1
|
Fan F, Chen N, Wang Y, Wu R, Cao Z. QM/MM and MM MD Simulations on the Pyrimidine-Specific Nucleoside Hydrolase: A Comprehensive Understanding of Enzymatic Hydrolysis of Uridine. J Phys Chem B 2018; 122:1121-1131. [PMID: 29285933 DOI: 10.1021/acs.jpcb.7b10524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The pyrimidine-specific nucleoside hydrolase Yeik (CU-NH) from Escherichia coli cleaves the N-glycosidic bond of uridine and cytidine with a 102-104-fold faster rate than that of purine nucleoside substrates, such as inosine. Such a remarkable substrate specificity and the plausible hydrolytic mechanisms of uridine have been explored by using QM/MM and MM MD simulations. The present calculations show that the relatively stronger hydrogen-bond interactions between uridine and the active-site residues Gln227 and Tyr231 in CU-NH play an important role in enhancing the substrate binding and thus promoting the N-glycosidic bond cleavage, in comparison with inosine. The estimated energy barrier of 30 kcal/mol for the hydrolysis of inosine is much higher than 22 kcal/mol for uridine. Extensive MM MD simulations on the transportation of substrates to the active site of CU-NH indicate that the uridine binding is exothermic by ∼23 kcal/mol, more remarkable than inosine (∼12 kcal/mol). All of these arise from the noncovalent interactions between the substrate and the active site featured in CU-NH, which account for the substrate specificity. Quite differing from other nucleoside hydrolases, here the enzymatic N-glycosidic bond cleavage of uridine is less influenced by its protonation.
Collapse
Affiliation(s)
- Fangfang Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 360015, China
| | - Nanhao Chen
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Yongheng Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 360015, China
| |
Collapse
|
2
|
Wu RR, Chen Y, Rodgers MT. Mechanisms and energetics for N-glycosidic bond cleavage of protonated 2'-deoxyguanosine and guanosine. Phys Chem Chem Phys 2016; 18:2968-80. [PMID: 26740232 DOI: 10.1039/c5cp05738h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Experimental and theoretical investigations suggest that hydrolysis of N-glycosidic bonds generally involves a concerted SN2 or a stepwise SN1 mechanism. While theoretical investigations have provided estimates for the intrinsic activation energies associated with N-glycosidic bond cleavage reactions, experimental measurements to validate the theoretical studies remain elusive. Here we report experimental investigations for N-glycosidic bond cleavage of the protonated guanine nucleosides, [dGuo+H](+) and [Guo+H](+), using threshold collision-induced dissociation (TCID) techniques. Two major dissociation pathways involving N-glycosidic bond cleavage, resulting in production of protonated guanine or the elimination of neutral guanine are observed in competition for both [dGuo+H](+) and [Guo+H](+). The detailed mechanistic pathways for the N-glycosidic bond cleavage reactions observed are mapped via electronic structure calculations. Excellent agreement between the measured and B3LYP calculated activation energies and reaction enthalpies for N-glycosidic bond cleavage of [dGuo+H](+) and [Guo+H](+) in the gas phase is found indicating that these dissociation pathways involve stepwise E1 mechanisms in analogy to the SN1 mechanisms that occur in the condensed phase. In contrast, MP2 is found to significantly overestimate the activation energies and slightly overestimate the reaction enthalpies. The 2'-hydroxyl substituent is found to stabilize the N-glycosidic bond such that [Guo+H](+) requires ∼25 kJ mol(-1) more than [dGuo+H](+) to activate the glycosidic bond.
Collapse
Affiliation(s)
- R R Wu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Yu Chen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| |
Collapse
|
3
|
Dračínský M, Šála M, Klepetářová B, Šebera J, Fukal J, Holečková V, Tanaka Y, Nencka R, Sychrovský V. Benchmark Theoretical and Experimental Study on 15N NMR Shifts of Oxidatively Damaged Guanine. J Phys Chem B 2016; 120:915-25. [DOI: 10.1021/acs.jpcb.5b11428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Martin Dračínský
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo náměstí 2, 16610 Praha, Czech Republic
| | - Michal Šála
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo náměstí 2, 16610 Praha, Czech Republic
| | - Blanka Klepetářová
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo náměstí 2, 16610 Praha, Czech Republic
| | - Jakub Šebera
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo náměstí 2, 16610 Praha, Czech Republic
- Institute
of Physics, Academy of Sciences of the Czech Republic, v.v.i, Na Slovance
2, CZ-182 21 Prague
8, Czech Republic
| | - Jiří Fukal
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo náměstí 2, 16610 Praha, Czech Republic
| | - Veronika Holečková
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo náměstí 2, 16610 Praha, Czech Republic
| | - Yoshiyuki Tanaka
- Faculty
of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashirocho, Tokushima, Tokushima 980-8578, Japan
| | - Radim Nencka
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo náměstí 2, 16610 Praha, Czech Republic
| | - Vladimír Sychrovský
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo náměstí 2, 16610 Praha, Czech Republic
| |
Collapse
|
4
|
Lenz SAP, Kellie JL, Wetmore SD. Glycosidic Bond Cleavage in DNA Nucleosides: Effect of Nucleobase Damage and Activation on the Mechanism and Barrier. J Phys Chem B 2015; 119:15601-12. [PMID: 26618397 DOI: 10.1021/acs.jpcb.5b10337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefan A. P. Lenz
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Jennifer L. Kellie
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D. Wetmore
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
5
|
Kanaan N, Crehuet R, Imhof P. Mechanism of the Glycosidic Bond Cleavage of Mismatched Thymine in Human Thymine DNA Glycosylase Revealed by Classical Molecular Dynamics and Quantum Mechanical/Molecular Mechanical Calculations. J Phys Chem B 2015; 119:12365-80. [PMID: 26320595 DOI: 10.1021/acs.jpcb.5b05496] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Base excision of mismatched or damaged nucleotides catalyzed by glycosylase enzymes is the first step of the base excision repair system, a machinery preserving the integrity of DNA. Thymine DNA glycosylase recognizes and removes mismatched thymine by cleaving the C1'-N1 bond between the base and the sugar ring. Our quantum mechanical/molecular mechanical calculations of this reaction in human thymine DNA glycosylase reveal a requirement for a positive charge in the active site to facilitate C1'-N1 bond scission: protonation of His151 significantly lowers the free energy barrier for C1'-N1 bond dissociation compared to the situation with neutral His151. Shuttling a proton from His151 to the thymine base further reduces the activation free energy for glycosidic bond cleavage. Classical molecular dynamics simulations of the H151A mutant suggest that the mutation to the smaller, neutral, residue increases the water accessibility of the thymine base, rendering direct proton transfer from the bulk feasible. Quantum mechanical/molecular mechanical calculations of the glycosidic bond cleavage reaction in the H151A mutant show that the activation free energy is slightly lower than in the wild-type enzyme, explaining the experimentally observed higher reaction rates in this mutant.
Collapse
Affiliation(s)
- Natalia Kanaan
- Institute of Theoretical Physics, Free University Berlin , 14195, Berlin, Germany
| | - Ramon Crehuet
- Institute of Advanced Chemistry of Catalonia (IQAC), CSIC , c/Jordi Girona 18-26, Barcelona 08034, Spain
| | - Petra Imhof
- Institute of Theoretical Physics, Free University Berlin , 14195, Berlin, Germany
| |
Collapse
|
6
|
Halder A, Bhattacharya S, Datta A, Bhattacharyya D, Mitra A. The role of N7 protonation of guanine in determining the structure, stability and function of RNA base pairs. Phys Chem Chem Phys 2015; 17:26249-63. [DOI: 10.1039/c5cp04894j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ab initio computations and bioinformatics studies reveal that stabilization of some important RNA structural motifs might involve N7 protonation of guanine.
Collapse
Affiliation(s)
- Antarip Halder
- Center for Computational Natural Sciences and Bioinformatics (CCNSB)
- International Institute of Information Technology (IIIT-H)
- Hyderabad 500032
- India
| | - Sohini Bhattacharya
- Center for Computational Natural Sciences and Bioinformatics (CCNSB)
- International Institute of Information Technology (IIIT-H)
- Hyderabad 500032
- India
| | - Ayan Datta
- Department of Spectroscopy
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | | | - Abhijit Mitra
- Center for Computational Natural Sciences and Bioinformatics (CCNSB)
- International Institute of Information Technology (IIIT-H)
- Hyderabad 500032
- India
| |
Collapse
|
7
|
Šebera J, Trantírek L, Tanaka Y, Nencka R, Fukal J, Sychrovský V. The activation of N-glycosidic bond cleavage performed by base-excision repair enzyme hOGG1; theoretical study of the role of Lys 249 residue in activation of G, OxoG and FapyG. RSC Adv 2014. [DOI: 10.1039/c4ra08278h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NLMOs of lone-pair electrons at N9 nitrogen and Fukui indexesf2of N9.
Collapse
Affiliation(s)
- Jakub Šebera
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i
- 16610 Praha, Czech Republic
| | - Lukáš Trantírek
- Central European Institute of Technology – Masaryk University
- 625 00 Brno, Czech Republic
| | - Yoshiyuki Tanaka
- Division of Pharmaceutical Chemistry
- Tohoku University
- Sendai, Japan
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i
- 16610 Praha, Czech Republic
| | - Jiří Fukal
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i
- 16610 Praha, Czech Republic
| | - Vladimír Sychrovský
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i
- 16610 Praha, Czech Republic
| |
Collapse
|
8
|
Hou Q, Hu X, Sheng X, Liu Y, Liu C. Theoretical study on the degradation of ADP-ribose polymer catalyzed by poly(ADP-ribose) glycohydrolase. J Mol Graph Model 2013; 42:26-31. [PMID: 23524370 DOI: 10.1016/j.jmgm.2013.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
Abstract
Poly(ADP-ribose) glycohydrolase (PARG) is the only enzyme responsible for the degradation of ADP-ribose polymers. Very recently, the first crystal structure of PARG was reported (Dea Slade, et al., Nature 477 (2011) 616), and a possible SN1-type-like mechanism was proposed. In this work, we present a computational study on the hydrolysis of glycosidic ribose-ribose bond catalyzed by PARG using hybrid density functional theory (DFT) methods. Based on the crystal structure of PARG, three models of the active site were constructed. The calculation results suggest that the degradation of poly(ADP-ribose) follows an SN2 mechanism, and the oxocarbenium expected by Dea Slade is a possible transition state but not an intermediate. The calculated reaction pathway agrees with the proposed mechanism. According to the computational models with different sizes, the roles of key residues are elucidated. Our results may provide useful information for the subsequent experimental and theoretical studies on the structure and functional relationships of PARG.
Collapse
Affiliation(s)
- Qianqian Hou
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | | | | | | | | |
Collapse
|
9
|
Lenz SAP, Kellie JL, Wetmore SD. Glycosidic bond cleavage in deoxynucleotides: effects of solvent and the DNA phosphate backbone in the computational model. J Phys Chem B 2012; 116:14275-84. [PMID: 23167947 DOI: 10.1021/jp3096677] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Density functional theory (B3LYP) was employed to examine the hydrolysis of the canonical 2'-deoxynucleotides in varied environments (gas phase or water) using different computational models for the sugar residue (methyl or phosphate group at C5') and nucleophile (water activated through full or partial proton abstraction). Regardless of the degree of nucleophile activation, our results show that key geometrical parameters along the reaction pathway are notably altered upon direct inclusion of solvent effects in the optimization routine, which leads to significant changes in the reaction energetics and better agreement with experiment. Therefore, despite the wide use of gas-phase calculations in the literature, small model computational work, as well as large-scale enzyme models, that strive to understand nucleotide deglycosylation must adequately describe the environment. Alternatively, although inclusion of the phosphate group at C5' also affects the geometries of important stationary points, the effects cancel to yield unchanged deglycosylation barriers, and therefore smaller computational models can be used to estimate the energy associated with nucleotide deglycosylation, with the 5' phosphate group included if full (geometric) details of the reaction are desired. Hydrogen-bonding interactions with the nucleobase can significantly reduce the barrier to deglycosylation, which supports suggestions that discrete hydrogen-bonding interactions with active-site amino acid residues can play a significant role in enzyme-catalyzed nucleobase excision. Taken together with previous studies, the present work provides vital clues about the components that must be included in future studies of the deglycosylation of isolated noncanonical nucleotides, as well as the corresponding enzyme-catalyzed reactions.
Collapse
Affiliation(s)
- Stefan A P Lenz
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | | | | |
Collapse
|
10
|
Šebera J, Trantírek L, Tanaka Y, Sychrovský V. Pyramidalization of the glycosidic nitrogen provides the way for efficient cleavage of the N-glycosidic bond of 8-OxoG with the hOGG1 DNA repair protein. J Phys Chem B 2012; 116:12535-44. [PMID: 22989268 DOI: 10.1021/jp309098d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A mechanistic pathway for cleavage of the N-glycosidic bond of 8-oxo-2'-deoxyguanosine (oxoG) catalyzed with the human 8-oxoguanine glycosylase 1 DNA repair protein (hOGG1) is proposed in this theoretical study. The reaction scheme suggests direct proton addition to the glycosidic nitrogen N9 of oxoG from the Nε-ammonium of Lys249 residue of hOGG1 that is enabled owing to the N9 pyramidal geometry. The N9-pyramidalization of oxoG is induced within hOGG1 active site. The coordination of N9 nitrogen to the Nε-ammonium of Lys249 unveiled by available crystal structures enables concerted, synchronous substitution of the N9-C1' bond by the N9-H bond. The reaction is compared with other pathways already proposed by means of calculated activation energies. The ΔG(#) energy for the newly proposed reaction mechanism calculated with the B3LYP/6-31G(d,p) method 17.0 kcal mol(-1) is significantly lower than ΔG(#) energies for other reactions employing attack of the Nε-amino group to the anomeric carbon C1' of oxoG and attack of the Nε-ammonium to the N3 nitrogen of oxoG base. Moreover, activation energy for the oxoG cleavage proceeding via N9-pyramidalization is lower than energy calculated for normal G because the electronic state of the five-membered aromatic ring of oxoG is better suited for the reaction. The modification of aromatic character introduced by oxidation to the nucleobase thus seems to be the factor that is checked by hOGG1 to achieve base-specific cleavage.
Collapse
Affiliation(s)
- Jakub Šebera
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo náměstí 2, CZ, 16610 Praha, Czech Republic
| | | | | | | |
Collapse
|
11
|
Wu R, Gong W, Liu T, Zhang Y, Cao Z. QM/MM Molecular Dynamics Study of Purine-Specific Nucleoside Hydrolase. J Phys Chem B 2012; 116:1984-91. [DOI: 10.1021/jp211403j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ruibo Wu
- School of
Pharmaceutical Sciences,
East Campus, Sun Yat-sen University, Guangzhou
510006, China
- State Key
Laboratory of Physical
Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of
Theoretical and Computational Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, China
- Department
of Chemistry, New York University, New
York, New York 10003, United
States
| | - Wengjin Gong
- Department
of Chemistry, New York University, New
York, New York 10003, United
States
| | - Ting, Liu
- State Key
Laboratory of Physical
Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of
Theoretical and Computational Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yingkai Zhang
- Department
of Chemistry, New York University, New
York, New York 10003, United
States
| | - Zexing Cao
- State Key
Laboratory of Physical
Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of
Theoretical and Computational Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
12
|
Rutledge LR, Wetmore SD. Modeling the chemical step utilized by human alkyladenine DNA glycosylase: a concerted mechanism AIDS in selectively excising damaged purines. J Am Chem Soc 2011; 133:16258-69. [PMID: 21877721 DOI: 10.1021/ja207181c] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human alkyladenine DNA glycosylase (AAG) initiates the repair of a wide variety of (neutral or cationic) alkylated and deaminated purines by flipping damaged nucleotides out of the DNA helix and catalyzing the hydrolytic N-glycosidic bond cleavage. Unfortunately, the limited number of studies on the catalytic pathway has left many unanswered questions about the hydrolysis mechanism. Therefore, detailed ONIOM(M06-2X/6-31G(d):AMBER) reaction potential energy surface scans are used to gain the first atomistic perspective of the repair pathway used by AAG. The lowest barrier for neutral 1,N(6)-ethenoadenine (εA) and cationic N(3)-methyladenine (3MeA) excision corresponds to a concerted (A(N)D(N)) mechanism, where our calculated ΔG(‡) = 87.3 kJ mol(-1) for εA cleavage is consistent with recent kinetic data. The use of a concerted mechanism supports previous speculations that AAG uses a nonspecific strategy to excise both neutral (εA) and cationic (3MeA) lesions. We find that AAG uses nonspecific active site DNA-protein π-π interactions to catalyze the removal of inherently more difficult to excise neutral lesions, and strongly bind to cationic lesions, which comes at the expense of raising the excision barrier for cationic substrates. Although proton transfer from the recently proposed general acid (protein-bound water) to neutral substrates does not occur, hydrogen-bond donation lowers the catalytic barrier, which clarifies the role of a general acid in the excision of neutral lesions. Finally, our work shows that the natural base adenine (A) is further inserted into the AAG active site than the damaged substrates, which results in the loss of a hydrogen bond with Y127 and misaligns the general base (E125) and water nucleophile to lead to poor nucleophile activation. Therefore, our work proposes how AAG discriminates against the natural purines in the chemical step and may also explain why some damaged pyrimidines are bound but are not excised by this enzyme.
Collapse
Affiliation(s)
- Lesley R Rutledge
- Department of Chemistry and Biochemistry, University of Lethbridge, Alberta T1K 3M4, Canada
| | | |
Collapse
|
13
|
Tiwari S, Agnihotri N, Mishra PC. Quantum theoretical study of cleavage of the glycosidic bond of 2'-deoxyadenosine: base excision-repair mechanism of DNA by MutY. J Phys Chem B 2011; 115:3200-7. [PMID: 21384840 DOI: 10.1021/jp1109256] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enzyme adenine DNA glycosylase, also called MutY, is known to catalyze base excision repair by removal of adenine from the abnormal 2'-deoxyadenosine:8-oxo-2'-deoxyguanosine pair in DNA. The active site of the enzyme was considered to consist of a glutamic acid residue along with two water molecules. The relevant reaction mechanism involving different barrier energies was studied theoretically. Molecular geometries of the various molecules and complexes involved in the reaction, e.g., the reactant, intermediate, and product complexes as well as transition states, were optimized employing density functional theory at the B3LYP/6-31G(d,p) level in the gas phase. It was followed by single-point energy calculations at the B3LYP/AUG-cc-pVDZ, BHandHLYP/AUG-cc-pVDZ, and MP2/AUG-cc-pVDZ levels in the gas phase. Single-point energy calculations were also carried out at the B3LYP/AUG-cc-pVDZ and BHandHLYP/AUG-cc-pVDZ levels in aqueous media as well as in the solvents chlorobenzene and dichloroethane. For the solvation calculations, the integral equation formalism of the polarizable continuum model (IEF-PCM) was employed. It is found that glutamic acid along with two water molecules would effectively cleave the glycosidic bond of adenosine by a new two-step reaction mechanism proposed here which is different from the three-step mechanism proposed by other authors earlier regarding the working mechanism of MutY.
Collapse
Affiliation(s)
- Saumya Tiwari
- Department of Physics, Banaras Hindu University, Varanasi, India
| | | | | |
Collapse
|
14
|
Theoretical and computational chemistry in Spain. Theor Chem Acc 2011. [DOI: 10.1007/s00214-011-0895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|