1
|
Affiliation(s)
- Giovanni Capranico
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro
8/2, 40126 Bologna, Italy
| | - Jessica Marinello
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro
8/2, 40126 Bologna, Italy
| | - Giovanni Chillemi
- SCAI
SuperComputing Applications and Innovation Department, Cineca, Via dei Tizii 6, 00185 Rome, Italy
| |
Collapse
|
2
|
Gunnoo M, Cazade PA, Galera-Prat A, Nash MA, Czjzek M, Cieplak M, Alvarez B, Aguilar M, Karpol A, Gaub H, Carrión-Vázquez M, Bayer EA, Thompson D. Nanoscale Engineering of Designer Cellulosomes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5619-47. [PMID: 26748482 DOI: 10.1002/adma.201503948] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/01/2015] [Indexed: 05/27/2023]
Abstract
Biocatalysts showcase the upper limit obtainable for high-speed molecular processing and transformation. Efforts to engineer functionality in synthetic nanostructured materials are guided by the increasing knowledge of evolving architectures, which enable controlled molecular motion and precise molecular recognition. The cellulosome is a biological nanomachine, which, as a fundamental component of the plant-digestion machinery from bacterial cells, has a key potential role in the successful development of environmentally-friendly processes to produce biofuels and fine chemicals from the breakdown of biomass waste. Here, the progress toward so-called "designer cellulosomes", which provide an elegant alternative to enzyme cocktails for lignocellulose breakdown, is reviewed. Particular attention is paid to rational design via computational modeling coupled with nanoscale characterization and engineering tools. Remaining challenges and potential routes to industrial application are put forward.
Collapse
Affiliation(s)
- Melissabye Gunnoo
- Materials and Surface Science Institute and Department of Physics and Energy, University of Limerick, Limerick, Ireland
| | - Pierre-André Cazade
- Materials and Surface Science Institute and Department of Physics and Energy, University of Limerick, Limerick, Ireland
| | - Albert Galera-Prat
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), IMDEA Nanociencias and CIBERNED, Madrid, Spain
| | - Michael A Nash
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-University, 80799, Munich, Germany
| | - Mirjam Czjzek
- Sorbonne Universités, UPMC, Université Paris 06, and Centre National de la Recherche Scientifique, UMR 8227, Integrative Biology of Marine Models, Station Biologique, de Roscoff, CS 90074, F-29688, Roscoff cedex, Bretagne, France
| | - Marek Cieplak
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Beatriz Alvarez
- Biopolis S.L., Parc Científic de la Universitat de Valencia, Edificio 2, C/Catedrático Agustín Escardino 9, 46980, Paterna (Valencia), Spain
| | - Marina Aguilar
- Abengoa, S.A., Palmas Altas, Calle Energía Solar nº 1, 41014, Seville, Spain
| | - Alon Karpol
- Designer Energy Ltd., 2 Bergman St., Tamar Science Park, Rehovot, 7670504, Israel
| | - Hermann Gaub
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-University, 80799, Munich, Germany
| | - Mariano Carrión-Vázquez
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), IMDEA Nanociencias and CIBERNED, Madrid, Spain
| | - Edward A Bayer
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Damien Thompson
- Materials and Surface Science Institute and Department of Physics and Energy, University of Limerick, Limerick, Ireland
| |
Collapse
|