metal Alkoxides. Inorg Chem 2018; 57:11264-11274. [DOI: 10.1021/acs.inorgchem.8b01907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Timothy J. Boyle
- Advanced Materials Laboratory, Sandia National Laboratories, 1001 University Boulevard, SE, Albuquerque, New Mexico 87106, United States
| | - Joshua Farrell
- Department of Chemistry, College of the Holy Cross, Box C, 1 College Street, Worcester, Massachusetts 01610, United States
| | - Daniel T. Yonemoto
- Advanced Materials Laboratory, Sandia National Laboratories, 1001 University Boulevard, SE, Albuquerque, New Mexico 87106, United States
| | - Jeremiah M. Sears
- Advanced Materials Laboratory, Sandia National Laboratories, 1001 University Boulevard, SE, Albuquerque, New Mexico 87106, United States
| | - Jessica M. Rimsza
- Geochemistry Department, Sandia National Laboratories, PO Box 5800, MS 0754, Albuquerque, New Mexico 87185-0754, United States
| | - Diana Perales
- Advanced Materials Laboratory, Sandia National Laboratories, 1001 University Boulevard, SE, Albuquerque, New Mexico 87106, United States
| | - Nelson S. Bell
- Advanced Materials Laboratory, Sandia National Laboratories, 1001 University Boulevard, SE, Albuquerque, New Mexico 87106, United States
| | - Roger E. Cramer
- Department of Chemistry, University of Hawaii - Manoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822-2275, United States
| | - LaRico J. Treadwell
- Advanced Materials Laboratory, Sandia National Laboratories, 1001 University Boulevard, SE, Albuquerque, New Mexico 87106, United States
| | - Peter Renehan
- Department of Chemistry, College of the Holy Cross, Box C, 1 College Street, Worcester, Massachusetts 01610, United States
| | - Casey J. Adams
- Advanced Materials Laboratory, Sandia National Laboratories, 1001 University Boulevard, SE, Albuquerque, New Mexico 87106, United States
| | - Michael T. Bender
- Advanced Materials Laboratory, Sandia National Laboratories, 1001 University Boulevard, SE, Albuquerque, New Mexico 87106, United States
| | - William Crowley
- Department of Chemistry, College of the Holy Cross, Box C, 1 College Street, Worcester, Massachusetts 01610, United States
| |
Collapse
|
18
|
Klawohn S, Kaupp M, Karton A. MVO-10: A Gas-Phase Oxide Benchmark for Localization/Delocalization in Mixed-Valence Systems. J Chem Theory Comput 2018; 14:3512-3523. [DOI: 10.1021/acs.jctc.8b00289] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sascha Klawohn
- Theoretische Chemie/Quantenchemie, Institut für Chemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Martin Kaupp
- Theoretische Chemie/Quantenchemie, Institut für Chemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Amir Karton
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Australia
| |
Collapse
|
19
|
Sun X, Zhou S, Yue L, Schlangen M, Schwarz H. On the Origin of the Distinctly Different Reactivity of Ruthenium in [MO]+
/CH4
Systems (M=Fe, Ru, Os). Angew Chem Int Ed Engl 2018. [DOI: 10.1002/anie.201800173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoyan Sun
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Shaodong Zhou
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou P.R. China
| | - Lei Yue
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Maria Schlangen
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Helmut Schwarz
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| |
Collapse
|
20
|
Sun X, Zhou S, Yue L, Schlangen M, Schwarz H. Über die Ursachen der deutlich unterschiedlichen Reaktivität von Ruthenium unter den [MO]+
/CH4
-Systemen (M=Fe, Ru, Os). Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoyan Sun
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Shaodong Zhou
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou V.R. China
| | - Lei Yue
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Maria Schlangen
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Helmut Schwarz
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| |
Collapse
|
21
|
Abstract
Transition metal complexes bearing terminal oxido ligands are quite common, yet group 11 terminal oxo complexes remain elusive. Here we show that excited coinage metal atoms M (M = Au, Ag, Cu) react with OF2 to form hypofluorites FOMF and group 11 oxygen metal fluorides OMF2, OAuF and OAgF. These compounds have been characterized by IR matrix-isolation spectroscopy in conjunction with state-of-the-art quantum-chemical calculations. The oxygen fluorides are formed by photolysis of the initially prepared hypofluorites. The linear molecules OAgF and OAuF have a 3Σ − ground state with a biradical character. Two unpaired electrons are located mainly at the oxygen ligand in antibonding O−M π* orbitals. For the 2B2 ground state of the OMIIIF2 compounds only an O−M single bond arises and a significant spin-density contribution was found at the oxygen atom as well. While transition metal complexes bearing terminal oxido ligands are common, those of group 11 elements have yet to be experimentally observed. Here, Riedel and colleagues synthesise molecular oxygen fluorides of copper, silver and gold, and show that the oxo ligands possess radical character.
Collapse
|
22
|
Affiliation(s)
- J. H. Marks
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - T. B. Ward
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - M. A. Duncan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
23
|
Hydrogen abstraction from methane on cristobalite supported W and Mn oxo complexes: A DFT study. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2017.11.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Gutsev GL, Belay KG, Gutsev LG, Ramachandran BR, Jena P. Effect of hydrogenation on the structure and magnetic properties of an iron oxide cluster. Phys Chem Chem Phys 2018; 20:4546-4553. [DOI: 10.1039/c7cp08224j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogenation of an iron oxide particle influences the geometrical topology and total magnetic moment and invokes different superexchange mechanisms.
Collapse
Affiliation(s)
- G. L. Gutsev
- Department of Physics
- Florida A&M University
- Tallahassee
- USA
| | - K. G. Belay
- Department of Physics
- Florida A&M University
- Tallahassee
- USA
| | - L. G. Gutsev
- Department of Physics
- Virginia Commonwealth University
- Richmond
- USA
| | | | - P. Jena
- Department of Physics
- Virginia Commonwealth University
- Richmond
- USA
| |
Collapse
|
25
|
Zhou S, Schlangen M, Schwarz H. Spin-Selective, Competitive Hydrogen-Atom Transfer versus CH2
O-Generation from the CH4
/[ReO4
]+
Couple at Ambient Conditions. Chemistry 2017; 23:17469-17472. [DOI: 10.1002/chem.201704892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Shaodong Zhou
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou P.R. China
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Maria Schlangen
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Helmut Schwarz
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| |
Collapse
|
26
|
Schwarz H, Shaik S, Li J. Electronic Effects on Room-Temperature, Gas-Phase C-H Bond Activations by Cluster Oxides and Metal Carbides: The Methane Challenge. J Am Chem Soc 2017; 139:17201-17212. [PMID: 29112810 DOI: 10.1021/jacs.7b10139] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This Perspective discusses a story of one molecule (methane), a few metal-oxide cationic clusters (MOCCs), dopants, metal-carbide cations, oriented-electric fields (OEFs), and a dizzying mechanistic landscape of methane activation! One mechanism is hydrogen atom transfer (HAT), which occurs whenever the MOCC possesses a localized oxyl radical (M-O•). Whenever the radical is delocalized, e.g., in [MgO]n•+ the HAT barrier increases due to the penalty of radical localization. Adding a dopant (Ga2O3) to [MgO]2•+ localizes the radical and HAT transpires. Whenever the radical is located on the metal centers as in [Al2O2]•+ the mechanism crosses over to proton-coupled electron transfer (PCET), wherein the positive Al center acts as a Lewis acid that coordinates the methane molecule, while one of the bridging oxygen atoms abstracts a proton, and the negatively charged CH3 moiety relocates to the metal fragment. We provide a diagnostic plot of barriers vs reactants' distortion energies, which allows the chemist to distinguish HAT from PCET. Thus, doping of [MgO]2•+ by Al2O3 enables HAT and PCET to compete. Similarly, [ZnO]•+ activates methane by PCET generating many products. Adding a CH3CN ligand to form [(CH3CN)ZnO]•+ leads to a single HAT product. The CH3CN dipole acts as an OEF that switches off PCET. [MC]+ cations (M = Au, Cu) act by different mechanisms, dictated by the M+-C bond covalence. For example, Cu+, which bonds the carbon atom mostly electrostatically, performs coupling of C to methane to yield ethylene, in a single almost barrier-free step, with an unprecedented atomic choreography catalyzed by the OEF of Cu+.
Collapse
Affiliation(s)
- Helmut Schwarz
- Institut für Chemie, Technische Universität Berlin , Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Jilai Li
- Institut für Chemie, Technische Universität Berlin , Straße des 17. Juni 135, 10623 Berlin, Germany.,Institute of Theoretical Chemistry, Jilin University , Changchun 130023, P.R. China
| |
Collapse
|
27
|
Sun X, Zhou S, Schlangen M, Schwarz H. Thermal Methane Activation by the Metal-Free Cluster Cation [Si 2 O 4 ] .. Chemistry 2017; 23:1498-1501. [PMID: 27943447 DOI: 10.1002/chem.201605496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Indexed: 02/05/2023]
Abstract
The thermal reaction of methane with the metal-free cluster cation [Si2 O4 ].+ has been examined by using Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry. In addition to generating a methyl radical via hydrogen-atom abstraction, [Si2 O4 ].+ can selectively oxidize methane to formaldehyde. The mechanisms of these rather efficient reactions have been elucidated by high-level quantum-chemical calculations.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Shaodong Zhou
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Maria Schlangen
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Helmut Schwarz
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| |
Collapse
|
28
|
Cao X, Chen M, Ma J, Yin B, Xing X. CO oxidation by the atomic oxygen on silver clusters: structurally dependent mechanisms generating free or chemically bonded CO2. Phys Chem Chem Phys 2017; 19:196-203. [DOI: 10.1039/c6cp06741g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidation of CO by the atomic oxygen on AgnO− (n = 1–8) forms free or chemically bonded CO2.
Collapse
Affiliation(s)
- Xizi Cao
- Shanghai Key Lab of Chemical Assessment and Sustainability
- Department of Chemistry
- Tongji University
- Shanghai
- P. R. China
| | - Mengyi Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability
- Department of Chemistry
- Tongji University
- Shanghai
- P. R. China
| | - Jun Ma
- Shanghai Key Lab of Chemical Assessment and Sustainability
- Department of Chemistry
- Tongji University
- Shanghai
- P. R. China
| | - Baoqi Yin
- Shanghai Key Lab of Chemical Assessment and Sustainability
- Department of Chemistry
- Tongji University
- Shanghai
- P. R. China
| | - Xiaopeng Xing
- Shanghai Key Lab of Chemical Assessment and Sustainability
- Department of Chemistry
- Tongji University
- Shanghai
- P. R. China
| |
Collapse
|
29
|
Wu JWJ, Moriyama R, Nakano M, Ohshimo K, Misaizu F. Compositions and structures of niobium oxide cluster ions, NbmOn±, (m = 2–12), revealed by ion mobility mass spectrometry. Phys Chem Chem Phys 2017; 19:24903-24914. [DOI: 10.1039/c7cp04017b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The compositions and structures of niobium oxide cluster ions were studied and compared with vanadium oxide.
Collapse
Affiliation(s)
- Jenna W. J. Wu
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Ryoichi Moriyama
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Motoyoshi Nakano
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Keijiro Ohshimo
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Fuminori Misaizu
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| |
Collapse
|
30
|
Sun X, Zhou S, Schlangen M, Schwarz H. Thermal Methane Activation by [Si 2 O 5 ] .+ and [Si 2 O 5 H 2 ] .+ : Reactivity Enhancement by Hydrogenation. Angew Chem Int Ed Engl 2016; 55:13345-13348. [PMID: 27650136 DOI: 10.1002/anie.201607864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Indexed: 11/09/2022]
Abstract
The thermal reactions of methane with the oxygen-rich cluster cations [Si2 O5 ]⋅+ and [Si2 O5 H2 ]⋅+ have been examined using Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry in conjunction with state-of-the-art quantum chemical calculations. In contrast to the inertness of [Si2 O5 ].+ towards methane, the hydrogenated cluster [Si2 O5 H2 ].+ brings about hydrogen-atom transfer (HAT) from methane with an efficiency of 28 % relative to the collision rate. The mechanisms of this process have been investigated in detail and the reasons for the striking reactivity difference of the two cluster ions have been revealed.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Shaodong Zhou
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Maria Schlangen
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Helmut Schwarz
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany.
| |
Collapse
|
31
|
Sun X, Zhou S, Schlangen M, Schwarz H. Thermische Methanaktivierung durch [Si2
O5
].+
und [Si2
O5
H2
].+
: Reaktivitätssteigerung durch Hydrierung. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoyan Sun
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Shaodong Zhou
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Maria Schlangen
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Helmut Schwarz
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| |
Collapse
|
32
|
Nagata T, Miyajima K, Mafuné F. Gold Atoms Supported on Gas-Phase Cerium Oxide Cluster Ions: Stable Stoichiometry and Reactivity with CO. J Phys Chem A 2016; 120:7624-7633. [DOI: 10.1021/acs.jpca.6b08257] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Toshiaki Nagata
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Ken Miyajima
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Fumitaka Mafuné
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
33
|
|
34
|
Sun X, Zhou S, Schlangen M, Schwarz H. Efficient Room-Temperature Methane Activation by the Closed-Shell, Metal-Free Cluster [OSiOH]+
: A Novel Mechanistic Variant. Chemistry 2016; 22:14257-63. [DOI: 10.1002/chem.201601981] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaoyan Sun
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Shaodong Zhou
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Maria Schlangen
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Helmut Schwarz
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| |
Collapse
|
35
|
Schwarz H, González-Navarrete P, Li J, Schlangen M, Sun X, Weiske T, Zhou S. Unexpected Mechanistic Variants in the Thermal Gas-Phase Activation of Methane. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00372] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Helmut Schwarz
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | | | - Jilai Li
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Maria Schlangen
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Xiaoyan Sun
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Thomas Weiske
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Shaodong Zhou
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
36
|
Zhou S, Li J, Schlangen M, Schwarz H. Spinabhängige, thermische Aktivierung von Methan durch den geschlossenschaligen Cluster [TaO3
]+. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601965] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shaodong Zhou
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Jilai Li
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
- Institute of Theoretical Chemistry; Jilin University; Changchun 130023 V.R. China
| | - Maria Schlangen
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Helmut Schwarz
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| |
Collapse
|
37
|
Zhou S, Li J, Schlangen M, Schwarz H. Spin-Selective Thermal Activation of Methane by Closed-Shell [TaO3
]+. Angew Chem Int Ed Engl 2016; 55:7257-60. [DOI: 10.1002/anie.201601965] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/18/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Shaodong Zhou
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Jilai Li
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
- Institute of Theoretical Chemistry; Jilin University; Changchun 130023 P.R. China
| | - Maria Schlangen
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Helmut Schwarz
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| |
Collapse
|
38
|
Zhou S, Li J, Schlangen M, Schwarz H. Thermal Activation of Methane by [HfO].+and [XHfO]+(X=F, Cl, Br, I) and the Origin of a Remarkable Ligand Effect. Angew Chem Int Ed Engl 2016; 55:7685-8. [DOI: 10.1002/anie.201602312] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Shaodong Zhou
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Jilai Li
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
- Institute of Theoretical Chemistry; Jilin University; Changchun 130023 P.R. China
| | - Maria Schlangen
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Helmut Schwarz
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| |
Collapse
|
39
|
Zhou S, Li J, Schlangen M, Schwarz H. Thermische Aktivierung von Methan durch [HfO].+und [XHfO]+(X=F, Cl, Br, I): ein außergewöhnlicher Ligandeneffekt und dessen Ursache. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shaodong Zhou
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Jilai Li
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
- Institute of Theoretical Chemistry; Jilin University; Changchun 130023 VR China
| | - Maria Schlangen
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Helmut Schwarz
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| |
Collapse
|
40
|
Zhou S, Li J, Schlangen M, Schwarz H. Differences and Commonalities in the Gas-Phase Reactions of Closed-Shell Metal Dioxide Clusters [MO2]+(M=V, Nb, and Ta) with Methane. Chemistry 2016; 22:7225-8. [DOI: 10.1002/chem.201600498] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Shaodong Zhou
- Institut für Chemie; Technische Universität Berlin; Strasse des 17. Juni 135 10623 Berlin Germany
| | - Jilai Li
- Institut für Chemie; Technische Universität Berlin; Strasse des 17. Juni 135 10623 Berlin Germany
- Institute of Theoretical Chemistry; Jilin University; Changchun 130023 P.R. China
| | - Maria Schlangen
- Institut für Chemie; Technische Universität Berlin; Strasse des 17. Juni 135 10623 Berlin Germany
| | - Helmut Schwarz
- Institut für Chemie; Technische Universität Berlin; Strasse des 17. Juni 135 10623 Berlin Germany
| |
Collapse
|
41
|
Ding XL, Wang D, Li RJ, Liao HL, Zhang Y, Zhang HY. Adsorption of a single gold or silver atom on vanadium oxide clusters. Phys Chem Chem Phys 2016; 18:9497-503. [DOI: 10.1039/c6cp00808a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The single Au atom can be adsorbed on both V and O sites of vanadium oxide clusters with quite large binding energies, illustrating the stabilization of noble atoms in single-atom catalysts.
Collapse
Affiliation(s)
- Xun-Lei Ding
- Department of Mathematics and Physics
- North China Electric Power University
- Beijing
- P. R. China
| | - Dan Wang
- Department of Mathematics and Physics
- North China Electric Power University
- Beijing
- P. R. China
| | - Rui-Jie Li
- Department of Mathematics and Physics
- North China Electric Power University
- Beijing
- P. R. China
| | - Heng-Lu Liao
- Department of Mathematics and Physics
- North China Electric Power University
- Beijing
- P. R. China
| | - Yan Zhang
- Department of Mathematics and Physics
- North China Electric Power University
- Beijing
- P. R. China
- Research Center for Ecological Engineering and Nonlinear Science
| | - Hua-Yong Zhang
- Department of Mathematics and Physics
- North China Electric Power University
- Beijing
- P. R. China
- Research Center for Ecological Engineering and Nonlinear Science
| |
Collapse
|
42
|
Zhao YX, Liu QY, Zhang MQ, He SG. Reactions of metal cluster anions with inorganic and organic molecules in the gas phase. Dalton Trans 2016; 45:11471-95. [DOI: 10.1039/c6dt01246a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Progress on the activation and transformation of important inorganic and organic molecules by negatively charged bare metal clusters as well as ligated systems with oxygen, carbon, and nitrogen, among others.
Collapse
Affiliation(s)
- Yan-Xia Zhao
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Qing-Yu Liu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Mei-Qi Zhang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Sheng-Gui He
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
43
|
Ma J, Cao X, Xing X, Wang X, Parks JH. Adsorption of O2 on anionic silver clusters: spins and electron binding energies dominate in the range up to nano sizes. Phys Chem Chem Phys 2016; 18:743-8. [DOI: 10.1039/c5cp06116d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Exploring the reactivity of metal clusters is an important task in cluster science, while only a few previous studies involve the reactions of nano-sized ones.
Collapse
Affiliation(s)
- Jun Ma
- Department of Chemistry
- and Shanghai Key Lab of Chemical Assessment and Sustainability
- Tongji University
- Shanghai
- China
| | - Xizi Cao
- Department of Chemistry
- and Shanghai Key Lab of Chemical Assessment and Sustainability
- Tongji University
- Shanghai
- China
| | - Xiaopeng Xing
- Department of Chemistry
- and Shanghai Key Lab of Chemical Assessment and Sustainability
- Tongji University
- Shanghai
- China
| | - Xuefeng Wang
- Department of Chemistry
- and Shanghai Key Lab of Chemical Assessment and Sustainability
- Tongji University
- Shanghai
- China
| | | |
Collapse
|
44
|
Nagata T, Miyajima K, Mafuné F. Oxidation of Nitric Oxide on Gas-Phase Cerium Oxide Clusters via Reactant Adsorption and Product Desorption Processes. J Phys Chem A 2015; 119:10255-63. [DOI: 10.1021/acs.jpca.5b07749] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Toshiaki Nagata
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Ken Miyajima
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Fumitaka Mafuné
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
45
|
Ding XL, Wang D, Wu XN, Li ZY, Zhao YX, He SG. High reactivity of nanosized niobium oxide cluster cations in methane activation: A comparison with vanadium oxides. J Chem Phys 2015; 143:124312. [PMID: 26429016 DOI: 10.1063/1.4931972] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The reactions between methane and niobium oxide cluster cations were studied and compared to those employing vanadium oxides. Hydrogen atom abstraction (HAA) reactions were identified over stoichiometric (Nb2O5)N(+) clusters for N as large as 14 with a time-of-flight mass spectrometer. The reactivity of (Nb2O5)N(+) clusters decreases as the N increases, and it is higher than that of (V 2O5)N(+) for N ≥ 4. Theoretical studies were conducted on (Nb2O5)N(+) (N = 2-6) by density functional calculations. HAA reactions on these clusters are all favorable thermodynamically and kinetically. The difference of the reactivity with respect to the cluster size and metal type (Nb vs V) was attributed to thermodynamics, kinetics, the electron capture ability, and the distribution of the unpaired spin density. Nanosized Nb oxide clusters show higher HAA reactivity than V oxides, indicating that niobia may serve as promising catalysts for practical methane conversion.
Collapse
Affiliation(s)
- Xun-Lei Ding
- Department of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, People's Republic of China
| | - Dan Wang
- Department of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, People's Republic of China
| | - Xiao-Nan Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Zi-Yu Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yan-Xia Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Sheng-Gui He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
46
|
Koyama K, Kudoh S, Miyajima K, Mafuné F. Stable Stoichiometry of Gas-Phase Manganese Oxide Cluster Ions Revealed by Temperature-Programmed Desorption. J Phys Chem A 2015; 119:8433-42. [DOI: 10.1021/acs.jpca.5b02139] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Kohei Koyama
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Satoshi Kudoh
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Ken Miyajima
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Fumitaka Mafuné
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
47
|
|
48
|
Schwarz H. Doping Effects in Cluster-Mediated Bond Activation. Angew Chem Int Ed Engl 2015; 54:10090-100. [DOI: 10.1002/anie.201500649] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Indexed: 11/09/2022]
|
49
|
Lin SJ, Cheng J, Zhang CF, Wang B, Zhang YF, Huang X. The reactivity of stoichiometric tungsten oxide clusters towards carbon monoxide: the effects of cluster sizes and charge states. Phys Chem Chem Phys 2015; 17:11499-508. [PMID: 25854200 DOI: 10.1039/c5cp00529a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Density functional theory (DFT) calculations are employed to investigate the reactivity of tungsten oxide clusters towards carbon monoxide. Extensive structural searches show that all the ground-state structures of (WO3)n(+) (n = 1-4) contain an oxygen radical center with a lengthened W-O bond which is highly active in the oxidation of carbon monoxide. Energy profiles are calculated to determine the reaction mechanisms and evaluate the effect of cluster sizes. The monomer WO3(+) has the highest reactivity among the stoichiometric clusters of different sizes (WO3)n(+) (n = 1-4). The reaction mechanisms for CO with mono-nuclear stoichiometric tungsten oxide clusters with different charges (WO3(-/0/+)) are also studied to clarify the influence of charge states. Our calculated results show that the ability to oxidize CO gets weaker from WO3(+) to WO3(-) as the negative charge accumulates progressively.
Collapse
Affiliation(s)
- Shu-Juan Lin
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China.
| | | | | | | | | | | |
Collapse
|
50
|
|