1
|
Gómez S, Lafiosca P, Egidi F, Giovannini T, Cappelli C. UV-Resonance Raman Spectra of Systems in Complex Environments: A Multiscale Modeling Applied to Doxorubicin Intercalated into DNA. J Chem Inf Model 2023; 63:1208-1217. [PMID: 36745496 PMCID: PMC9976284 DOI: 10.1021/acs.jcim.2c01495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
UV-Resonance Raman (RR) spectroscopy is a valuable tool to study the binding of drugs to biomolecular receptors. The extraction of information at the molecular level from experimental RR spectra is made much easier and more complete thanks to the use of computational approaches, specifically tuned to deal with the complexity of the supramolecular system. In this paper, we propose a protocol to simulate RR spectra of complex systems at different levels of sophistication, by exploiting a quantum mechanics/molecular mechanics (QM/MM) approach. The approach is challenged to investigate RR spectra of a widely used chemotherapy drug, doxorubicin (DOX) intercalated into a DNA double strand. The computed results show good agreement with experimental data, thus confirming the reliability of the computational protocol.
Collapse
Affiliation(s)
- Sara Gómez
- Scuola
Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy,E-mail:
| | - Piero Lafiosca
- Scuola
Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Franco Egidi
- Software
for Chemistry and Materials BV, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Tommaso Giovannini
- Scuola
Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Chiara Cappelli
- Scuola
Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy,E-mail:
| |
Collapse
|
2
|
Gómez S, Giovannini T, Cappelli C. Multiple Facets of Modeling Electronic Absorption Spectra of Systems in Solution. ACS PHYSICAL CHEMISTRY AU 2022; 3:1-16. [PMID: 36718266 PMCID: PMC9881242 DOI: 10.1021/acsphyschemau.2c00050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022]
Abstract
In this Perspective, we outline the essential physicochemical aspects that need to be considered when building a reliable approach to describe absorption properties of solvated systems. In particular, we focus on how to properly model the complexity of the solvation phenomenon, arising from dynamical aspects and specific, strong solute-solvent interactions. To this end, conformational and configurational sampling techniques, such as Molecular Dynamics, have to be coupled to accurate fully atomistic Quantum Mechanical/Molecular Mechanics (QM/MM) methodologies. By exploiting different illustrative applications, we show that an effective reproduction of experimental spectral signals can be achieved by delicately balancing exhaustive sampling, hydrogen bonding, mutual polarization, and nonelectrostatic effects.
Collapse
|
3
|
Tracy DA, Fernandez-Alberti S, Tretiak S, Roitberg AE. Adiabatic Excited-State Molecular Dynamics with an Explicit Solvent: NEXMD-SANDER Implementation. J Chem Theory Comput 2022; 18:5213-5220. [PMID: 36044726 DOI: 10.1021/acs.jctc.2c00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a method to link the Nonadiabatic EXcited-state Molecular Dynamics (NEXMD) package to the SANDER package supplied by AMBERTOOLS to provide excited-state adiabatic quantum mechanics/molecular mechanics (QM/MM) simulations. NEXMD is a computational package particularly developed to perform simulations of the photoexcitation and subsequent nonadiabatic electronic and vibrational energy relaxation in large multichromophoric conjugated molecules involving several coupled electronic excited states. The NEXMD-SANDER exchange has been optimized in order to achieve excited-state adiabatic dynamics simulations of large conjugated materials in a QM/MM environment, such as an explicit solvent. Dynamics of a substituted polyphenylene vinylene oligomer (PPV3-NO2) in vacuum and different explicit solvents has been used as a test case by performing comparative analysis of changes in its optical spectrum, state-dependent conformational changes, and quantum bond orderings. The method has been tested and compared with respect to previous implicit solvent implementations. Also, the impact on the expansion of the QM region by including a variable number of solvent molecules has been analyzed. Altogether, these results encourage future implementations of NEXMD simulations using the same combination of methods.
Collapse
Affiliation(s)
- Dustin A Tracy
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | | | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS) and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Adrian E Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
4
|
Lafiosca P, Gómez S, Giovannini T, Cappelli C. Absorption Properties of Large Complex Molecular Systems: The DFTB/Fluctuating Charge Approach. J Chem Theory Comput 2022; 18:1765-1779. [PMID: 35184553 PMCID: PMC8908768 DOI: 10.1021/acs.jctc.1c01066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
We report on the
first formulation of a novel polarizable QM/MM
approach, where the density functional tight binding (DFTB) is coupled
to the fluctuating charge (FQ) force field. The resulting method (DFTB/FQ)
is then extended to the linear response within the TD-DFTB framework
and challenged to study absorption spectra of large condensed-phase
systems.
Collapse
Affiliation(s)
- Piero Lafiosca
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Tommaso Giovannini
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Chiara Cappelli
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
5
|
Rojas-Valencia N, Gómez S, Núñez-Zarur F, Cappelli C, Hadad C, Restrepo A. Thermodynamics and Intermolecular Interactions during the Insertion of Anionic Naproxen into Model Cell Membranes. J Phys Chem B 2021; 125:10383-10391. [PMID: 34492187 DOI: 10.1021/acs.jpcb.1c06766] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The insertion process of Naproxen into model dimyristoylphosphatidylcholine (DMPC) membranes is studied by resorting to state-of-the-art classical and quantum mechanical atomistic computational approaches. Molecular dynamics simulations indicate that anionic Naproxen finds an equilibrium position right at the polar/nonpolar interphase when the process takes place in aqueous environments. With respect to the reference aqueous phase, the insertion process faces a small energy barrier of ≈5 kJ mol-1 and yields a net stabilization of also ≈5 kJ mol-1. Entropy changes along the insertion path, mainly due to a growing number of realizable microstates because of structural reorganization, are the main factors driving the insertion. An attractive fluxional wall of noncovalent interactions is characterized by all-quantum descriptors of chemical bonding (natural bond orbitals, quantum theory of atoms in molecules, noncovalent interaction, density differences, and natural charges). This attractive wall originates in the accumulation of tiny transfers of electron densities to the interstitial region between the fragments from a multitude of individual intermolecular contacts stabilizing the tertiary drug/water/membrane system.
Collapse
Affiliation(s)
- Natalia Rojas-Valencia
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, 050010Medellín, Colombia.,Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, 050026 Medellín, Colombia.,Escuela de Ciencias y Humanidades, Departamento de Ciencias Básicas, Universidad Eafit, AA 3300 Medellín, Colombia
| | - Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Francisco Núñez-Zarur
- Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, 050026 Medellín, Colombia
| | - Chiara Cappelli
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Cacier Hadad
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, 050010Medellín, Colombia
| | - Albeiro Restrepo
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, 050010Medellín, Colombia
| |
Collapse
|
6
|
Uribe L, Gómez S, Giovannini T, Egidi F, Restrepo A. An efficient and robust procedure to calculate absorption spectra of aqueous charged species applied to NO 2. Phys Chem Chem Phys 2021; 23:14857-14872. [PMID: 34223573 DOI: 10.1039/d1cp00652e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accurate calculation of absorption spectra of aqueous NO2- requires rigorously sampling the quantum potential energy surfaces for microsolvation of NO2- with at least five explicit water molecules and embedding the resulting clusters in a continuum solvent accounting for the statistical weighted contributions of individual isomers. This method, which we address as ASCEC + PCM, introduces several desired features when compared against MD simulations derived QM/MM spectra: comparatively fewer explicit solvent molecules to be treated with expensive QM methods, the identification of equilibrium structures in the quantum PES to be used in further vibrational spectroscopy, and the unequivocal identification of cluster orbitals undergoing electronic transitions and charge transfer that originate the spectral bands.
Collapse
Affiliation(s)
- Lina Uribe
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy.
| | - Tommaso Giovannini
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy.
| | - Franco Egidi
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy.
| | - Albeiro Restrepo
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
7
|
Marrazzini G, Giovannini T, Egidi F, Cappelli C. Calculation of Linear and Non-linear Electric Response Properties of Systems in Aqueous Solution: A Polarizable Quantum/Classical Approach with Quantum Repulsion Effects. J Chem Theory Comput 2020; 16:6993-7004. [PMID: 33058671 PMCID: PMC8015238 DOI: 10.1021/acs.jctc.0c00674] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Indexed: 01/10/2023]
Abstract
We present a computational study of polarizabilities and hyperpolarizabilities of organic molecules in aqueous solutions, focusing on solute-water interactions and the way they affect a molecule's linear and non-linear electric response properties. We employ a polarizable quantum mechanics/molecular mechanics (QM/MM) computational model that treats the solute at the QM level while the solvent is treated classically using a force field that includes polarizable charges and dipoles, which dynamically respond to the solute's quantum-mechanical electron density. Quantum confinement effects are also treated by means of a recently implemented method that endows solvent molecules with a parametric electron density, which exerts Pauli repulsion forces upon the solute. By applying the method to a set of aromatic molecules in solution we show that, for both polarizabilities and first hyperpolarizabilities, observed solution values are the result of a delicate balance between electrostatics, hydrogen-bonding, and non-electrostatic solute solvent interactions.
Collapse
Affiliation(s)
- Gioia Marrazzini
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, Pisa 56126, Italy
| | - Tommaso Giovannini
- Department
of Chemistry, Norwegian University of Science
and Technology, Trondheim 7491, Norway
| | - Franco Egidi
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, Pisa 56126, Italy
| | - Chiara Cappelli
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, Pisa 56126, Italy
| |
Collapse
|
8
|
Giovannini T, Egidi F, Cappelli C. Theory and algorithms for chiroptical properties and spectroscopies of aqueous systems. Phys Chem Chem Phys 2020; 22:22864-22879. [PMID: 33043930 DOI: 10.1039/d0cp04027d] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chiroptical properties and spectroscopies are valuable tools to study chiral molecules and assign absolute configurations. The spectra that result from chiroptical measurements may be very rich and complex, and hide much of their information content. For this reason, the interplay between experiments and calculations is especially useful, provided that all relevant physico-chemical interactions that are present in the experimental sample are accurately modelled. The inherent difficulty associated to the calculation of chiral signals of systems in aqueous solutions requires the development of specific tools, able to account for the peculiarities of water-solute interactions, and especially its ability to form hydrogen bonds. In this perspective we discuss a multiscale approach, which we have developed and challenged to model the most used chiroptical techniques.
Collapse
Affiliation(s)
- Tommaso Giovannini
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | | | | |
Collapse
|
9
|
Gómez S, Giovannini T, Cappelli C. Absorption spectra of xanthines in aqueous solution: a computational study. Phys Chem Chem Phys 2020; 22:5929-5941. [PMID: 32115599 DOI: 10.1039/c9cp05420k] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present a detailed computational analysis of the UV/Vis spectra of caffeine, paraxanthine and theophylline in aqueous solution. A hierarchy of solvation approaches for modeling the aqueous environment have been tested, ranging from the continuum model to the non-polarizable and polarizable quantum mechanical (QM)/molecular mechanics (MM) models, with and without the explicit inclusion of water molecules in the QM portion. The computed results are directly compared with the experimental data, thus highlighting the role of electrostatic, polarization and hydrogen boding solute-solvent interactions.
Collapse
Affiliation(s)
- Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
| | | | | |
Collapse
|
10
|
Rojas-Valencia N, Gómez S, Montillo S, Manrique-Moreno M, Cappelli C, Hadad C, Restrepo A. Evolution of Bonding during the Insertion of Anionic Ibuprofen into Model Cell Membranes. J Phys Chem B 2019; 124:79-90. [DOI: 10.1021/acs.jpcb.9b09705] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Natalia Rojas-Valencia
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Sebastian Montillo
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | | | - Chiara Cappelli
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Cacier Hadad
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Albeiro Restrepo
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
11
|
Giovannini T, Riso RR, Ambrosetti M, Puglisi A, Cappelli C. Electronic transitions for a fully polarizable QM/MM approach based on fluctuating charges and fluctuating dipoles: Linear and corrected linear response regimes. J Chem Phys 2019; 151:174104. [PMID: 31703497 DOI: 10.1063/1.5121396] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The fully polarizable Quantum Mechanics/Molecular Mechanics (QM/MM) approach based on fluctuating charges and fluctuating dipoles, named QM/FQFμ [T. Giovannini et al., J. Chem. Theory Comput. 15, 2233 (2019)], is extended to the calculation of vertical excitation energies of solvated molecular systems. Excitation energies are defined within two different solvation regimes, i.e., linear response (LR), where the response of the MM portion is adjusted to the QM transition density, and corrected-Linear Response (cLR) in which the MM response is adjusted to the relaxed QM density, thus being able to account for charge equilibration in the excited state. The model, which is specified in terms of three physical parameters (electronegativity, chemical hardness, and polarizability) is applied to vacuo-to-water solvatochromic shifts of aqueous solutions of para-nitroaniline, pyridine, and pyrimidine. The results show a good agreement with their experimental counterparts, thus highlighting the potentialities of this approach.
Collapse
Affiliation(s)
- Tommaso Giovannini
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | | | | | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
12
|
Di Remigio R, Giovannini T, Ambrosetti M, Cappelli C, Frediani L. Fully Polarizable QM/Fluctuating Charge Approach to Two-Photon Absorption of Aqueous Solutions. J Chem Theory Comput 2019; 15:4056-4068. [DOI: 10.1021/acs.jctc.9b00305] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Roberto Di Remigio
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Tommaso Giovannini
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Luca Frediani
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
13
|
Egidi F, Giovannini T, Del Frate G, Lemler PM, Vaccaro PH, Cappelli C. A combined experimental and theoretical study of optical rotatory dispersion for (R)-glycidyl methyl ether in aqueous solution. Phys Chem Chem Phys 2019; 21:3644-3655. [PMID: 30383044 DOI: 10.1039/c8cp04445g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The dispersive optical activity for aqueous solutions of non-rigid (R)-glycidyl methyl ether (R-GME) has been explored synergistically from experimental and theoretical perspectives. Density functional theory analyses performed with the polarizable continuum model for implicit solvation identified nine low-lying stable conformers that are interconverted by rotation about two large-amplitude torsional coordinates. The antagonistic chiroptical signatures predicted for these structural isomers were averaged under a Boltzmann-weighting ansatz to estimate the behavior expected for a thermally equilibrated ensemble. This led to optical rotatory dispersion profiles that reproduced the overall shape of observations but failed to achieve uniform agreement with measured specific-rotation values even when anharmonic vibrational corrections were applied. A mixed QM/FQ paradigm, whereby quantum-mechanical (QM) calculations of optical activity were combined with classical molecular dynamics simulations of explicit solvation that included mutual-polarization effects by means of fluctuating charges (FQ), was enlisted to elucidate the microsolvation environment and gauge its impact upon conformer distributions and response properties. Although quantitative accord with experiments remained elusive, this approach revealed strong variations in the magnitude and sign of rotatory powers for R-GME as the configuration of surrounding water molecules evolved, thereby highlighting the inherently dynamical nature of the solvated chiroptical response, calling into question the validity of "static" descriptions based on the presumption of distinct energy minima, and giving insight into the inherent complexity posed by the modeling of such properties for solvated systems.
Collapse
Affiliation(s)
- Franco Egidi
- Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Puglisi A, Giovannini T, Antonov L, Cappelli C. Interplay between conformational and solvent effects in UV-visible absorption spectra: curcumin tautomers as a case study. Phys Chem Chem Phys 2019; 21:15504-15514. [PMID: 31259324 DOI: 10.1039/c9cp00907h] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We present a combined theoretical and experimental study on the UV-vis spectra of enol-keto (EK) and keto-keto (KK) tautomeric forms of curcumin dissolved in aqueous solution. Solvent effects have been investigated by resorting to the implicit polarizable continuum model (QM/PCM) and non-polarizable and fully polarizable QM/MM approaches, the latter based on the fluctuating charges (FQ) force-field. In particular, all methods are challenged to rationalize the contribution of conformational, electrostatic and polarization effects in the calculation of the vertical excitation spectra of curcumin tautomers. The obtained results highlight that for both tautomers specific solute-solvent hydrogen-bond interactions play a minor role with respect to conformational and electrostatic effects.
Collapse
Affiliation(s)
| | | | - Liudmil Antonov
- Bulgarian Academy of Sciences, Institute of Organic Chemistry with Centre of Phytochemistry, Acad. G. Bonchev str., Bldg. 9, Sofia 1113, Bulgaria
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
| |
Collapse
|