1
|
Karaca Ç, Bardak F, Köse E, Ataç A. Experimental and computational insights into the electronic structures and absorption-emission characteristics of coumarin, C-6H, C-153, and C-343 dyes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 335:125995. [PMID: 40068313 DOI: 10.1016/j.saa.2025.125995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/18/2025] [Accepted: 03/04/2025] [Indexed: 03/24/2025]
Abstract
This paper explores the electronic structure and spectral characteristics of coumarin (C), C-6H, C-153, and C-343 in the protic polar solvent acetonitrile, combining computational methods via Density Functional Theory (DFT) and time-dependent Density Functional Theory (TD-DFT) with experimental analysis of UV-Vis and fluorescence spectra. The optoelectronic features of C, C-6H, C-153, and C-343 are primarily utilized in the solution phase for various applications, such as lasers and dye-sensitized solar cells. Computational studies were conducted using four different Modal Chemistry methods [MC1: CAM-B3LYP/6-311++G(d.p), MC2: CAM-B3LYP/6-31 + G(d.p), MC3: B3LYP/6-311++G(d.p), and MC4: B3LYP/6-31 + G(d.p)]. The excited state features were investigated based on TD-DFT/Polarizable Continuum Model-Linear Response and TD-DFT/Polarizable Continuum Model-State Specific formalisms. Molecular orbital configurations, molecular electrostatic potentials, and electron density difference isosurface of the dyes were analyzed to uncover the factors influencing the absorption and emission properties. The decomposed UV-Vis and fluorescence spectra of compounds indicate that emission characteristics are complex and contribute to low-lying energy transitions. The state-specific solutions provide more reliable estimates for smaller molecular structures with less intramolecular charge transfer, whereas the linear response approach excels when more electron-donating functional groups are present. The effect of the basis set in determining both absorption and emission features is almost negligible compared to Hartree-Fock exchange contributions in DFT functionals. B3LYP appears to provide satisfactory results for systems where long-range HF exchange is not as crucial.
Collapse
Affiliation(s)
- Çağlar Karaca
- Manisa Technical Sciences Vocational School, Manisa Celal Bayar University, TR-45140 Manisa, Turkey
| | - Fehmi Bardak
- Department of Physics, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, TR-145140 Manisa, Turkey.
| | - Etem Köse
- Department of Physics, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, TR-145140 Manisa, Turkey
| | - Ahmet Ataç
- Department of Physics, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, TR-145140 Manisa, Turkey
| |
Collapse
|
2
|
Jaiswal VK, Taddei M, Nascimento DR, Garavelli M, Conti I, Nenov A. Reconciling TD-DFT and CASPT2 electronic structure methods for describing the photophysics of DNA. Photochem Photobiol 2024; 100:443-452. [PMID: 38356286 DOI: 10.1111/php.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
Time-dependent density functional theory (TD-DFT) and multiconfigurational second-order perturbation theory (CASPT2) are two of the most widely used methods to investigate photoinduced dynamics in DNA-based systems. These methods sometimes give diverse dynamics in physiological environments usually modeled by quantum mechanics/molecular mechanics (QM/MM) protocol. In this work, we demonstrate for the uridine test case that the underlying topology of the potential energy surfaces of electronic states involved in photoinduced relaxation is similar in both electronic structure methods. This is verified by analyzing surface-hopping dynamics performed at the QM/MM level on aqueous solvated uridine at TD-DFT and CASPT2 levels. By constraining the dynamics to remain onπ π * state we observe similar fluctuations in energy and relaxation lifetimes in surface-hopping dynamics in both TD-DFT and experimentally validated CASPT2 methods. This finding calls for a systematic comparison of the ES potential energy surfaces of DNA and RNA nucleosides at the single- and multi-reference levels of theory. The anomalous long excited state lifetime at the TD-DFT level is explained byn π * trapping due to the tendency of TD-DFT in QM/MM schemes with electrostatic embedding to underestimate the energy of theπ π * state leading to a wrongπ π * / n π * energetic order. A study of the FC energetics suggests that improving the description of the surrounding environment through polarizable embedding or by the expansion of QM layer with hydrogen-bonded waters helps restore the correct state order at TD-DFT level. Thus by combining TDDFT with an accurate modeling of the environment, TD-DFT is positioned as the standout protocol to model photoinduced dynamics in DNA-based aggregates and multimers.
Collapse
Affiliation(s)
- Vishal Kumar Jaiswal
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Bologna, Italy
| | - Mario Taddei
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Bologna, Italy
| | | | - Marco Garavelli
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Bologna, Italy
| | - Irene Conti
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Bologna, Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Bologna, Italy
| |
Collapse
|
3
|
Roldao JC, Oliveira EF, Milián-Medina B, Gierschner J, Roca-Sanjuán D. Accurate Calculation of Excited-State Absorption for Small-to-Medium-Sized Conjugated Oligomers: Multiconfigurational Treatment vs Quadratic Response TD-DFT. J Chem Theory Comput 2022; 18:5449-5458. [PMID: 35939053 DOI: 10.1021/acs.jctc.2c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Excited-state absorption (ESA) spectra of π-conjugated compounds are frequently calculated by (quadratic response) time-dependent density functional theory, (QR) TD-DFT, often giving a reasonable representation of the experimental results despite the (known) incomplete electronic description. To investigate whether this is inherent to the method, we calculate here the ESA spectra of small-to-medium-sized oligophenylenevinylenes (nPV) and oligothiophenes (nT) using QR TD-DFT as well as CASPT2 based on CASSCF geometries. CASPT2 gives indeed a reliable, theoretically correct description of the ESA features for all compounds; the computational effort can be reduced without significant loss of accuracy using TD-DFT geometries. QR TD-DFT, based on BHandHLYP and CAM-/B3LYP functionals, fails on short nTs but provides a reasonable description for spectral positions of nPVs and long nTs. The failure on short nTs is, however, only partly due to the incomplete configuration description but, in particular, related to an improper MO description, resulting in an asymmetric energy spacing of the occupied vs unoccupied MOs in the DFT scheme. Longer nTs, on the other side, adapt approximately the MO scheme for alternant hydrocarbons just like in nPVs, while contributions by two triplet excitations combined to a singlet (which inhibits an accurate treatment of polyenes with standard TD-DFT) do not play a relevant role in the current case. For such "well-behaved" systems, a reasonable representation of ESA spectra is found at the QR TD-DFT level due to the rather small energy shifts when including higher-order excitations.
Collapse
Affiliation(s)
- Juan Carlos Roldao
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, Ciudad Universitaria de Cantoblanco, C. Faraday 9, 28049 Madrid, Spain
| | | | - Begoña Milián-Medina
- Department for Physical Chemistry, Faculty of Chemistry, University of Valencia, Av. Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, Ciudad Universitaria de Cantoblanco, C. Faraday 9, 28049 Madrid, Spain
| | - Daniel Roca-Sanjuán
- Institute of Molecular Science, University of Valencia, 46980 Paterna, Spain
| |
Collapse
|
4
|
Fedotov DA, Paul AC, Koch H, Santoro F, Coriani S, Improta R. Excited state absorption of DNA bases in the gas phase and in chloroform solution: a comparative quantum mechanical study. Phys Chem Chem Phys 2022; 24:4987-5000. [PMID: 35142309 DOI: 10.1039/d1cp04340d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We study the excited state absorption (ESA) properties of the four DNA bases (thymine, cytosine, adenine, and guanine) by different single reference quantum mechanical methods, namely, equation of motion coupled cluster singles and doubles (EOM-CCSD), singles, doubles and perturbative triples (EOM-CC3), and time-dependent density functional theory (TD-DFT), with the long-range corrected CAM-B3LYP functional. Preliminary results at the Tamm-Dancoff (TDA) CAM-B3LYP level using the maximum overlap method (MOM) are reported for thymine. In the gas phase, the three methods predict similar One Photon Absorption (OPA) spectra, which are consistent with the experimental results and with the most accurate computational studies available in the literature. The ESA spectra are then computed for the ππ* states (one for pyrimidine, two for purines) associated with the lowest-energy absorption band, and for the close-lying nπ* state. The EOM-CC3, EOM-CCSD and CAM-B3LYP methods provide similar ESA spectral patterns, which are also in qualitative agreement with literature RASPT2 results. Once validated in the gas phase, TD-CAM-B3LYP has been used to compute the ESA in chloroform, including solvent effects by the polarizable continuum model (PCM). The predicted OPA and ESA spectra in chloroform are very similar to those in the gas phase, most of the bands shifting by less than 0.1 eV, with a small increase of the intensities and a moderate destabilization of the nπ* state. Finally, ESA spectra have been computed from the minima of the lowest energy ππ* state, and found in line with the available experimental transient absorption spectra of the nucleosides in solution, providing further validation of our computational approach.
Collapse
Affiliation(s)
- Daniil A Fedotov
- DTU Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Alexander C Paul
- Department of Chemistry, NTNU - Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Henrik Koch
- Department of Chemistry, NTNU - Norwegian University of Science and Technology, N-7491 Trondheim, Norway.,Scuola Normale Superiore, Piazza dei Cavalieri, 7, I-56126, Pisa, Italy.
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, I-56124 Pisa, Italy.
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark. .,Department of Chemistry, NTNU - Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini-CNR, I-80134 Napoli, Italy.
| |
Collapse
|
5
|
Roldao JC, Oliveira EF, Milián-Medina B, Gierschner J, Roca-Sanjuán D. Quantum-chemistry study of the ground and excited state absorption of distyrylbenzene: Multi vs single reference methods. J Chem Phys 2022; 156:044102. [DOI: 10.1063/5.0073189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Juan Carlos Roldao
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, Ciudad Universitaria de Cantoblanco, C. Faraday 9, 28049 Madrid, Spain
| | - Eliezer Fernando Oliveira
- Gleb Wataghin Institute of Physics, University of Campinas (UNICAMP), Campinas, SP, Brazil
- Center for Computational Engineering and Sciences (CCES), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Begoña Milián-Medina
- Department for Physical Chemistry, Faculty of Chemistry, University of Valencia, Av. Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, Ciudad Universitaria de Cantoblanco, C. Faraday 9, 28049 Madrid, Spain
| | - Daniel Roca-Sanjuán
- Institute of Molecular Science, University of Valencia, 46980 Paterna, Spain
| |
Collapse
|
6
|
Segarra‐Martí J, Bearpark MJ. Modelling Photoionisation in Isocytosine: Potential Formation of Longer-Lived Excited State Cations in its Keto Form. Chemphyschem 2021; 22:2172-2181. [PMID: 34370368 PMCID: PMC8597144 DOI: 10.1002/cphc.202100402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/09/2021] [Indexed: 11/24/2022]
Abstract
Studying the effects of UV and VUV radiation on non-canonical DNA/RNA nucleobases allows us to compare how they release excess energy following absorption with respect to their canonical counterparts. This has attracted much research attention in recent years because of its likely influence on the origin of our genetic lexicon in prebiotic times. Here we present a CASSCF and XMS-CASPT2 theoretical study of the photoionisation of non-canonical pyrimidine nucleobase isocytosine in both its keto and enol tautomeric forms. We analyse their lowest energy cationic excited states including 2 π + , 2 n O + and 2 n N + and compare these to the corresponding electronic states in cytosine. Investigating lower-energy decay pathways we find - unexpectedly - that keto-isocytosine+ presents a sizeable energy barrier potentially inhibiting decay to its cationic ground state, whereas enol-isocytosine+ features a barrierless and consequently ultrafast pathway analogous to the one previously found for the canonical (keto) form of cytosine+ . Dynamic electron correlation reduces the energy barrier in the keto form substantially (by ∼1 eV) but it is nevertheless still present. We additionally compute the UV/Vis absorption signals of the structures encountered along these decay channels to provide spectroscopic fingerprints to assist future experiments in monitoring these intricate photo-processes.
Collapse
Affiliation(s)
- Javier Segarra‐Martí
- Department of ChemistryMolecular Sciences Research HubImperial College LondonWhite City Campus, 82 Wood LaneLondonW12 0BZUK
- Present address: Instituto de Ciencia MolecularUniversitat de ValenciaP.O. Box 22085ES-46071ValenciaSpain
| | - Michael J. Bearpark
- Department of ChemistryMolecular Sciences Research HubImperial College LondonWhite City Campus, 82 Wood LaneLondonW12 0BZUK
| |
Collapse
|
7
|
Fedotov DA, Paul AC, Posocco P, Santoro F, Garavelli M, Koch H, Coriani S, Improta R. Excited-State Absorption of Uracil in the Gas Phase: Mapping the Main Decay Paths by Different Electronic Structure Methods. J Chem Theory Comput 2021; 17:1638-1652. [PMID: 33529532 DOI: 10.1021/acs.jctc.0c01150] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We present a computational study of the one-photon and excited-state absorption (ESA) from the two lowest energy excited states of uracil in the gas phase: an nπ* dark state (1n) and the lowest energy bright ππ* state (1π). The predictions of six different linear response electronic structure methods, namely, TD-CAM-B3LYP, EOM-CCSD, EOM-CC3, ADC(2), ADC(2)-x, and ADC(3) are critically compared. In general, the spectral shapes predicted by TD-CAM-B3LYP, EOM-CCSD, EOM-CC3, and ADC(3) are fairly similar, though the quality of TD-CAM-B3LYP slightly deteriorates in the high-energy region. By computing the spectra at some key structures on different potential energy surfaces (PES), that is, the Franck-Condon point, the 1n minimum, and structures representative of different regions of the 1π PES, we obtain important insights into the shift of the ESA spectra, following the motion of the wavepacket on the excited-state PES. Though 1π has larger ESA than 1n, some spectral regions are dominated by these latter signals. Aside from its methodological interest, we thus obtain interesting indications to interpret transient absorption spectra to disentangle the photoactivated dynamics of nucleobases.
Collapse
Affiliation(s)
- Daniil A Fedotov
- DTU Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800 Kongens Lyngby, Denmark
| | - Alexander C Paul
- Department of Chemistry, NTNU-Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Paolo Posocco
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, via L. Giorgieri 1, I-34127 Trieste, Italy
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Marco Garavelli
- Department of Industrial Chemistry "Toso Montanari", Università degli Studi di Bologna, I-40126 Bologna, Italy
| | - Henrik Koch
- Department of Chemistry, NTNU-Norwegian University of Science and Technology, N-7491 Trondheim, Norway.,Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56100 Pisa, Italy
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800 Kongens Lyngby, Denmark.,Department of Chemistry, NTNU-Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 6, I-80134 Napoli, Italy
| |
Collapse
|
8
|
Jaiswal VK, Segarra-Martí J, Marazzi M, Zvereva E, Assfeld X, Monari A, Garavelli M, Rivalta I. First-principles characterization of the singlet excited state manifold in DNA/RNA nucleobases. Phys Chem Chem Phys 2020; 22:15496-15508. [DOI: 10.1039/d0cp01823f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
TD-DFT characterization of the high-energy singlet excited state manifold of the canonical DNA/RNA nucleobasesin vacuumis assessed against RASPT2 reference computations for reliable simulations of linear and non-linear electronic spectra.
Collapse
Affiliation(s)
- Vishal K. Jaiswal
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- Viale del Risorgimento 4
- I-40136 Bologna
- Italy
| | - Javier Segarra-Martí
- Univ Lyon, Ens de Lyon, CNRS
- Université Lyon 1
- Laboratoire de Chimie UMR 5182
- Lyon
- France
| | - Marco Marazzi
- Université de Lorraine and CNRS
- LPCT UMR 7019
- F-54000 Nancy
- France
- CNRS, Laboratoire de Physique et Chimie Théoriques
| | - Elena Zvereva
- Université de Lorraine and CNRS
- LPCT UMR 7019
- F-54000 Nancy
- France
- CNRS, Laboratoire de Physique et Chimie Théoriques
| | - Xavier Assfeld
- Université de Lorraine and CNRS
- LPCT UMR 7019
- F-54000 Nancy
- France
- CNRS, Laboratoire de Physique et Chimie Théoriques
| | - Antonio Monari
- Université de Lorraine and CNRS
- LPCT UMR 7019
- F-54000 Nancy
- France
- CNRS, Laboratoire de Physique et Chimie Théoriques
| | - Marco Garavelli
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- Viale del Risorgimento 4
- I-40136 Bologna
- Italy
| | - Ivan Rivalta
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- Viale del Risorgimento 4
- I-40136 Bologna
- Italy
| |
Collapse
|
9
|
Segarra-Martí J, Segatta F, Mackenzie TA, Nenov A, Rivalta I, Bearpark MJ, Garavelli M. Modeling multidimensional spectral lineshapes from first principles: application to water-solvated adenine. Faraday Discuss 2020; 221:219-244. [DOI: 10.1039/c9fd00072k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We theoretically describe spectral lineshape from first principles, providing insight into solvent–solute interactions in terms of static and dynamic disorder and how these shape experimental signals in linear and non-linear optical spectroscopies.
Collapse
Affiliation(s)
- Javier Segarra-Martí
- Department of Chemistry
- Molecular Sciences Research Hub
- Imperial College London
- London
- UK
| | - Francesco Segatta
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università degli studi di Bologna
- 40136 Bologna
- Italy
| | - Tristan A. Mackenzie
- Department of Chemistry
- Molecular Sciences Research Hub
- Imperial College London
- London
- UK
| | - Artur Nenov
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università degli studi di Bologna
- 40136 Bologna
- Italy
| | - Ivan Rivalta
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università degli studi di Bologna
- 40136 Bologna
- Italy
- Univ Lyon
| | - Michael J. Bearpark
- Department of Chemistry
- Molecular Sciences Research Hub
- Imperial College London
- London
- UK
| | - Marco Garavelli
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università degli studi di Bologna
- 40136 Bologna
- Italy
| |
Collapse
|
10
|
Segarra‐Martí J, Tran T, Bearpark MJ. Computing the Ultrafast and Radiationless Electronic Excited State Decay of Cytosine and 5‐methyl‐cytosine Cations: Uncovering the Role of Dynamic Electron Correlation. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Javier Segarra‐Martí
- Department of Chemistry, Molecular Sciences Research HubImperial College London White City Campus, 80 Wood Lane W12 0BZ London UK
| | - Thierry Tran
- Department of Chemistry, Molecular Sciences Research HubImperial College London White City Campus, 80 Wood Lane W12 0BZ London UK
| | - Michael J. Bearpark
- Department of Chemistry, Molecular Sciences Research HubImperial College London White City Campus, 80 Wood Lane W12 0BZ London UK
| |
Collapse
|
11
|
Segarra-Martí J, Tran T, Bearpark MJ. Ultrafast and radiationless electronic excited state decay of uracil and thymine cations: computing the effects of dynamic electron correlation. Phys Chem Chem Phys 2019; 21:14322-14330. [PMID: 30698175 DOI: 10.1039/c8cp07189f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this article we characterise the radiationless decay of the first few electronic excited states of the cations of DNA/RNA nucleobases uracil and thymine, including the effects of dynamic electron correlation on energies and geometries (optimised with XMS-CASPT2). In both systems, we find that one state of 2n and another two of 2π+ character can be populated following photoionisation, and their different minima and interstate crossings are located. We find strong similarities between uracil and thymine cations: with accessible conical intersections suggesting that depopulation of their electronic excited states takes place on ultrafast timescales in both systems, suggesting that they are photostable in agreement with previous theoretical (uracil+) evidence. We find that dynamic electron correlation separates the energy levels of the "3-state" conical intersection (D2/D1/D0)CI previously located with CASSCF for uracil+, which will therefore have a different geometry and higher energy. Simulating the electronic and vibrational absorptions allows us to characterise spectral fingerprints that could be used to monitor these cation photo-processes experimentally.
Collapse
Affiliation(s)
- Javier Segarra-Martí
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, W12 0BZ, London, UK.
| | - Thierry Tran
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, W12 0BZ, London, UK.
| | - Michael J Bearpark
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, W12 0BZ, London, UK.
| |
Collapse
|
12
|
Borrego-Varillas R, Nenov A, Ganzer L, Oriana A, Manzoni C, Tolomelli A, Rivalta I, Mukamel S, Garavelli M, Cerullo G. Two-dimensional UV spectroscopy: a new insight into the structure and dynamics of biomolecules. Chem Sci 2019. [DOI: 10.1039/c9sc03871j] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Two-dimensional ultraviolet spectroscopy has the potential to deliver rich structural and dynamical information on biomolecules such as DNA and proteins.
Collapse
Affiliation(s)
| | - A. Nenov
- Dipartimento di Chimica Industriale
- Universitá degli Studi di Bologna
- I-40136 Bologna
- Italy
| | - L. Ganzer
- IFN-CNR
- Dipartimento di Fisica
- Politecnico di Milano
- I-20133 Milano
- Italy
| | - A. Oriana
- IFN-CNR
- Dipartimento di Fisica
- Politecnico di Milano
- I-20133 Milano
- Italy
| | - C. Manzoni
- IFN-CNR
- Dipartimento di Fisica
- Politecnico di Milano
- I-20133 Milano
- Italy
| | - A. Tolomelli
- Dipartimento di Chimica
- Universitá degli Studi di Bologna
- I-40126 Bologna
- Italy
| | - I. Rivalta
- Dipartimento di Chimica Industriale
- Universitá degli Studi di Bologna
- I-40136 Bologna
- Italy
| | - S. Mukamel
- Department of Chemistry
- Department of Physics and Astronomy
- University of California
- Irvine
- USA
| | - M. Garavelli
- Dipartimento di Chimica Industriale
- Universitá degli Studi di Bologna
- I-40136 Bologna
- Italy
| | - G. Cerullo
- IFN-CNR
- Dipartimento di Fisica
- Politecnico di Milano
- I-20133 Milano
- Italy
| |
Collapse
|
13
|
Pepino AJ, Segarra-Martí J, Nenov A, Rivalta I, Improta R, Garavelli M. UV-induced long-lived decays in solvated pyrimidine nucleosides resolved at the MS-CASPT2/MM level. Phys Chem Chem Phys 2018; 20:6877-6890. [PMID: 29459916 DOI: 10.1039/c7cp08235e] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The most relevant 'dark' electronic excited states in DNA/RNA pyrimidine nucleosides are mapped in water employing hybrid MS-CASPT2/MM optimisations with explicit solvation and including the sugar. Conical intersections (CIs) between initially accessed bright 1ππ* and the lowest energy dark 1nπ* excited states, involving the lone pair localised on the oxygen and/or nitrogen atoms are characterised. They are found in the vicinities of the Franck-Condon (FC) region and are shown to facilitate non-adiabatic population transfer. The excited state population of the 1nOπ* state, localised in the carbonyl moiety on all pyrimidine nucleosides, is predicted to rapidly evolve to its minimum, displaying non-negligible potential energy barriers along its non-radiative decay, and accounting for the ps signal registered in pump-probe experiments as well as for an efficient population of the triplet state. Cytidine displays an additional 1nNπ* state localised in the N3 atom and that leads to its excited state minimum displaying large potential energy barriers in the pathway connecting to the CI with the ground state. Sugar-to-base hydrogen/proton transfer processes are assessed in solution for the first time, displaying a sizable barrier along its decay and thus being competitive with other slow decay channels in the ps and ns timescales. A unified deactivation scheme for the long-lived channels of pyrimidine nucleosides is delivered, where the 1nOπ* state is found to mediate the long-lived decay in the singlet manifold and act as the doorway for triplet population and thus accounting for the recorded phosphorescence and, more generally, for the transient/photoelectron spectral signals registered up to the ns timescale.
Collapse
Affiliation(s)
- Ana Julieta Pepino
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
14
|
Towards Accurate Simulation of Two-Dimensional Electronic Spectroscopy. Top Curr Chem (Cham) 2018; 376:24. [DOI: 10.1007/s41061-018-0201-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/24/2018] [Indexed: 10/14/2022]
|
15
|
The highly excited-state manifold of guanine: calibration for nonlinear electronic spectroscopy simulations. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2225-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Segarra-Martí J, Garavelli M, Aquilante F. Converging many-body correlation energies by means of sequence extrapolation. J Chem Phys 2018; 148:034107. [DOI: 10.1063/1.5000783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- J. Segarra-Martí
- Laboratoire de Chimie UMR 5182, ENS de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| | - M. Garavelli
- Dipartimento di Chimica Industriale “Toso Montanari,” Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - F. Aquilante
- Dipartimento di Chimica “Giacomo Ciamician,” Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
17
|
Jawiczuk M. A theoretical study on the hydrogen bond and stability of cytosine and thymine dimers. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2017.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Segarra-Martí J, Jaiswal VK, Pepino AJ, Giussani A, Nenov A, Mukamel S, Garavelli M, Rivalta I. Two-dimensional electronic spectroscopy as a tool for tracking molecular conformations in DNA/RNA aggregates. Faraday Discuss 2018; 207:233-250. [DOI: 10.1039/c7fd00201g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A computational strategy to simulate two-dimensional electronic spectra (2DES) is introduced, which allows characterising ground state conformations of flexible nucleobase aggregates that play a crucial role in nucleic acid photochemistry.
Collapse
Affiliation(s)
- Javier Segarra-Martí
- Univ Lyon, Ens de Lyon, CNRS
- Université Claude Bernard Lyon 1
- Laboratoire de Chimie UMR 5182
- Lyon
- France
| | - Vishal K. Jaiswal
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- Italy
| | - Ana Julieta Pepino
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- Italy
| | - Angelo Giussani
- Department of Chemistry
- University College London
- London WC1H 0AJ
- UK
| | - Artur Nenov
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- Italy
| | - Shaul Mukamel
- Department of Chemistry
- University of California
- Irvine
- USA
| | - Marco Garavelli
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- Italy
| | - Ivan Rivalta
- Univ Lyon, Ens de Lyon, CNRS
- Université Claude Bernard Lyon 1
- Laboratoire de Chimie UMR 5182
- Lyon
- France
| |
Collapse
|
19
|
Dijkstra AG, Prokhorenko VI. Simulation of photo-excited adenine in water with a hierarchy of equations of motion approach. J Chem Phys 2017; 147:064102. [DOI: 10.1063/1.4997433] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Arend G. Dijkstra
- University of Leeds, School of Chemistry and School of Physics and Astronomy, Leeds LS2 9JT, United Kingdom
| | - Valentyn I. Prokhorenko
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
20
|
Giussani A, Marcheselli J, Mukamel S, Garavelli M, Nenov A. On the Simulation of Two-dimensional Electronic Spectroscopy of Indole-containing Peptides. Photochem Photobiol 2017; 93:1368-1380. [PMID: 28380692 DOI: 10.1111/php.12770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/27/2017] [Indexed: 01/27/2023]
Abstract
A benchmark study of low-cost multiconfigurational CASSCF/CASPT2 schemes for computing the electronic structure of indole is presented. This facilitates the simulation of near-ultraviolet (UV) pump visible (VIS) probe (i.e. two-color) two-dimensional electronic spectra (2DES) of homo- and hetero-aggregates as well as for processing of multiple snapshots from molecular dynamics simulations. Fingerprint excited-state absorption signatures of indole are identified in a broad spectral window between 10 and 25 k cm-1 . The 18-24 k cm-1 spectral window which has no absorption of the monomer and noninteracting aggregates is ideally suited to embed charge-transfer signatures in stacked aggregates. The small peptide Trp-cage, containing a tryptophan and a tyrosine amino acids, having indole and phenol as side chains, respectively, serves to prove the concept. Clear charge-transfer signatures are found in the proposed spectral window for an interchromophore distance of 5 Å making near-UV pump VIS probe 2DES a suitable technique for resolving closely packed aggregates. We demonstrate that 2DES utilizing ultra-short pulses has the potential to resolve the nature of the spectroscopically resolved electronic states and that the line shapes of the excited-state absorption signals can be correlated to the polarity of the relevant states.
Collapse
Affiliation(s)
- Angelo Giussani
- Dipartimento di Chimica "G. Ciamician", Università degli Studi di Bologna, Bologna, Italy
| | | | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, CA
| | - Marco Garavelli
- Dipartimento di Chimica "G. Ciamician", Università degli Studi di Bologna, Bologna, Italy.,Dipartimento di Chimica Industriale "Toso Montanari", Universita degli Studi di Bologna, Bologna, Italy
| | - Artur Nenov
- Dipartimento di Chimica "G. Ciamician", Università degli Studi di Bologna, Bologna, Italy.,Dipartimento di Chimica Industriale "Toso Montanari", Universita degli Studi di Bologna, Bologna, Italy
| |
Collapse
|
21
|
Pepino AJ, Segarra-Martí J, Nenov A, Improta R, Garavelli M. Resolving Ultrafast Photoinduced Deactivations in Water-Solvated Pyrimidine Nucleosides. J Phys Chem Lett 2017; 8:1777-1783. [PMID: 28346789 DOI: 10.1021/acs.jpclett.7b00316] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
For the first time, ultrafast deactivations of photoexcited water-solvated pyrimidine nucleosides are mapped employing hybrid QM(CASPT2)/MM(AMBER) optimizations that account for explicit solvation, sugar effects, and dynamically correlated potential energy surfaces. Low-energy S1/S0 ring-puckering and ring-opening conical intersections (CIs) are suggested to drive the ballistic coherent subpicosecond (<200 fs) decays observed in each pyrimidine, the energetics controlling this processes correlating with the lifetimes observed. A second bright 1π2π* state, promoting excited-state population branching and leading toward a third CI with the ground state, is proposed to be involved in the slower ultrafast decay component observed in Thd/Cyd. The transient spectroscopic signals of the competitive deactivation channels are computed for the first time. A general unified scheme for ultrafast deactivations, spanning the sub- to few-picosecond time domain, is eventually delivered, with computed data that matches the experiments and elucidates the intrinsic photoprotection mechanism in solvated pyrimidine nucleosides.
Collapse
Affiliation(s)
- Ana Julieta Pepino
- Dipartimento di Chimica Industriale "Toso Montanari" Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Javier Segarra-Martí
- Laboratoire de Chimie UMR 5182, Université Lyon, ENS de Lyon, CNRS, Université Lyon 1 , F-69342 Lyon, France
| | - Artur Nenov
- Dipartimento di Chimica Industriale "Toso Montanari" Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini CNR , Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari" Viale del Risorgimento, 4, 40136 Bologna, Italy
- Laboratoire de Chimie UMR 5182, Université Lyon, ENS de Lyon, CNRS, Université Lyon 1 , F-69342 Lyon, France
| |
Collapse
|
22
|
Pola M, Kochman MA, Picchiotti A, Prokhorenko VI, Miller RJD, Thorwart M. Linear photoabsorption spectra and vertical excitation energies of microsolvated DNA nucleobases in aqueous solution. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2017. [DOI: 10.1142/s0219633617500286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Employing density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations in combination with the semiclassical nuclear ensemble method, we have simulated the photoabsorption spectra of the four canonical DNA nucleobases in aqueous solution. In order to model the effects of solvation, for each nucleobase, a number of solvating water molecules were explicitly included in the simulations, and additionally, the bulk solvent was represented by a continuous polarizable medium. We find that the effect of the solvation shell in general is significant, and its inclusion improves the realism of the spectral simulations. The involvement of lone electron pairs in the hydrogen bonding with the solvating water molecules has the effect of systematically increasing the energies of vertical excitation into the [Formula: see text]-type states. Apart from a systematic blue shift of around [Formula: see text][Formula: see text]eV observed in the absorption peaks, the calculated photoabsorption spectra reproduce the measured ones with good accuracy. The photoabsorption spectra are dominated by excited states with [Formula: see text] and partial [Formula: see text] character. No low-energy charge transfer states are observed with the use of the CAM-B3LYP and M06-2X functionals.
Collapse
Affiliation(s)
- Martina Pola
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Michal A. Kochman
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Alessandra Picchiotti
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Valentyn I. Prokhorenko
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - R. J. Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Michael Thorwart
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
23
|
Segarra-Martí J, Francés-Monerris A, Roca-Sanjuán D, Merchán M. Assessment of the Potential Energy Hypersurfaces in Thymine within Multiconfigurational Theory: CASSCF vs. CASPT2. Molecules 2016; 21:molecules21121666. [PMID: 27918489 PMCID: PMC6274573 DOI: 10.3390/molecules21121666] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 11/16/2022] Open
Abstract
The present study provides new insights into the topography of the potential energy hypersurfaces (PEHs) of the thymine nucleobase in order to rationalize its main ultrafast photochemical decay paths by employing two methodologies based on the complete active space self-consistent field (CASSCF) and the complete active space second-order perturbation theory (CASPT2) methods: (i) CASSCF optimized structures and energies corrected with the CASPT2 method at the CASSCF geometries and (ii) CASPT2 optimized geometries and energies. A direct comparison between these strategies is drawn, yielding qualitatively similar results within a static framework. A number of analyses are performed to assess the accuracy of these different computational strategies under study based on a variety of numerical thresholds and optimization methods. Several basis sets and active spaces have also been calibrated to understand to what extent they can influence the resulting geometries and subsequent interpretation of the photochemical decay channels. The study shows small discrepancies between CASSCF and CASPT2 PEHs, displaying a shallow planar or twisted 1(ππ*) minimum, respectively, and thus featuring a qualitatively similar scenario for supporting the ultrafast bi-exponential deactivation registered in thymine upon UV-light exposure. A deeper knowledge of the PEHs at different levels of theory provides useful insight into its correct characterization and subsequent interpretation of the experimental observations. The discrepancies displayed by the different methods studied here are then discussed and framed within their potential consequences in on-the-fly non-adiabatic molecular dynamics simulations, where qualitatively diverse outcomes are expected.
Collapse
Affiliation(s)
- Javier Segarra-Martí
- Instituto de Ciencia Molecular, Universitat de València, P. O. Box 22085, ES-46071 Valencia, Spain.
- Present Address: Laboratoire de Chimie UMR 5182, École Normale Supérieure de Lyon, CNRS, Université de Lyon, 46 Allée d'Italie, F-69364 Lyon Cedex 07, France.
| | - Antonio Francés-Monerris
- Instituto de Ciencia Molecular, Universitat de València, P. O. Box 22085, ES-46071 Valencia, Spain.
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular, Universitat de València, P. O. Box 22085, ES-46071 Valencia, Spain.
| | - Manuela Merchán
- Instituto de Ciencia Molecular, Universitat de València, P. O. Box 22085, ES-46071 Valencia, Spain.
| |
Collapse
|
24
|
Li Q, Giussani A, Segarra-Martí J, Nenov A, Rivalta I, Voityuk AA, Mukamel S, Roca-Sanjuán D, Garavelli M, Blancafort L. Multiple Decay Mechanisms and 2D-UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine-Uracil Monophosphate. Chemistry 2016; 22:7497-507. [PMID: 27113273 PMCID: PMC5021121 DOI: 10.1002/chem.201505086] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 02/04/2023]
Abstract
The decay channels of singlet excited adenine uracil monophosphate (ApU) in water are studied with CASPT2//CASSCF:MM potential energy calculations and simulation of the 2D-UV spectroscopic fingerprints with the aim of elucidating the role of the different electronic states of the stacked conformer in the excited state dynamics. The adenine (1) La state can decay without a barrier to a conical intersection with the ground state. In contrast, the adenine (1) Lb and uracil S(U) states have minima that are separated from the intersections by sizeable barriers. Depending on the backbone conformation, the CT state can undergo inter-base hydrogen transfer and decay to the ground state through a conical intersection, or it can yield a long-lived minimum stabilized by a hydrogen bond between the two ribose rings. This suggests that the (1) Lb , S(U) and CT states of the stacked conformer may all contribute to the experimental lifetimes of 18 and 240 ps. We have also simulated the time evolution of the 2D-UV spectra and provide the specific fingerprint of each species in a recommended probe window between 25 000 and 38 000 cm(-1) in which decongested, clearly distinguishable spectra can be obtained. This is expected to allow the mechanistic scenarios to be discerned in the near future with the help of the corresponding experiments. Our results reveal the complexity of the photophysics of the relatively small ApU system, and the potential of 2D-UV spectroscopy to disentangle the photophysics of multichromophoric systems.
Collapse
Affiliation(s)
- Quansong Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Angelo Giussani
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Javier Segarra-Martí
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Artur Nenov
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Ivan Rivalta
- Univ Lyon, >Ens de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, 69342, Lyon, France
| | - Alexander A Voityuk
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilvi, 17071, Girona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California, 92697-2025, USA
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular, Universitat de València, P. O. Box 22085, 46071, Valencia, Spain
| | - Marco Garavelli
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126, Bologna, Italy.
- Univ Lyon, >Ens de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, 69342, Lyon, France.
| | - Lluís Blancafort
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilvi, 17071, Girona, Spain.
| |
Collapse
|