1
|
Nagatani H, Mae Y, Konishi M, Matsuzaki M, Kita K, Daldal F, Sakamoto K. UbiN, a novel Rhodobacter capsulatus decarboxylative hydroxylase involved in aerobic ubiquinone biosynthesis. FEBS Open Bio 2023; 13:2081-2093. [PMID: 37716914 PMCID: PMC10626278 DOI: 10.1002/2211-5463.13707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 08/01/2023] [Accepted: 09/15/2023] [Indexed: 09/18/2023] Open
Abstract
Ubiquinone (UQ) is a lipophilic electron carrier that functions in the respiratory and photosynthetic electron transfer chains of proteobacteria and eukaryotes. Bacterial UQ biosynthesis is well studied in the gammaproteobacterium Escherichia coli, in which most bacterial UQ-biosynthetic enzymes have been identified. However, these enzymes are not always conserved among UQ-containing bacteria. In particular, the alphaproteobacterial UQ biosynthesis pathways contain many uncharacterized steps with unknown features. In this work, we identified in the alphaproteobacterium Rhodobacter capsulatus a new decarboxylative hydroxylase and named it UbiN. Remarkably, the UbiN sequence is more similar to a salicylate hydroxylase than the conventional flavin-containing UQ-biosynthetic monooxygenases. Under aerobic conditions, R. capsulatus ΔubiN mutant cells accumulate 3-decaprenylphenol, which is a UQ-biosynthetic intermediate. In addition, 3-decaprenyl-4-hydroxybenzoic acid, which is the substrate of UQ-biosynthetic decarboxylase UbiD, also accumulates in ΔubiN cells under aerobic conditions. Considering that the R. capsulatus ΔubiD-X double mutant strain (UbiX produces a prenylated FMN required for UbiD) grows as a wild-type strain under aerobic conditions, these results indicate that UbiN catalyzes the aerobic decarboxylative hydroxylation of 3-decaprenyl-4-hydroxybenzoic acid. This is the first example of the involvement of decarboxylative hydroxylation in ubiquinone biosynthesis. This finding suggests that the C1 hydroxylation reaction is, at least in R. capsulatus, the first step among the three hydroxylation steps involved in UQ biosynthesis. Although the C5 hydroxylation reaction is often considered to be the first hydroxylation step in bacterial UQ biosynthesis, it appears that the R. capsulatus pathway is more similar to that found in mammalians.
Collapse
Affiliation(s)
- Haruka Nagatani
- United Graduate School of Agricultural SciencesIwate UniversityMoriokaJapan
| | - Yoshiyuki Mae
- Faculty of Agriculture and Life ScienceHirosaki UniversityJapan
| | - Miharu Konishi
- Faculty of Agriculture and Life ScienceHirosaki UniversityJapan
| | | | - Kiyoshi Kita
- School of Tropical Medicine and Global HealthNagasaki UniversityJapan
- Department of Host‐Defense Biochemistry, Institute of Tropical Medicine (NEKKEN)Nagasaki UniversityJapan
| | - Fevzi Daldal
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Kimitoshi Sakamoto
- United Graduate School of Agricultural SciencesIwate UniversityMoriokaJapan
- Faculty of Agriculture and Life ScienceHirosaki UniversityJapan
| |
Collapse
|
2
|
Brandão TAS, Vieira LA, de Araújo SS, Nagem RAP. Probing the mechanism of flavin action in the oxidative decarboxylation catalyzed by salicylate hydroxylase. Methods Enzymol 2023; 685:241-277. [PMID: 37245904 DOI: 10.1016/bs.mie.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Salicylate hydroxylase (NahG) is a FAD-dependent monooxygenase in which the reduced flavin activates O2 coupled to the oxidative decarboxylation of salicylate to catechol or uncoupled from substrate oxidation to afford H2O2. This chapter presents different methodologies in equilibrium studies, steady-state kinetics, and identification of reaction products, which were important to understand the SEAr mechanism of catalysis in NahG, the role of the different FAD parts for ligand binding, the extent of uncoupled reaction, and the catalysis of salicylate's oxidative decarboxylation. These features are likely familiar to many other FAD-dependent monooxygenases and offer a potential asset for developing new tools and strategies in catalysis.
Collapse
Affiliation(s)
- Tiago A S Brandão
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Lucas A Vieira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Simara S de Araújo
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ronaldo A P Nagem
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
3
|
Perkins SW, Hlaing MZ, Hicks KA, Rajakovich LJ, Snider MJ. Mechanism of the Multistep Catalytic Cycle of 6-Hydroxynicotinate 3-Monooxygenase Revealed by Global Kinetic Analysis. Biochemistry 2023; 62:1553-1567. [PMID: 37130364 DOI: 10.1021/acs.biochem.2c00514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The class A flavoenzyme 6-hydroxynicotinate 3-monooxygenase (NicC) catalyzes a rare decarboxylative hydroxylation reaction in the degradation of nicotinate by aerobic bacteria. While the structure and critical residues involved in catalysis have been reported, the mechanism of this multistep enzyme has yet to be determined. A kinetic understanding of the NicC mechanism would enable comparison to other phenolic hydroxylases and illuminate its bioengineering potential for remediation of N-heterocyclic aromatic compounds. Toward these goals, transient state kinetic analyses by stopped-flow spectrophotometry were utilized to follow rapid changes in flavoenzyme absorbance spectra during all three stages of NicC catalysis: (1) 6-HNA binding; (2) NADH binding and FAD reduction; and (3) O2 binding with C4a-adduct formation, substrate hydroxylation, and FAD regeneration. Global kinetic simulations by numeric integration were used to supplement analytical fitting of time-resolved data and establish a kinetic mechanism. Results indicate that 6-HNA binding is a two-step process that substantially increases the affinity of NicC for NADH and enables the formation of a charge-transfer-complex intermediate to enhance the rate of flavin reduction. Singular value decomposition of the time-resolved spectra during the reaction of the substrate-bound, reduced enzyme with dioxygen provides evidence for the involvement of C4a-hydroperoxy-flavin and C4a-hydroxy-flavin intermediates in NicC catalysis. Global analysis of the full kinetic mechanism suggests that steady-state catalytic turnover is partially limited by substrate hydroxylation and C4a-hydroxy-flavin dehydration to regenerate the flavoenzyme. Insights gleaned from the kinetic model and determined microscopic rate constants provide a fundamental basis for understanding NicC's substrate specificity and reactivity.
Collapse
Affiliation(s)
- Scott W Perkins
- Department of Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
| | - May Z Hlaing
- Department of Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
| | - Katherine A Hicks
- Department of Chemistry, The State University of New York College at Cortland, Cortland, New York 13045, United States
| | - Lauren J Rajakovich
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Mark J Snider
- Department of Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
| |
Collapse
|
4
|
Abstract
Many flavin-dependent phenolic hydroxylases (monooxygenases) have been extensively investigated. Their crystal structures and reaction mechanisms are well understood. These enzymes belong to groups A and D of the flavin-dependent monooxygenases and can be classified as single-component and two-component flavin-dependent monooxygenases. The insertion of molecular oxygen into the substrates catalyzed by these enzymes is beneficial for modifying the biological properties of phenolic compounds and their derivatives. This chapter provides an in-depth discussion of the structural features of single-component and two-component flavin-dependent phenolic hydroxylases. The reaction mechanisms of selected enzymes, including 3-hydroxy-benzoate 4-hydroxylase (PHBH) and 3-hydroxy-benzoate 6-hydroxylase as representatives of single-component enzymes and 3-hydroxyphenylacetate 4-hydroxylase (HPAH) as a representative of two-component enzymes, are discussed in detail. This chapter comprises the following four main parts: general reaction, structures, reaction mechanisms, and enzyme engineering for biocatalytic applications. Enzymes belonging to the same group catalyze similar reactions but have different unique structural features to control their reactivity to substrates and the formation and stabilization of C4a-hydroperoxyflavin. Protein engineering has been employed to improve the ability to use these enzymes to synthesize valuable compounds. A thorough understanding of the structural and mechanistic features controlling enzyme reactivity is useful for enzyme redesign and enzyme engineering for future biocatalytic applications.
Collapse
Affiliation(s)
- Pirom Chenprakhon
- Institute for Innovative Learning, Mahidol University, Nakhon Pathom, Thailand.
| | - Panu Pimviriyakul
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, Thailand; Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, Thailand
| | - Chanakan Tongsook
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, Thailand
| |
Collapse
|
5
|
Pre-symptomatic modified phytohormone profile is associated with lower phytoplasma titres in an Arabidopsis seor1ko line. Sci Rep 2020; 10:14770. [PMID: 32901060 PMCID: PMC7479616 DOI: 10.1038/s41598-020-71660-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022] Open
Abstract
The proteins AtSEOR1 and AtSEOR2 occur as conjugates in the form of filaments in sieve elements of Arabidopsis thaliana. A reduced phytoplasma titre found in infected defective-mutant Atseor1ko plants in previous work raised the speculation that non-conjugated SEOR2 is involved in the phytohormone-mediated suppression of Chrysanthemum Yellows (CY)-phytoplasma infection transmitted by Euscelidius variegatus (Ev). This early and long-lasting SEOR2 impact was revealed in Atseor1ko plants by the lack of detectable phytoplasmas at an early stage of infection (symptomless plants) and a lower phytoplasma titre at a later stage (fully symptomatic plants). The high insect survival rate on Atseor1ko line and the proof of phytoplasma infection at the end of the acquisition access period confirmed the high transmission efficiency of CY-phytoplasma by the vectors. Transmission electron microscopy analysis ruled out a direct role of SE filament proteins in physical phytoplasma containment. Time-correlated HPLC–MS/MS-based phytohormone analyses revealed increased jasmonate levels in midribs of Atseor1ko plants at an early stage of infection and appreciably enhanced levels of indole acetic acid and abscisic acid at the early and late stages. Effects of Ev-probing on phytohormone levels was not found. The results suggest that SEOR2 interferes with phytohormonal pathways in Arabidopsis midrib tissues in order to establish early defensive responses to phytoplasma infection.
Collapse
|
6
|
Pitsawong W, Chenprakhon P, Dhammaraj T, Medhanavyn D, Sucharitakul J, Tongsook C, van Berkel WJH, Chaiyen P, Miller AF. Tuning of p Ka values activates substrates in flavin-dependent aromatic hydroxylases. J Biol Chem 2020; 295:3965-3981. [PMID: 32014994 DOI: 10.1074/jbc.ra119.011884] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/29/2020] [Indexed: 12/31/2022] Open
Abstract
Hydroxylation of substituted phenols by flavin-dependent monooxygenases is the first step of their biotransformation in various microorganisms. The reaction is thought to proceed via electrophilic aromatic substitution, catalyzed by enzymatic deprotonation of substrate, in single-component hydroxylases that use flavin as a cofactor (group A). However, two-component hydroxylases (group D), which use reduced flavin as a co-substrate, are less amenable to spectroscopic investigation. Herein, we employed 19F NMR in conjunction with fluorinated substrate analogs to directly measure pKa values and to monitor protein events in hydroxylase active sites. We found that the single-component monooxygenase 3-hydroxybenzoate 6-hydroxylase (3HB6H) depresses the pKa of the bound substrate analog 4-fluoro-3-hydroxybenzoate (4F3HB) by 1.6 pH units, consistent with previously proposed mechanisms. 19F NMR was applied anaerobically to the two-component monooxygenase 4-hydroxyphenylacetate 3-hydroxylase (HPAH), revealing depression of the pKa of 3-fluoro-4-hydroxyphenylacetate by 2.5 pH units upon binding to the C2 component of HPAH. 19F NMR also revealed a pKa of 8.7 ± 0.05 that we attributed to an active-site residue involved in deprotonating bound substrate, and assigned to His-120 based on studies of protein variants. Thus, in both types of hydroxylases, we confirmed that binding favors the phenolate form of substrate. The 9 and 14 kJ/mol magnitudes of the effects for 3HB6H and HPAH-C2, respectively, are consistent with pKa tuning by one or more H-bonding interactions. Our implementation of 19F NMR in anaerobic samples is applicable to other two-component flavin-dependent hydroxylases and promises to expand our understanding of their catalytic mechanisms.
Collapse
Affiliation(s)
- Warintra Pitsawong
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055
| | - Pirom Chenprakhon
- Institute for Innovative Learning, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Taweesak Dhammaraj
- Faculty of Pharmacy, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Dheeradhach Medhanavyn
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Jeerus Sucharitakul
- Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10300, Thailand
| | - Chanakan Tongsook
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan Valley, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Anne-Frances Miller
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055
| |
Collapse
|
7
|
Chenprakhon P, Wongnate T, Chaiyen P. Monooxygenation of aromatic compounds by flavin-dependent monooxygenases. Protein Sci 2020; 28:8-29. [PMID: 30311986 DOI: 10.1002/pro.3525] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022]
Abstract
Many flavoenzymes catalyze hydroxylation of aromatic compounds especially phenolic compounds have been isolated and characterized. These enzymes can be classified as either single-component or two-component flavin-dependent hydroxylases (monooxygenases). The hydroxylation reactions catalyzed by the enzymes in this group are useful for modifying the biological properties of phenolic compounds. This review aims to provide an in-depth discussion of the current mechanistic understanding of representative flavin-dependent monooxygenases including 3-hydroxy-benzoate 4-hydroxylase (PHBH, a single-component hydroxylase), 3-hydroxyphenylacetate 4-hydroxylase (HPAH, a two-component hydroxylase), and other monooxygenases which catalyze reactions in addition to hydroxylation, including 2-methyl-3-hydroxypyridine-5-carboxylate oxygenase (MHPCO, a single-component enzyme that catalyzes aromatic-ring cleavage), and HadA monooxygenase (a two-component enzyme that catalyzes additional group elimination reaction). These enzymes have different unique structural features which dictate their reactivity toward various substrates and influence their ability to stabilize flavin intermediates such as C4a-hydroperoxyflavin. Understanding the key catalytic residues and the active site environments important for governing enzyme reactivity will undoubtedly facilitate future work in enzyme engineering or enzyme redesign for the development of biocatalytic methods for the synthesis of valuable compounds.
Collapse
Affiliation(s)
- Pirom Chenprakhon
- Institute for Innovative Learning, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 14000, Thailand
| |
Collapse
|
8
|
Zhang S, Liu Y. Mechanism of fatty acid decarboxylation catalyzed by a non-heme iron oxidase (UndA): a QM/MM study. Org Biomol Chem 2019; 17:9808-9818. [PMID: 31710061 DOI: 10.1039/c9ob02116g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UndA is a non-heme iron enzyme that was recognized to catalyze the decarboxylation of medium chain (C10-C14) fatty acids to produce trace amounts of 1-alkenes. Owing to the electron imbalance during the oxidative decarboxylation of the substrate and the reduction of O2, only single turnover reactions were obtained in UndA in vitro assays. Unlike the general non-heme iron enzymes, the catalytic efficiency of UndA is quite low. According to the previous proposal, both FeIII-OO˙- and FeIV[double bond, length as m-dash]O complexes may abstract the β-H of fatty acids to trigger the oxidative decarboxylation reaction. Herein, on the basis of the crystal structures of UndA in complex with the substrate analogues, we constructed a series of computational models and performed quantum mechanics/molecular mechanics (QM/MM) calculations to explore the UndA-catalyzed decarboxylation using lauric acid as the substrate. Our calculation results reveal that only the FeIII-OO˙- complex can initiate the decarboxylation, and the substrate (lauric acid) should monodentately coordinate to the Fe center to facilitate the β-H abstraction. In addition, the monodentate coordination corresponds to higher relative energy than the bidentate mode, which may explain the low efficiency of UndA. It is also revealed that as long as the β-H is extracted by the FeIII-OO˙-, the decarboxylation of the substrate radical is quite easy, and an electron transfer from the substrate to the iron center is the prerequisite. For the FeIV[double bond, length as m-dash]O complex, since the β-H is far from the OFe atom and the angle of ∠Fe-O-H is 53.1°, the H-abstraction is calculated to be difficult.
Collapse
Affiliation(s)
- Shiqing Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Yongjun Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
9
|
Catalytic mechanism for the conversion of salicylate into catechol by the flavin-dependent monooxygenase salicylate hydroxylase. Int J Biol Macromol 2019; 129:588-600. [DOI: 10.1016/j.ijbiomac.2019.01.135] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 11/17/2022]
|