1
|
Salzburger M, Saragi RT, Wensink FJ, Cunningham EM, Beyer MK, Bakker JM, Ončák M, van der Linde C. Carbon Dioxide and Water Activation by Niobium Trioxide Anions in the Gas Phase. J Phys Chem A 2023; 127:3402-3411. [PMID: 37040467 PMCID: PMC10123662 DOI: 10.1021/acs.jpca.3c01394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Transition metals are important in various industrial applications including catalysis. Due to the current concentration of CO2 in the atmosphere, various ways for its capture and utilization are investigated. Here, we study the activation of CO2 and H2O at [NbO3]- in the gas phase using a combination of infrared multiple photon dissociation spectroscopy and density functional theory calculations. In the experiments, Fourier-transform ion cyclotron resonance mass spectrometry is combined with tunable IR laser light provided by the intracavity free-electron laser FELICE or optical parametric oscillator-based table-top laser systems. We present spectra of [NbO3]-, [NbO2(OH)2]-, [NbO2(OH)2]-(H2O) and [NbO(OH)2(CO3)]- in the 240-4000 cm-1 range. The measured spectra and observed dissociation channels together with quantum chemical calculations confirm that upon interaction with a water molecule, [NbO3]- is transformed to [NbO2(OH)2]- via a barrierless reaction. Reaction of this product with CO2 leads to [NbO(OH)2(CO3)]- with the formation of a [CO3] moiety.
Collapse
Affiliation(s)
- Magdalena Salzburger
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Rizalina T Saragi
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Frank J Wensink
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Ethan M Cunningham
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Joost M Bakker
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Lockwood SP, Metz RB. Photofragment imaging differentiates between one- and two-photon dissociation pathways in MgI . J Chem Phys 2023; 158:054303. [PMID: 36754811 DOI: 10.1063/5.0134668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The bond strength and photodissociation dynamics of MgI+ are determined by a combination of theory, photodissociation spectroscopy, and photofragment velocity map imaging. From 17 000 to 21 500 cm-1, the photodissociation spectrum of MgI+ is broad and unstructured; photofragment images in this region show perpendicular anisotropy, which is consistent with absorption to the repulsive wall of the (1) Ω = 1 or (2) Ω = 1 states followed by direct dissociation to ground state products Mg+ (2S) + I (2P3/2). Analysis of photofragment images taken at photon energies near the threshold gives a bond dissociation energy D0(Mg+-I) = 203.0 ± 1.8 kJ/mol (2.10 ± 0.02 eV; 17 000 ± 150 cm-1). At photon energies of 33 000-41 000 cm-1, exclusively I+ fragments are formed. Over most of this region, the formation of I+ is not energetically allowed via one-photon absorption from the ground state of MgI+. Images show the observed product is due to resonance enhanced two-photon dissociation. The photodissociation spectrum from 33 000 to 38 500 cm-1 shows vibrational structure, giving an average excited state vibrational spacing of 227 cm-1. This is consistent with absorption to the (3) Ω = 0+ state from ν = 0, 1 of the (1) Ω = 0+ ground state; from the (3) Ω = 0+ state, absorption of a second photon results in dissociation to Mg* (3P° J) + I+ (3PJ). From 38 500 to 41 000 cm-1, the spectrum is broad and unstructured. We attribute this region of the spectrum to one-photon dissociation of vibrationally hot MgI+ at low energy and ground state MgI+ at higher energy to form Mg (1S) + I+ (3PJ) products.
Collapse
Affiliation(s)
- Schuyler P Lockwood
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01002, USA
| | - Ricardo B Metz
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01002, USA
| |
Collapse
|
3
|
Heller J, Pascher TF, van der Linde C, Ončák M, Beyer MK. Photochemical Hydrogen Evolution at Metal Centers Probed with Hydrated Aluminium Cations, Al + (H 2 O) n , n=1-10. Chemistry 2021; 27:16367-16376. [PMID: 34636449 PMCID: PMC9298212 DOI: 10.1002/chem.202103289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 11/24/2022]
Abstract
Hydrated aluminium cations have been investigated as a photochemical model system with up to ten water molecules by UV action spectroscopy in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Intense photodissociation was observed starting at 4.5 eV for two to eight water molecules with loss of atomic hydrogen, molecular hydrogen and water molecules. Quantum chemical calculations for n=2 reveal that solvation shifts the intense 3s-3p excitations of Al+ into the investigated photon energy range below 5.5 eV. During the photochemical relaxation, internal conversion from S1 to T2 takes place, and photochemical hydrogen formation starts on the T2 surface, which passes through a conical intersection, changing to T1 . On this triplet surface, the electron that was excited to the Al 3p orbital is transferred to a coordinated water molecule, which dissociates into a hydroxide ion and a hydrogen atom. If the system remains in the triplet state, this hydrogen radical is lost directly. If the system returns to singlet multiplicity, the reaction may be reversed, with recombination with the hydroxide moiety and electron transfer back to aluminium, resulting in water evaporation. Alternatively, the hydrogen radical can attack the intact water molecule, forming molecular hydrogen and aluminium dihydroxide. Photodissociation is observed for up to n=8. Clusters with n=9 or 10 occur exclusively as HAlOH+ (H2 O)n-1 and are transparent in the investigated energy range. For n=4-8, a mixture of Al+ (H2 O)n and HAlOH+ (H2 O)n-1 is present in the experiment.
Collapse
Affiliation(s)
- Jakob Heller
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Tobias F. Pascher
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| |
Collapse
|
4
|
Heller J, Pascher TF, Muß D, van der Linde C, Beyer MK, Ončák M. Photochemistry and UV/vis spectroscopy of hydrated vanadium cations, V +(H 2O) n, n = 1-41, a model system for photochemical hydrogen evolution. Phys Chem Chem Phys 2021; 23:22251-22262. [PMID: 34396372 PMCID: PMC8514045 DOI: 10.1039/d1cp02382a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022]
Abstract
Photochemical hydrogen evolution provides fascinating perspectives for light harvesting. Hydrated metal ions in the gas phase are ideal model systems to study elementary steps of this reaction on a molecular level. Here we investigate mass-selected hydrated monovalent vanadium ions, with a hydration shell ranging from 1 to 41 water molecules, by photodissociation spectroscopy. The most intense absorption bands correspond to 3d-4p transitions, which shift to the red from n = 1 to n = 4, corresponding to the evolution of a square-planar complex. Additional water molecules no longer interact directly with the metal center, and no strong systematic shift is observed in larger clusters. Evolution of atomic and molecular hydrogen competes with loss of water molecules for all V+(H2O)n, n ≤ 12. For n ≥ 15, no absorptions are observed, which indicates that the cluster ensemble is fully converted to HVOH+(H2O)n-1. For the smallest clusters, the electronic transitions are modeled using multireference methods with spin-orbit coupling. A large number of quintet and triplet states is accessible, which explains the broad features observed in the experiment. Water loss most likely occurs after a series of intersystem crossings and internal conversions to the electronic ground state or a low-lying quintet state, while hydrogen evolution is favored in low lying triplet states.
Collapse
Affiliation(s)
- Jakob Heller
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Tobias F Pascher
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Dominik Muß
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| |
Collapse
|
5
|
Pascher TF, Ončák M, van der Linde C, Beyer MK. Spectroscopy and photochemistry of copper nitrate clusters. Phys Chem Chem Phys 2021; 23:9911-9920. [PMID: 33908510 DOI: 10.1039/d1cp00629k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The investigation of copper nitrate cluster anions Cu(ii)n(NO3)2n+1-, n ≤ 4, in the gas phase using ultraviolet/visible/near-infrared (UV/vis/NIR) spectroscopy provides detailed insight into the electronic structure of the copper salt and its intriguing photochemistry. In the experimentally studied region up to 5.5 eV, the spectra of copper(ii) nitrate exhibit a 3d-3d band in the vis/NIR and well-separated bands in the UV. The latter bands originate from Ligand-to-Metal Charge Transfer (LMCT) as well as n-π* transitions in the nitrate ligands. The clusters predominantly decompose by loss of neutral copper nitrate in the electronic ground state after internal conversion or via the photochemical loss of a neutral NO3 ligand after a LMCT. These two decomposition channels are in direct competition on the ground state potential energy surface for the smallest copper nitrate cluster, Cu(ii)(NO3)3-. Here, copper nitrate evaporation is thermochemically less favorable. Population of π* orbitals in the nitrate ligands may lead to N-O bond photolysis. This is observed in the UV region with a small quantum efficiency, with photochemical loss of either nitrogen dioxide or an oxygen atom.
Collapse
Affiliation(s)
- Tobias F Pascher
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | | | | | | |
Collapse
|
6
|
McMahon AJ, Jarrold CC. Using anion photoelectron spectroscopy of cluster models to gain insights into mechanisms of catalyst-mediated H 2 production from water. Phys Chem Chem Phys 2020; 22:27936-27948. [PMID: 33201956 DOI: 10.1039/d0cp05055e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metal oxide cluster models of catalyst materials offer a powerful platform for probing the molecular-scale features and interactions that govern catalysis. This perspective gives an overview of studies implementing the combination of anion photoelectron (PE) spectroscopy and density functional theory calculations toward exploring cluster models of metal oxides and metal-oxide supported Pt that catalytically drive the hydrogen evolution reaction (HER) or the water-gas shift reaction. The utility in the combination of these experimental and computational techniques lies in our ability to unambiguously determine electronic and molecular structures, which can then connect to results of reactivity studies. In particular, we focus on the activity of oxygen vacancies modeled by suboxide clusters, the critical mechanistic step of forming proximal metal hydride and hydroxide groups as a prerequisite for H2 production, and the structural features that lead to trapped dihydroxide groups. The pronounced asymmetric oxidation found in heterometallic group 6 oxides and near-neighbor group 5/group 6 results in higher activity toward water, while group 7/group 6 oxides form very specific stoichiometries that suggest facile regeneration. Studies on the trans-periodic combination of cerium oxide and platinum as a model for ceria supported Pt atoms and nanoparticles reveal striking negative charge accumulation by Pt, which, combined with the ionic conductivity of ceria, suggests a mechanism for the exceptionally high activity of this system towards the water-gas shift reaction.
Collapse
Affiliation(s)
- Abbey J McMahon
- Indiana University, Department of Chemistry, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA.
| | | |
Collapse
|
7
|
Pascher TF, Ončák M, van der Linde C, Beyer MK. Infrared multiple photon dissociation spectroscopy of anionic copper formate clusters. J Chem Phys 2020; 153:184301. [DOI: 10.1063/5.0030034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tobias F. Pascher
- Institut für Ionen und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Milan Ončák
- Institut für Ionen und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Christian van der Linde
- Institut für Ionen und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martin K. Beyer
- Institut für Ionen und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|