1
|
Baranowska-Łączkowska A, Łączkowski KZ, Banaszak-Piechowska A, Fernández B. Systematic Analysis of the Role of Substituents in Oxiranes, Oxetanes, and Oxathietanes Chemical Shifts. J Phys Chem A 2021; 125:2077-2087. [PMID: 33661627 DOI: 10.1021/acs.jpca.0c10642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The important role substituents play on proton chemical shifts in heterocyclic compounds was investigated in detail. For this purpose, a considerable number of model oxiranes, oxetanes, and oxathietanes with different substituents were studied in a systematic way. In addition, the oxygen and sulfur heteroatom influence on the chemical shift values was analyzed. The density functional theory (DFT) approximation was employed together with the M06 and the B3LYP functionals and the aug-pcS-1 and the 6-311++G** basis sets. We carried out a careful analysis of the shift values and the changes in the corresponding molecular electrostatic potential surfaces due to substitution. We observed that chemical shift values for the protons closest to the substituents are larger for the chloro and fluoro derivatives than those for the cyano and ethynyl ones. The presence of oxygen as well as sulfur in the ring causes an increase of the chemical shift values, most pronounced for the atom closest to the substituent. A large decrease of the proton shifts was observed when going from methylenecyclopropane to methyleneoxirane that can be attributed to π-electron resonance. Protons diagonal to the substituents behaved in a different way depending on their cis or trans disposition with respect to them. The conclusions of the present study will be useful in theoretical and experimental work on NMR spectra of heterocyclic compounds.
Collapse
Affiliation(s)
| | - Krzysztof Z Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum Nicolaus Copernicus University, 2 Jurasz Street, PL-85089 Bydgoszcz, Poland
| | | | - Berta Fernández
- Department of Physical Chemistry, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Costa FLP, de Albuquerque ACF, Fiorot RG, Lião LM, Martorano LH, Mota GVS, Valverde AL, Carneiro JWM, dos Santos Junior FM. Structural characterisation of natural products by means of quantum chemical calculations of NMR parameters: new insights. Org Chem Front 2021. [DOI: 10.1039/d1qo00034a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this review, we focus in all aspects of NMR simulation of natural products, from the fundamentals to the new computational toolboxes available, combining advanced quantum chemical calculations with upstream data processing and machine learning.
Collapse
Affiliation(s)
| | - Ana C. F. de Albuquerque
- Departamento de Química Orgânica
- Instituto de Química
- Universidade Federal Fluminense
- Niterói-RJ
- Brazil
| | - Rodolfo G. Fiorot
- Departamento de Química Orgânica
- Instituto de Química
- Universidade Federal Fluminense
- Niterói-RJ
- Brazil
| | - Luciano M. Lião
- Instituto de Química
- Universidade Federal de Goiás
- 74690-900 Goiânia-GO
- Brazil
| | - Lucas H. Martorano
- Departamento de Química Orgânica
- Instituto de Química
- Universidade Federal Fluminense
- Niterói-RJ
- Brazil
| | - Gunar V. S. Mota
- Faculdade de Ciências Naturais/Instituto de Ciências Exatas e Naturais
- Universidade Federal do Pará
- Belém-PA
- Brazil
| | - Alessandra L. Valverde
- Departamento de Química Orgânica
- Instituto de Química
- Universidade Federal Fluminense
- Niterói-RJ
- Brazil
| | - José W. M. Carneiro
- Departamento de Química Inorgânica
- Instituto de Química
- Universidade Federal Fluminense
- Niterói-RJ
- Brazil
| | | |
Collapse
|
3
|
Cytarska J, Anisiewicz A, Baranowska-Łączkowska A, Sikora A, Wietrzyk J, Misiura K, Łączkowski KZ. Triazene salts: Design, synthesis, ctDNA interaction, lipophilicity determination, DFT calculation, and antiproliferative activity against human cancer cell lines. Saudi Pharm J 2019; 27:303-311. [PMID: 30976172 PMCID: PMC6438848 DOI: 10.1016/j.jsps.2018.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 11/22/2018] [Indexed: 11/26/2022] Open
Abstract
Synthesis, characterization and investigation of antiproliferative activity of nine triazene salts against human cancer cells lines (MV-4-11, MCF-7, JURKAT, HT-29, Hep-G2, HeLa, Du-145 and DAUDI), and normal human mammary epithelial cell line (MCF7-10A) is presented. The structures of novel compounds were determined using 1H and 13C NMR, and GC-APCI-MS analyses. Among the derivatives, compound 2c, 2d, 2e and 2f has very strong activity against biphenotypic B myelomonocytic leukemia MV4-11, with IC50 values from 5.42 to 7.69 µg/ml. The cytotoxic activity of compounds 2c-2f against normal human mammary gland epithelial cells MCF-10A is 6–11 times lower than against cancer cell lines. Our results also show that compounds 2c and 2f have very strong activity against DAUDI and HT-29 with IC50 4.91 µg/ml and 5.59 µg/ml, respectively. Their lipophilicity was determined using reversed-phase ultra-performance liquid chromatography and correlated with antiproliferative activity. Our UV–Vis spectroscopic results indicate also that triazene salts tends to interact with negatively charged DNA phosphate chain. To support the experiment, theoretical calculations of the 1H NMR shifts were carried out within the Density Functional Theory.
Collapse
Affiliation(s)
- Joanna Cytarska
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Artur Anisiewicz
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | | | - Adam Sikora
- Department of Analytical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Joanna Wietrzyk
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Konrad Misiura
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Krzysztof Z Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|