1
|
Sadee BA, Galali Y, Zebari SMS. Recent developments in speciation and determination of arsenic in marine organisms using different analytical techniques. A review. RSC Adv 2024; 14:21563-21589. [PMID: 38979458 PMCID: PMC11228943 DOI: 10.1039/d4ra03000a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
Marine organisms play a vital role as the main providers of essential and functional food. Yet they also constitute the primary pathway through which humans are exposed to total arsenic (As) in their diets. Since it is well known that the toxicity of this metalloid ultimately depends on its chemical forms, speciation in As is an important issue. Most relevant articles about arsenic speciation have been investigated. This extended not only from general knowledge about As but also the toxicity and health related issues resulting from exposure to these As species from the food ecosystem. There can be enormous side effects originating from exposure to As species that must be measured quantitatively. Therefore, various convenient approaches have been developed to identify different species of As in marine samples. Different extraction strategies have been utilized based on the As species of interest including water, methanol and mixtures of both, and many other extraction agents have been explained in this article. Furthermore, details of hyphenated techniques which are available for detecting these As species have been documented, especially the most versatile and applied technique including inductively coupled plasma mass spectrometry.
Collapse
Affiliation(s)
- Bashdar Abuzed Sadee
- Department of Food Technology, College of Agricultural Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
| | - Yaseen Galali
- Department of Food Technology, College of Agricultural Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
| | - Salih M S Zebari
- Department of Animal Resource, College of Agricultural Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
| |
Collapse
|
2
|
Alowaifeer AM, Clingenpeel S, Kan J, Bigelow PE, Yoshinaga M, Bothner B, McDermott TR. Arsenic and Mercury Distribution in an Aquatic Food Chain: Importance of Femtoplankton and Picoplankton Filtration Fractions. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:225-241. [PMID: 36349954 PMCID: PMC10753857 DOI: 10.1002/etc.5516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/11/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Arsenic (As) and mercury (Hg) were examined in the Yellowstone Lake food chain, focusing on two lake locations separated by approximately 20 km and differing in lake floor hydrothermal vent activity. Sampling spanned from femtoplankton to the main fish species, Yellowstone cutthroat trout and the apex predator lake trout. Mercury bioaccumulated in muscle and liver of both trout species, biomagnifying with age, whereas As decreased in older fish, which indicates differential exposure routes for these metal(loid)s. Mercury and As concentrations were higher in all food chain filter fractions (0.1-, 0.8-, and 3.0-μm filters) at the vent-associated Inflated Plain site, illustrating the impact of localized hydrothermal inputs. Femtoplankton and picoplankton size biomass (0.1- and 0.8-μm filters) accounted for 30%-70% of total Hg or As at both locations. By contrast, only approximately 4% of As and <1% of Hg were found in the 0.1-μm filtrate, indicating that comparatively little As or Hg actually exists as an ionic form or intercalated with humic compounds, a frequent assumption in freshwaters and marine waters. Ribosomal RNA (18S) gene sequencing of DNA derived from the 0.1-, 0.8-, and 3.0-μm filters showed significant eukaryote biomass in these fractions, providing a novel view of the femtoplankton and picoplankton size biomass, which assists in explaining why these fractions may contain such significant Hg and As. These results infer that femtoplankton and picoplankton metal(loid) loads represent aquatic food chain entry points that need to be accounted for and that are important for better understanding Hg and As biochemistry in aquatic systems. Environ Toxicol Chem 2023;42:225-241. © 2022 SETAC.
Collapse
Affiliation(s)
- Abdullah M. Alowaifeer
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Scott Clingenpeel
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
- Washington River Protection Solutions, Richland, Washington, USA
| | - Jinjun Kan
- Microbiology Department, Stroud Water Research Center, Avondale, Pennsylvania, USA
| | - Patricia E. Bigelow
- US National Park Service, Center for Resources, Fisheries and Aquatic Sciences Program, Yellowstone National Park, Wyoming, USA
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Timothy R. McDermott
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
3
|
Optimization of Extraction Conditions and Validation of the Method for Determination of Arsenic Species in Carrageenan-Producing Seaweed, Kappaphycus spp., Using HPLC-ICP-MS. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Structural Characterization and In Vitro Antioxidant Activity of Metallothionein from Oratosquilla oratoria. Molecules 2022; 27:molecules27072320. [PMID: 35408719 PMCID: PMC9000697 DOI: 10.3390/molecules27072320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
We report here the purification of a novel metal-binding protein from Oratosquilla oratoria (O. oratoria MT-1) by gel and ion-exchange chromatography. SDS-PAGE and MALDI-TOF analyses demonstrated that isolated O. oratoria MT-1 was of high purity with a molecular weight of 12.4 kDa. The fluorescence response to SBD-F derivatives revealed that O. oratoria MT-1 contained a large number of sulfhydryl groups, which is a general property of metallothioneins. Zn and Cu metal stoichiometries for O. oratoria MT-1 were 3.97:1 and 0.55:1, respectively. The proportion of cysteine (Cys) residues in the amino acid composition was 32.69%, and aromatic amino acids were absent. The peptide sequence coverage with Macrobrachium rosenbergii calmodulin (accession AOA3S8FSK5) was 60%. Infrared spectroscopy of O. oratoria MT-1 revealed two obvious peaks at absorption frequencies for the amide I band and the amide II band. CD spectra revealed that the secondary structure was mainly composed of random coil (57.6%) and β-sheet (39.9%). An evaluation of in vitro antioxidant activity revealed that isolated O. oratoria MT-1 has strong reducing activities, exhibiting scavenging rates for DPPH and OH of 77.8% and 75.8%, respectively (IC50 values 0.57 mg/mL and 1.1 mg/mL). O. oratoria MT-1 may be used as a functional additive in cosmetics, health foods, and medical products, as well as a reference material for quantitative analysis of metallothionein in such products.
Collapse
|
5
|
Byeon E, Kang HM, Yoon C, Lee JS. Toxicity mechanisms of arsenic compounds in aquatic organisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105901. [PMID: 34198209 DOI: 10.1016/j.aquatox.2021.105901] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Arsenic is a toxic metalloid that is widely distributed in the environment due to its persistence and accumulative properties. The occurrence, distribution, and biological effects of arsenic in aquatic environments have been extensively studied. Acute and chronic toxicities to arsenic are associated with fatal effects at the individual and molecular levels. The toxicity of arsenic in aquatic organisms depends on its speciation and concentration. In aquatic environments, inorganic arsenic is the dominant form. While trivalent arsenicals have greater toxicity compared with pentavalent arsenicals, inorganic arsenic can assume a variety of forms through biotransformation in aquatic organisms. Biotransformation mechanisms and speciation of arsenic have been studied, but few reports have addressed the relationships among speciation, toxicity, and bioavailability in biological systems. This paper reviews the modes of action of arsenic along with its toxic effects and distribution in an attempt to improve our understanding of the mechanisms of arsenic toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, South Korea
| | - Cheolho Yoon
- Ochang Center, Korea Basic Science Institute, Cheongju 28119, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
6
|
Monitoring Arsenic Species Content in Seaweeds Produced off the Southern Coast of Korea and Its Risk Assessment. ENVIRONMENTS 2020. [DOI: 10.3390/environments7090068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Seaweed, a popular seafood in South Korea, has abundant dietary fiber and minerals. The toxicity of arsenic compounds is known to be related to their chemical speciation, and inorganic arsenic (iAs) is more detrimental than other species. Due to the different toxicities of the various chemical forms, speciation analysis is important for evaluating arsenic exposure. In this study, total arsenic (tAs) and six arsenic species (arsenite, arsenate, monomethylarsonic acid, dimethylarsinic acid, arsenobetaine, and arsenocholine) were analyzed in 180 seaweed samples. Although there were differences between seaweed species, the concentration of tAs was detected at levels ranging from 1 to 100 µg/g, and the distribution of six arsenic species differed depending on the seaweed species. No correlation between the concentration of iAs and tAs was found in most seaweed species. Through statistical clustering, hijiki and gulfweed were seen to be the seaweeds with the highest ratios of iAs to tAs. Using the iAs concentration data from the arsenic speciation analysis, a risk assessment of seaweed intake in South Korea was conducted. The margin of exposure values showed no meaningful risk for the general population, but low levels of risk were identified for seaweed consumers, with high intakes of gulfweed and hijiki.
Collapse
|
7
|
Yu Y, Navarro AV, Sahuquillo À, Zhou G, López-Sánchez JF. Arsenosugar standards extracted from algae: Isolation, characterization and use for identification and quantification purposes. J Chromatogr A 2020; 1609:460459. [PMID: 31445800 DOI: 10.1016/j.chroma.2019.460459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/14/2019] [Accepted: 08/13/2019] [Indexed: 11/25/2022]
Abstract
Sulfate (SO4-sug) and sulfonate (SO3-sug) arsenosugar standard solutions were obtained using preparative liquid chromatography. Several commercial algae samples were characterized (total contents and speciation) to select the most appropriate in relation to their arsenosugar contents. Water extracts from the selected sample (Fucus vesiculosus) were fractionated using a Hamilton PRP-X100 preparative column, and the presence of arsenic species in the isolated fractions was ascertained by IC-ICP-MS. Two of the fractions successfully presented only one arsenic species corresponding to sulfate and sulfonate arsenosugars at suitable concentrations. To unequivocally confirm the presence of both compounds, high-resolution mass spectrometry (ESI-TOF/MS) was used and the exact mass determined with errors lower than 0.5 ppm. The standard solutions obtained were successfully used to identify and quantify SO4-sug and SO3-sug in several edible algae samples purchased in local market. Total arsenic content for analyzed samples ranged from 34 to 57 mg kg-1, concentration values found for SO3-sug ranged from 5 to 36 mg As kg-1 and SO4-sug was only found in fucus with a concentration of 9.3 mg As kg-1.
Collapse
Affiliation(s)
- Yanli Yu
- School of Chemistry and Chemical Engineering, Southwest University. Chongqing, China; Analytical Chemistry Section, Faculty of Chemistry, University of Barcelona, Barcelona, Spain
| | - Anna Vivó Navarro
- Analytical Chemistry Section, Faculty of Chemistry, University of Barcelona, Barcelona, Spain
| | - Àngels Sahuquillo
- Analytical Chemistry Section, Faculty of Chemistry, University of Barcelona, Barcelona, Spain
| | - Guangming Zhou
- School of Chemistry and Chemical Engineering, Southwest University. Chongqing, China
| | | |
Collapse
|
8
|
Hasegawa H, Papry RI, Ikeda E, Omori Y, Mashio AS, Maki T, Rahman MA. Freshwater phytoplankton: biotransformation of inorganic arsenic to methylarsenic and organoarsenic. Sci Rep 2019; 9:12074. [PMID: 31427705 PMCID: PMC6700110 DOI: 10.1038/s41598-019-48477-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/29/2019] [Indexed: 11/09/2022] Open
Abstract
The biotransformation and detoxification mechanisms of arsenic (As) species have been active research topics because of their significance to environmental and human health. Biotransformation of As in phytoplankton has been extensively studied. However, how different growth phases of phytoplankton impact As biotransformation in them remains uncertain. This study investigated the biotransformation of As species in freshwater phytoplankton at different growth phases to ascertain at which growth phase different types of biotransformation occur. At the logarithmic growth phase, arsenate (AsV) (>90%) and arsenite (AsIII) (>80%) predominated in culture media when phytoplankton were exposed to 20 nmol L−1 and 1.0 µmol L−1 of AsV, respectively, and methylarsenic (methylAs) species were not detected in them at all. Intracellular As was mainly present in inorganic forms (iAs) at the logarithmic phase, while substantial amounts of organoarsenic (orgAs) species were detected at the stationary phase. At the stationary phase, AsV comprised the majority of the total As in culture media, followed by AsIII and methylAs, although the methylation of AsV occurred slowly at the stationary phase. Biotransformation of AsV into AsIII and As methylation inside phytoplankton cells occurred mainly at the logarithmic phase, while the biotransformation of As into complex orgAs compounds occurred at the stationary phase. Phytoplankton rapidly released iAs and methylAs species out of their cells at the logarithmic phase, while orgAs mostly remained inside their cells.
Collapse
Affiliation(s)
- Hiroshi Hasegawa
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan.
| | - Rimana Islam Papry
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan.
| | - Eri Ikeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Yoshiki Omori
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Asami S Mashio
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Teruya Maki
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - M Azizur Rahman
- Faculty of Science and Technology, Federation University, Gippsland, Churchill, VIC, Australia. .,Centre for Environmental Sustainability, School of the Environment, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
9
|
Wolle MM, Stadig S, Conklin SD. Market Basket Survey of Arsenic Species in the Top Ten Most Consumed Seafoods in the United States. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8253-8267. [PMID: 31294564 DOI: 10.1021/acs.jafc.9b02314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The study focused on the determination of arsenic species in the top ten most consumed seafoods in the United States. Fifty-four samples were collected from local supermarkets, and their species identities were confirmed by DNA barcoding. The total arsenic in the samples varied greatly in the range of 8-22200 ng/g (wet mass). Speciation analysis based on extraction of water-soluble and nonpolar arsenic showed that inorganic arsenic (iAs) was found only in clams and crabs, while arsenobetaine (AsB) predominates in most samples. Among the other arsenicals, trimethylarsoniopropionate (TMAP) was found in most matrices with higher concentrations in crabs, and arsenosugars existed in most clams and crabs. Nonpolar arsenic accounted for 1-46% of the total arsenic in the samples. The accuracy of the analytical results was evaluated using standard reference materials and spike recovery tests. The survey showed that the iAs concentrations in America's most consumed seafood products are much lower than the tolerable intake set by the Joint FAO/WHO Expert Committee, even at the highest levels found in this study.
Collapse
Affiliation(s)
- Mesay Mulugeta Wolle
- Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , 5001 Campus Drive , College Park , Maryland 20740 , United States
| | - Sarah Stadig
- Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , 5001 Campus Drive , College Park , Maryland 20740 , United States
| | - Sean D Conklin
- Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , 5001 Campus Drive , College Park , Maryland 20740 , United States
| |
Collapse
|
10
|
Hata A, Hasegawa M, Yamauchi T, Otomo Y, Miura M, Yamanaka K, Yamano Y, Fujitani N, Endo G. Metabolism of 3-[5'-deoxy-5'-(dimethylarsinoyl)-β-ribofuranosyloxy]-2-hydroxypropylene glycol in an artificial digestive system. Heliyon 2019; 5:e02079. [PMID: 31372544 PMCID: PMC6656958 DOI: 10.1016/j.heliyon.2019.e02079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/12/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
Seaweeds contain large amounts of organoarsenic compounds, mostly arsenosugars (AsSug) and arsenolipids (AsLipid). AsSug is mainly metabolized into dimethylarsinic acid (DMA V ) in humans. However, this metabolic process is not well understood. We investigated the metabolism of an AsSug, 3-[5'-deoxy-5'-(dimethylarsinoyl)-β-ribofuranosyloxy]-2-hydroxypropylene glycol (AsSug328), in the gastrointestinal tract using an in vitro artificial gastrointestinal digestion system. AsSug328 was incubated with gastric juice for 4 h, with bile-pancreatic juice for 0.5 h, and finally with enteric bacteria solution for 24 h. The conversion of arsenic compounds after artificial digestion was analyzed by HPLC-ICP-MS and HPLC-ESI-Q-TOF-MS. Our results show that artificial gastrointestinal digestion converted AsSug328 into thio-AsSug328. However, no formation of DMA V was detected. Under the artificial digestion system, the 5-deoxyribofuranose structure of AsSug was maintained. Therefore, AsSug should be absorbed in the intestinal tract after its sugar moiety is partially decomposed. They are then possibly metabolized to DMA V in the liver and subsequently excreted through urine.
Collapse
Affiliation(s)
- Akihisa Hata
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime, 794-8555, Japan
| | - Momoko Hasegawa
- Department of Medical Risk Management, Graduate School of Risk and Crisis Management, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan
| | - Takenori Yamauchi
- Department of Hygiene and Preventive Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Yuki Otomo
- Department of Medical Risk Management, Graduate School of Risk and Crisis Management, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan
| | - Motofumi Miura
- Laboratory of Molecular Chemistry, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Kenzo Yamanaka
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Yuko Yamano
- Department of Hygiene and Preventive Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Noboru Fujitani
- Biomedical Science Examination and Research Center, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime, 794-8555, Japan
| | - Ginji Endo
- Osaka Occupational Health Service Center, Japan Industrial Safety and Health Association, 2-3-8 Tosabori, Nishi-ku, Osaka, 550-0001, Japan
| |
Collapse
|
11
|
Dìaz O, Pastene R, Encina-Montoya F, Vega R, Oberti-Grassau C. Arsenic speciation in algae: Case studies in American Continent. ARSENIC SPECIATION IN ALGAE 2019. [DOI: 10.1016/bs.coac.2019.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Speciation analysis of arsenic in seafood and seaweed: Part I-evaluation and optimization of methods. Anal Bioanal Chem 2018; 410:5675-5687. [PMID: 29455284 DOI: 10.1007/s00216-018-0906-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/12/2018] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
Abstract
Several extraction and chromatographic methods were evaluated to identify optimum conditions for arsenic speciation analysis in seafood and seaweed. The extraction systems, which include aqueous, aqueous-organic, acidic, basic, and enzymatic solutions, were examined for their efficiency in extracting arsenic from finfish, crustaceans, molluscs, and seaweed keeping the chemical forms of the native arsenicals intact. While dilute solutions of nitric acid, hydrochloric acid, and tetramethylammonium hydroxide (TMAH) extract high fractions of arsenic from most of the matrices, the extractants oxidized arsenite (As3+) to arsenate (As5+) and converted some arsenosugars and non-polar arsenicals to known and/or unknown forms. Hot water (90 °C) effectively maintained the integrity of the native arsenic species and enabled analysis of the extracts with no further manipulation than filtration and dilution. Stepwise extraction of water-soluble and non-polar arsenic with hot water and a mixture of dichloromethane and methanol, respectively, resulted in sufficiently quantitative (> 75%) arsenic extraction from seafood and seaweed. Anion and cation exchange chromatographic methods were optimized for separation and quantitation of the arsenicals extracted into hot water. The non-polar arsenicals were collectively determined after digesting the extract in acid. The application of the optimum extraction and chromatographic conditions was demonstrated by analyzing certified reference materials of tuna fish tissue (BCR 627), lobster hepatopancreas (TORT-2) and oyster tissue (SRM 1566b), and a sample of hijiki seaweed. For all the matrices, good agreement (80-92%) was found between the total water-soluble arsenic and the sum of the concentrations of the chromatographed species. Limits of quantification (LOQ) were in the range 4-11 ng g-1 for 16 arsenicals.
Collapse
|
13
|
Zhang W, Qi Y, Qin D, Liu J, Mao X, Chen G, Wei C, Qian Y. Determination of inorganic arsenic in algae using bromine halogenation and on-line nonpolar solid phase extraction followed by hydride generation atomic fluorescence spectrometry. Talanta 2017; 170:152-157. [PMID: 28501152 DOI: 10.1016/j.talanta.2017.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/27/2017] [Accepted: 04/01/2017] [Indexed: 02/06/2023]
Abstract
Accurate, stable and fast analysis of toxic inorganic arsenic (iAs) in complicated and arsenosugar-rich algae matrix is always a challenge. Herein, a novel analytical method for iAs in algae was reported, using bromine halogenation and on-line nonpolar solid phase extraction (SPE) followed by hydride generation atomic fluorescence spectrometry (HG-AFS). The separation of iAs from algae was first performed by nonpolar SPE sorbent using Br- for arsenic halogenation. Algae samples were extracted with 1% perchloric acid. Then, 1.5mL extract was reduced by 1% thiourea, and simultaneously reacted (for 30min) with 50μL of 10% KBr for converting iAs to AsBr3 after adding 3.5mL of 70% HCl to 5mL. A polystyrene (PS) resin cartridge was employed to retain arsenicals, which were hydrolyzed, eluted from the PS resin with H2O, and categorized as iAs. The total iAs was quantified by HG-AFS. Under optimum conditions, the spiked recoveries of iAs in real algae samples were in the 82-96% range, and the method achieved a desirable limit of detection of 3μgkg-1. The inter-day relative standard deviations were 4.5% and 4.1% for spiked 100 and 500μgkg-1 respectively, which proved acceptable for this method. For real algae samples analysis, the highest presence of iAs was found in sargassum fusiforme, followed by kelp, seaweed and laver.
Collapse
Affiliation(s)
- Weihong Zhang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture, Beijing 100081, China; Beijing Titan Instruments Company, Limited, Beijing 100015, China
| | - Yuehan Qi
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture, Beijing 100081, China
| | - Deyuan Qin
- Beijing Titan Instruments Company, Limited, Beijing 100015, China
| | - Jixin Liu
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture, Beijing 100081, China; Beijing Titan Instruments Company, Limited, Beijing 100015, China.
| | - Xuefei Mao
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture, Beijing 100081, China.
| | - Guoying Chen
- Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, United States
| | - Chao Wei
- National Institute of Metrology, Beijing 100029, China
| | - Yongzhong Qian
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture, Beijing 100081, China
| |
Collapse
|
14
|
Barciela-Alonso MC, Bermejo-Barrera P, Feldmann J, Raab A, Hansen HR, Bluemlein K, Wallschläger D, Stiboller M, Glabonjat RA, Raber G, Jensen KB, Francesconi KA. Arsenic and As Species. Metallomics 2016. [DOI: 10.1002/9783527694907.ch7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- María Carmen Barciela-Alonso
- University of Santiago de Compostela; Department of analytical Chemistry; Nutrition and Bromatology. Avda. das Ciencias s/n 15782 Santiago de Compostela Spain
| | - Pilar Bermejo-Barrera
- University of Santiago de Compostela; Department of analytical Chemistry; Nutrition and Bromatology. Avda. das Ciencias s/n 15782 Santiago de Compostela Spain
| | - Jörg Feldmann
- University of Aberdeen; Department of Chemistry, TESLA (Trace Element Speciation Laboratory); Meston Walk AB24 3UE Aberdeen UK
| | - Andrea Raab
- University of Aberdeen; Department of Chemistry, TESLA (Trace Element Speciation Laboratory); Meston Walk AB24 3UE Aberdeen UK
| | - Helle R. Hansen
- Chemist Metal Section; Eurofins Miljo A/S, Ladelundvej 85 6600 Vejen Denmark
| | - Katharina Bluemlein
- Department of Analytical Chemistry, Fraunhofer Institute for Toxicology and Experimental; Medicine, Nikolai-Fuchs-Strasse 1 30625 Hannover Germany
| | - Dirk Wallschläger
- Trent University; Water Quality Centre, 1600 West Bank Drive Peterborough, ON K9L 0G2 Canada
| | - Michael Stiboller
- University of Graz; Institute of Chemistry, Analytical Chemistry, NAWI Graz; Universitätsplatz 1 8010 Graz Austria
| | - Ronald A. Glabonjat
- University of Graz; Institute of Chemistry, Analytical Chemistry, NAWI Graz; Universitätsplatz 1 8010 Graz Austria
| | - Georg Raber
- University of Graz; Institute of Chemistry, Analytical Chemistry, NAWI Graz; Universitätsplatz 1 8010 Graz Austria
| | - Kenneth B. Jensen
- University of Graz; Institute of Chemistry, Analytical Chemistry, NAWI Graz; Universitätsplatz 1 8010 Graz Austria
| | - Kevin A. Francesconi
- University of Graz; Institute of Chemistry, Analytical Chemistry, NAWI Graz; Universitätsplatz 1 8010 Graz Austria
| |
Collapse
|
15
|
Komorowicz I, Barałkiewicz D. Determination of total arsenic and arsenic species in drinking water, surface water, wastewater, and snow from Wielkopolska, Kujawy-Pomerania, and Lower Silesia provinces, Poland. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:504. [PMID: 27488197 PMCID: PMC4972851 DOI: 10.1007/s10661-016-5477-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/07/2016] [Indexed: 05/28/2023]
Abstract
Arsenic is a ubiquitous element which may be found in surface water, groundwater, and drinking water. In higher concentrations, this element is considered genotoxic and carcinogenic; thus, its level must be strictly controlled. We investigated the concentration of total arsenic and arsenic species: As(III), As(V), MMA, DMA, and AsB in drinking water, surface water, wastewater, and snow collected from the provinces of Wielkopolska, Kujawy-Pomerania, and Lower Silesia (Poland). The total arsenic was analyzed by inductively coupled plasma mass spectrometry (ICP-MS), and arsenic species were analyzed with use of high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Obtained results revealed that maximum total arsenic concentration determined in drinking water samples was equal to 1.01 μg L(-1). The highest concentration of total arsenic in surface water, equal to 3778 μg L(-1) was determined in Trująca Stream situated in the area affected by geogenic arsenic contamination. Total arsenic concentration in wastewater samples was comparable to those determined in drinking water samples. However, significantly higher arsenic concentration, equal to 83.1 ± 5.9 μg L(-1), was found in a snow sample collected in Legnica. As(V) was present in all of the investigated samples, and in most of them, it was the sole species observed. However, in snow sample collected in Legnica, more than 97 % of the determined concentration, amounting to 81 ± 11 μg L(-1), was in the form of As(III), the most toxic arsenic species.
Collapse
Affiliation(s)
- Izabela Komorowicz
- Department of Trace Element Analysis by Spectroscopy Method, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 89b Umultowska Street, 61-614, Poznań, Poland.
| | - Danuta Barałkiewicz
- Department of Trace Element Analysis by Spectroscopy Method, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 89b Umultowska Street, 61-614, Poznań, Poland
| |
Collapse
|
16
|
Brahman KD, Kazi TG, Baig JA, Afridi HI, Arain SS, Saraj S, Arain MB, Arain SA. Biosorptive removal of inorganic arsenic species and fluoride from aqueous medium by the stem of Tecomella undulate. CHEMOSPHERE 2016; 150:320-328. [PMID: 26921585 DOI: 10.1016/j.chemosphere.2016.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/14/2016] [Accepted: 02/03/2016] [Indexed: 06/05/2023]
Abstract
Simultaneous removal of fluoride (F(-)), inorganic arsenic species, As(III) and As(V), from aqueous samples has been performed using an economic indigenous biosorbent (Stem of Tecomella undulata). The inorganic As species in water samples before and after biosorption were determined by cloud point and solid phase extraction methods, while F(-) was determined by ion chromatography. Batch experiments were carried out to evaluate the equilibrium adsorption isotherm studies for As(III), As(V) and F(-) in aqueous solutions. Several parameters of biosorption were optimized such as pH, biomass dosage, analytes concentration, time and temperature. The surface of biosorbent was characterized by SEM and FTIR. The FTIR study indicated the presence of carbonyl and amine functional groups which may have important role in the sorption/removal of these ions. Thermodynamic and kinetic study indicated that the biosorption of As(III), As(V) and F(-) were spontaneous, exothermic and followed by pseudo-second-order. Meanwhile, the interference study revealed that there was no significant effect of co-existing ions for the removal of inorganic As species and F(-) from aqueous samples (p > 0.05). It was observed that the indigenous biosorbent material simultaneously adsorbed As(III) (108 μg g(-1)), As(V) (159 μg g(-1)) and F(-) (6.16 mg g(-1)) from water at optimized conditions. The proposed biosorbent was effectively regenerated and efficiently used for several experiments, to remove the As(III), As(V) and F(-) from real water sample collected from endemic area of Pakistan.
Collapse
Affiliation(s)
- Kapil Dev Brahman
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Tasneem Gul Kazi
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Jameel Ahmed Baig
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Hassan Imran Afridi
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Sadaf Sadia Arain
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Saima Saraj
- Department of Information Technology, Quaid-e-Awam University of Engineering Science & Technology, Pakistan.
| | - Muhammad B Arain
- Chemistry Department, Abdul Wali Khan University, Mardan, Pakistan.
| | - Salma Aslam Arain
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| |
Collapse
|
17
|
Jin P, Liang X, Xia L, Jahouh F, Wang R, Kuang Y, Hu X. Determination of 20 trace elements and arsenic species for a realgar-containing traditional Chinese medicine Niuhuang Jiedu tablets by direct inductively coupled plasma-mass spectrometry and high performance liquid chromatography-inductively coupled plasma-mass spectrometry. J Trace Elem Med Biol 2016; 33:73-80. [PMID: 26653746 DOI: 10.1016/j.jtemb.2015.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 11/21/2022]
Abstract
Niuhuang Jiedu tablet (NHJDT) is a realgar-containing traditional Chinese medicine. A direct inductively coupled plasma-mass spectrometry (ICP-MS) method for the simultaneous determination of 20 trace elements (Mg, K, Ca, Na, Fe, As, Zn, Sr, Ba, Cu, Mn, Ni, Pb, V, Cr, Se, Co, Mo, Cd, Hg) in NHJDT, as well as in water, gastric fluid and intestinal fluid was established. Meanwhile, a high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) method was developed for the determination of arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and for the identification of arsenobetaine (AsB) and arsenocholine (AsC) in these extracts. Both methods were fully validated in the respect of linearity, sensitivity, precision, stability and accuracy. The reliability of the ICP-MS method was further evaluated using a certified standard reference material prepared from dried tomato leaves (NIST, SRM 1572a). The analysis showed that some manufacturers formulated lower amount of realgar than required in the Chinese Pharmacopoeia (ChP) in their preparations. In addition, almost same extraction profiles for total As and inorganic As were found in water and in gastrointestinal fluids, while higher extraction rates for other 19 elements were observed in gastrointestinal fluids. Our findings show that the toxicities of Hg, Cu, Cd and Pb in NHJDP are low, while the real As toxicity in NHJDT should be deeply investigated.
Collapse
Affiliation(s)
- Pengfei Jin
- Department of Pharmaceutical Science, Beijing Hospital of the Ministry of Health, No. 1 Dahua Road, Dongcheng District, Beijing 100730, China.
| | - Xiaoli Liang
- Department of Pharmaceutical Science, Beijing Hospital of the Ministry of Health, No. 1 Dahua Road, Dongcheng District, Beijing 100730, China
| | - Lufeng Xia
- Department of Pharmaceutical Science, Beijing Hospital of the Ministry of Health, No. 1 Dahua Road, Dongcheng District, Beijing 100730, China
| | - Farid Jahouh
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029-6574, USA
| | - Rong Wang
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029-6574, USA
| | - Yongmei Kuang
- Department of Pharmaceutical Science, Beijing Hospital of the Ministry of Health, No. 1 Dahua Road, Dongcheng District, Beijing 100730, China
| | - Xin Hu
- Department of Pharmaceutical Science, Beijing Hospital of the Ministry of Health, No. 1 Dahua Road, Dongcheng District, Beijing 100730, China
| |
Collapse
|
18
|
The Determination of Protein-Based Arsenic in Shrimp Tissues by Hydride Generation-Atomic Fluorescence Spectrometer. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0164-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Hong S, Khim JS, Park J, Son HS, Choi SD, Choi K, Ryu J, Kim CY, Chang GS, Giesy JP. Species- and tissue-specific bioaccumulation of arsenicals in various aquatic organisms from a highly industrialized area in the Pohang City, Korea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 192:27-35. [PMID: 24880533 DOI: 10.1016/j.envpol.2014.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/28/2014] [Accepted: 05/03/2014] [Indexed: 06/03/2023]
Abstract
Contamination of water and sediment with arsenic (As) in a highly industrialized area of Pohang City, Korea was investigated, with emphasis on in situ bioaccumulation of arsenicals by various aquatic organisms. Species- and tissue-specific concentrations of arsenicals were determined by use of HPLC-ICP/MS and μ-X-ray absorption near-edge structure (μ-XANES). Concentrations of arsenic in aquatic organisms were strongly associated with corresponding water concentrations, which indicates point sources associated with land use and activities. Arsenobetaine was the most dominant form of arsenic found in fishes, bivalves, crabs, and shrimps, while As(III) was predominant in freshwater snails. The μ-XANES analysis provided additional information about the unidentified arsenicals such as As-thiol. Arsenicals were mainly localized in intestine of mullet and marsh clam. Distribution and bioaccumulation of arsenic were strongly correlated with salinity, which indicates that natural processes controlling biogeochemistry of arsenic would be important in estuarine lotic system.
Collapse
Affiliation(s)
- Seongjin Hong
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea.
| | - Jinsoon Park
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Hee-Sik Son
- Environmental Analysis Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Sung-Deuk Choi
- Environmental Analysis Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea; School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Jongseong Ryu
- Department of Marine Biotechnology, Anyang University, Ganghwa, Incheon, Republic of Korea
| | | | - Gap Soo Chang
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK, Canada
| | - John P Giesy
- Department of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Department of Biology & Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; School of the Environment, Nanjing University, Nanjing, China
| |
Collapse
|
20
|
Arsenic Species in Edible Seaweeds Using In Vitro Biomimetic Digestion Determined by High-Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectrometry. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2014; 2014:436347. [PMID: 26904630 PMCID: PMC4745547 DOI: 10.1155/2014/436347] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/27/2013] [Accepted: 01/31/2014] [Indexed: 11/18/2022]
Abstract
Arsenite [As (III)], arsenate [As (V)], methylarsonate (MMA), and dimethylarsinate (DMA) in five edible seaweeds (the brown algae Laminaria japonica, red algae Porphyra yezoensis, brown algae Undaria pinnatifida, brown algae Hizikia fusiformis, and green algae Enteromorpha prolifera) were analyzed using in vitro digestion method determined by high-performance liquid chromatography inductively coupled plasma mass spectrometry. The results showed that DMA was found in the water extracts of all samples; As (III) were detected in L. japonica and U. pinnatifida and about 23.0 and 0.15 mg/kg of As (V) were found in H. fusiformis and E. prolifera respectively. However, after the gastrointestinal digestion, As (V) was not detected in any of the five seaweeds. About 0.19 and 1.47 mg/kg of As (III) was detected in the gastric extracts of L. japonica and H. fusiformis, respectively, and about 0.31 and 0.10 mg/kg of As (III) were extracted from the intestinal extracts of Porphyra yezoensis and U. pinnatifida, respectively. The present results successfully reveal the differences of As species and levels in the water and biomimetic extracts of five edible seaweeds. The risk assessment of the inorganic arsenic in the five edible seaweeds based on present data showed almost no hazards to human health.
Collapse
|
21
|
|
22
|
Rahman MA, Hassler C. Is arsenic biotransformation a detoxification mechanism for microorganisms? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 146:212-219. [PMID: 24321575 DOI: 10.1016/j.aquatox.2013.11.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 06/03/2023]
Abstract
Arsenic (As) is extremely toxic to living organisms at high concentration. In aquatic systems, As exists in different chemical forms. The two major inorganic As (iAs) species are As(V), which is thermodynamically stable in oxic waters, and As(III), which is predominant in anoxic conditions. Photosynthetic microorganisms (e.g., phytoplankton and cyanobacteria) take up As(V), biotransform it to As(III), then biomethylate it to methylarsenic (MetAs) forms. Although As(III) is more toxic than As(V), As(III) is much more easily excreted from the cells than As(V). Therefore, majority of researchers consider the reduction of As(V) to As(III) as a detoxification process. The biomethylation process results in the conversion of toxic iAs to the less toxic pentavalent MetAs forms (monomethylarsonate; MMA(V), dimethylarsonate; DMA(V), and trimethylarsenic oxide; TMAO(V)) and trimethylarsine (TMAO(III)). However, biomethylation by microorganisms also produces monomethylarsenite (MMA(III)) and dimethylarsenite (DMA(III)), which are more toxic than iAs, as a result of biomethylation by the microorganisms, demonstrates the need to reconsider to what extent As biomethylation contributes to a detoxification process. In this review, we focused on the discussion of whether the biotransformation of As species in microorganisms is really a detoxification process with recent data.
Collapse
Affiliation(s)
- M Azizur Rahman
- Centre for Environmental Sustainability, School of the Environment, Faculty of Science, University of Technology, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia.
| | - Christel Hassler
- Marine and Lake Biogeochemistry, Institute F. A. Forel, University of Geneva, 10 rte de Suisse, Versoix, 1290 Switzerland
| |
Collapse
|
23
|
Zhang CH, Wang Y, Ge Y. Determination of Five Arsenic Species inPorphyraby Microwave-Assisted Water Extraction and High Performance Liquid Chromatography–Atomic Fluorescence Spectrometry. ANAL LETT 2013. [DOI: 10.1080/00032719.2013.773438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Whaley-Martin KJ, Koch I, Moriarty M, Reimer KJ. Arsenic speciation in blue mussels (Mytilus edulis) along a highly contaminated arsenic gradient. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:3110-8. [PMID: 22329691 DOI: 10.1021/es203812u] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Arsenic is naturally present in marine ecosystems, and these can become contaminated from mining activities, which may be of toxicological concern to organisms that bioaccumulate the metalloid into their tissues. The toxic properties of arsenic are dependent on the chemical form in which it is found (e.g., toxic inorganic arsenicals vs nontoxic arsenobetaine), and two analytical techniques, high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) and X-ray absorption spectroscopy (XAS), were used in the present study to examine the arsenic species distribution in blue mussels (Mytilus edulis) obtained from an area where there is a strong arsenic concentration gradient as a consequence of mining impacted sediments. A strong positive correlation was observed between the concentration of inorganic arsenic species (arsenic compounds with no As-C bonds) and total arsenic concentrations present in M. edulis tissues (R(2) = 0.983), which could result in significant toxicological consequences to the mussels and higher trophic consumers. However, concentrations of organoarsenicals, dominated by arsenobetaine, remained relatively constant regardless of the increasing As concentration in M. edulis tissue (R(2) = 0.307). XANES bulk analysis and XAS two-dimensional mapping of wet M. edulis tissue revealed the presence of predominantly arsenic-sulfur compounds. The XAS mapping revealed that the As(III)-S and/or As(III) compounds were concentrated in the digestive gland. However, arsenobetaine was found in small and similar concentrations in the digestive gland as well as the surrounding tissue suggesting arsenobetaine may being used in all of the mussel's cells in a physiological function such as an intracellular osmolyte.
Collapse
Affiliation(s)
- K J Whaley-Martin
- Environmental Sciences Group, Royal Military College of Canada, PO Box 17000 Station Forces, Kingston, Ontario K7K 7B4, Canada
| | | | | | | |
Collapse
|
25
|
Ye J, Rensing C, Rosen BP, Zhu YG. Arsenic biomethylation by photosynthetic organisms. TRENDS IN PLANT SCIENCE 2012; 17:155-62. [PMID: 22257759 PMCID: PMC3740146 DOI: 10.1016/j.tplants.2011.12.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/07/2011] [Accepted: 12/12/2011] [Indexed: 05/03/2023]
Abstract
Arsenic (As) is a ubiquitous element that is widespread in the environment and causes numerous health problems. Biomethylation of As has implications for its mobility and toxicity. Photosynthetic organisms may play a significant role in As geochemical cycling by methylating it to different As species, but little is known about the mechanisms of methylation. Methylated As species have been found in many photosynthetic organisms, and several arsenite S-adenosylmethionine (SAM) methyltransferases have been characterized in cyanobacteria and algae. However, higher plants may not have the ability to methylate As. Instead, methylated arsenicals in plants probably originate from microorganisms in soils and the rhizosphere. Here, we propose possible approaches for developing 'smart' photosynthetic organisms with an enhanced and sensitive biomethylation capacity for bioremediation and safer food.
Collapse
Affiliation(s)
- Jun Ye
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | | | | | | |
Collapse
|
26
|
Arsenic species extraction of biological marine samples (Periwinkles, Littorina littorea) from a highly contaminated site. Talanta 2012; 88:187-92. [DOI: 10.1016/j.talanta.2011.10.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 10/24/2011] [Accepted: 10/25/2011] [Indexed: 11/21/2022]
|
27
|
Díaz O, Tapia Y, Muñoz O, Montoro R, Velez D, Almela C. Total and inorganic arsenic concentrations in different species of economically important algae harvested from coastal zones of Chile. Food Chem Toxicol 2011; 50:744-9. [PMID: 22138359 DOI: 10.1016/j.fct.2011.11.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 11/02/2011] [Accepted: 11/07/2011] [Indexed: 11/29/2022]
Abstract
Chile is one of the major producers of phytocolloids extracted from seaweed. Multicellular algae are considered to be primary accumulators of arsenic. We analyzed 14 species of algae belonging to the groups Rhodophyceae (10), Phaeophyceae (3) and Chlorophyceae (1) from different coastal zones of Chile in 2003-2004. Dry ashing mineralization (for total As) and acid digestion (for inorganic As) together with quantification by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS) were employed. In general, total arsenic concentrations varied between 3.0 and 68 mg kg(-1), whereas inorganic arsenic concentrations ranged between 0.15 and 1.06 mg kg(-1). The algal species Durvillaea antarctica and Porphyra columbina, used for direct human consumption, did not have inorganic arsenic levels that represent a health risk to consumers. Among species used for phytocolloids production, such as Macrocystis piryfera, Gracilaria chilensis and Gigartina skottsbergii, observed levels of inorganic arsenic were greater than 1 mg kg(-1), the limit value established by the regulations of some countries. Among the 14 species of algae tested, inorganic arsenic levels were between 0.8% and 13% of the total arsenic concentrations; that is, arsenic present in these algae was found primarily as organic arsenic.
Collapse
Affiliation(s)
- Oscar Díaz
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
28
|
Moreda-Piñeiro A, Moreda-Piñeiro J, Herbello-Hermelo P, Bermejo-Barrera P, Muniategui-Lorenzo S, López-Mahía P, Prada-Rodríguez D. Application of fast ultrasound water-bath assisted enzymatic hydrolysis – High performance liquid chromatography–inductively coupled plasma-mass spectrometry procedures for arsenic speciation in seafood materials. J Chromatogr A 2011; 1218:6970-80. [DOI: 10.1016/j.chroma.2011.07.101] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/06/2011] [Accepted: 07/21/2011] [Indexed: 11/17/2022]
|
29
|
BAIG JA, KAZI TG, ARAIN MB, SHAH AQ, KANDHRO GA, AFRIDI HI, KHAN S, KOLACHI NF, WADHWA SK. Inorganic Arsenic Speciation in Groundwater Samples Using Electrothermal Atomic Spectrometry Following Selective Separation and Cloud Point Extraction. ANAL SCI 2011; 27:439. [DOI: 10.2116/analsci.27.439] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jameel A. BAIG
- Center of Excellence in Analytical Chemistry, University of Sindh
| | - Tasneem G. KAZI
- Center of Excellence in Analytical Chemistry, University of Sindh
| | | | - Abdul Q. SHAH
- Center of Excellence in Analytical Chemistry, University of Sindh
| | | | - Hassan I. AFRIDI
- Center of Excellence in Analytical Chemistry, University of Sindh
| | - Sumaira KHAN
- Center of Excellence in Analytical Chemistry, University of Sindh
| | - Nida F. KOLACHI
- Center of Excellence in Analytical Chemistry, University of Sindh
| | - Sham K. WADHWA
- Center of Excellence in Analytical Chemistry, University of Sindh
| |
Collapse
|
30
|
Moreda-Piñeiro J, Alonso-Rodríguez E, Moreda-Piñeiro A, Moscoso-Pérez C, Muniategui-Lorenzo S, López-Mahía P, Prada-Rodríguez D, Bermejo-Barrera P. Simultaneous pressurized enzymatic hydrolysis extraction and clean up for arsenic speciation in seafood samples before high performance liquid chromatography–inductively coupled plasma-mass spectrometry determination. Anal Chim Acta 2010; 679:63-73. [DOI: 10.1016/j.aca.2010.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/07/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
|
31
|
Ahmed Baig J, Gul Kazi T, Qadir Shah A, Abbas Kandhro G, Imran Afridi H, Balal Arain M, Khan Jamali M, Jalbani N. Speciation and evaluation of Arsenic in surface water and groundwater samples: a multivariate case study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:914-923. [PMID: 20363500 DOI: 10.1016/j.ecoenv.2010.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 01/05/2010] [Accepted: 01/07/2010] [Indexed: 05/29/2023]
Abstract
The principal object of the current study was to estimate total arsenic and its inorganic speciation in different origins of surface water (n=480) and groundwater (n=240) of Sindh, Pakistan. This study provided a description based on the evaluation of physico-chemical parameters of collected water samples and possible distribution of As with respect to its speciation. The concentration of total inorganic As (iAs) and its species (As(3+) and As(5+)) for the surface and underground water was reported in terms of basic statistical parameters, principal component analysis, cluster analysis, metal-to-metal correlations and linear regression analyses. The chemical correlations were observed by PCA, which were used to classify the samples by CA, based on the PCA scores. Standard addition method confirmed the accuracy; the recoveries of As(3+) and iAs were found to be >98%. The concentration of As(5+) in the water samples was calculated by the difference of the total inorganic arsenic and As(3+). The results revealed that the groundwater of the understudied area was more contaminated as compared to the surface water samples. The mean concentration of As(3+) and As(5+) in the surface water and groundwater samples were in the range 3.0 to 18.3 and 8.74-352 microg/L, respectively.
Collapse
Affiliation(s)
- Jameel Ahmed Baig
- Centre of Excellence in Analytical Chemistry University of Sindh, Jamshoro 76080, Pakistan.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Shimoda Y, Suzuki Y, Endo Y, Kato K, Tachikawa M, Endo G, Yamanaka K. Speciation Analysis of Arsenics in Commercial Hijiki by High Performance Liquid Chromatography-tandem-mass Spectrometry and High Performance Liquid Chromatography-inductively Coupled Plasma Mass Spectrometry. ACTA ACUST UNITED AC 2010. [DOI: 10.1248/jhs.56.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yasuyo Shimoda
- Environmental Toxicology and Carcinogenesis Research Unit, Nihon University College of Pharmacy
| | - Yoshihiro Suzuki
- Research Center for Occupational Poisoning, Tokyo Rosai Hospital
| | - Yoko Endo
- Research Center for Occupational Poisoning, Tokyo Rosai Hospital
| | - Koichi Kato
- Environmental Toxicology and Carcinogenesis Research Unit, Nihon University College of Pharmacy
| | - Mariko Tachikawa
- Environmental Toxicology and Carcinogenesis Research Unit, Nihon University College of Pharmacy
| | - Ginji Endo
- Department of Preventive Medicine and Environmental Health, Osaka City University Medical School
| | - Kenzo Yamanaka
- Environmental Toxicology and Carcinogenesis Research Unit, Nihon University College of Pharmacy
| |
Collapse
|
33
|
Niegel C, Matysik FM. Analytical methods for the determination of arsenosugars—A review of recent trends and developments. Anal Chim Acta 2010; 657:83-99. [DOI: 10.1016/j.aca.2009.10.041] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 10/15/2009] [Accepted: 10/17/2009] [Indexed: 11/29/2022]
|
34
|
Baig JA, Kazi TG, Shah AQ, Arain MB, Afridi HI, Kandhro GA, Khan S. Optimization of cloud point extraction and solid phase extraction methods for speciation of arsenic in natural water using multivariate technique. Anal Chim Acta 2009; 651:57-63. [DOI: 10.1016/j.aca.2009.07.065] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 07/31/2009] [Accepted: 07/31/2009] [Indexed: 10/20/2022]
|
35
|
Suzuki Y, Shimoda Y, Endo Y, Hata A, Yamanaka K, Endo G. Rapid and Effective Speciation Analysis of Arsenic Compounds in Human Urine using Anion‐Exchange Columns in HPLC‐ICP‐MS. J Occup Health 2009; 51:380-5. [DOI: 10.1539/joh.m9003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Yoshihiro Suzuki
- Research Center for Occupational PoisoningTokyo Rosai Hospital, Japan Labour Health and Welfare OrganizationJapan
| | - Yasuyo Shimoda
- Research Unit of Environmental Toxicology and CarcinogenesisNihon University College of PharmacyJapan
| | - Yoko Endo
- Research Center for Occupational PoisoningTokyo Rosai Hospital, Japan Labour Health and Welfare OrganizationJapan
| | - Akihisa Hata
- Department of Preventive Medicine and Environmental HealthGraduate School of Medicine, Osaka City UniversityJapan
| | - Kenzo Yamanaka
- Research Unit of Environmental Toxicology and CarcinogenesisNihon University College of PharmacyJapan
| | - Ginji Endo
- Department of Preventive Medicine and Environmental HealthGraduate School of Medicine, Osaka City UniversityJapan
| |
Collapse
|
36
|
8-Hydroxy-2′-deoxyguanosine (8-OHdG) as a possible marker of arsenic poisoning: a clinical case study on the relationship between concentrations of 8-OHdG and each arsenic compound in urine of an acute promyelocytic leukemia patient being treated with arsenic trioxide. Forensic Toxicol 2009. [DOI: 10.1007/s11419-008-0062-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Schmidt AC, Kutschera K, Mattusch J, Otto M. Analysis of accumulation, extractability, and metabolization of five different phenylarsenic compounds in plants by ion chromatography with mass spectrometric detection and by atomic emission spectroscopy. CHEMOSPHERE 2008; 73:1781-1787. [PMID: 18848716 DOI: 10.1016/j.chemosphere.2008.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 08/08/2008] [Accepted: 09/02/2008] [Indexed: 05/26/2023]
Abstract
Phenylated arsenic compounds occur as highly toxic contaminants in former military areas where they were formed as degradation products of chemical warfare agents. Some phenylarsenic compounds such as roxarsone and aminophenylarsonic acids were applied as food additive and veterinary drugs in stock-breeding and therefore pose an environmental risk in agricultural used sites. Very few data exist in the literature concerning uptake and effects of phenylarsenic compounds in plants growing on contaminated soils. In this study, the accumulation, extractability, and metabolization of five different phenylarsenic compounds, phenylarsonic acid, p- and o-aminophenylarsonic acid, phenylarsine oxide, and 3-nitro-4-hydroxyphenylarsonic acid called roxarsone, by the terrestrial plant Tropaeolum majus were investigated. Ion chromatography coupled to inductively coupled plasma mass spectrometry was used to differentiate these arsenic compounds, and inductively coupled plasma atomic emission spectroscopy was used for total arsenic quantification. All compounds considered were taken up by the roots and transferred to stalks, leaves, and flowers. The strongest accumulation was observed for unsubstituted phenylarsonic acid followed by its trivalent analogue phenylarsine oxide that was mostly oxidized in soil whereas the amino- or nitro- and hydroxy-substituted phenylarsonic acids were accumulated to a smaller degree. The highest extraction yield of 90% for ground leaf material was achieved by 0.1M phosphate buffer, pH 7.7, in a two-step extraction with a total extraction time of 24h. The extraction of higher amounts of arsenic (50-70% of total arsenic present in leaves depending on arsenic species application) from non-ground intact leaves with deionized water in comparison with the buffer (20-40% of total arsenic) is ascribed to osmotic effects. The arsenic species analysis revealed a cleavage of the amino groups from the phenyl ring for plants treated with aminophenylarsonic acids. A further important metabolic effect consisted in the production of inorganic arsenate and arsenite from the phenylated arsonic acid groups.
Collapse
Affiliation(s)
- Anne-Christine Schmidt
- Faculty of Chemistry and Physics, TU Bergakademie Freiberg, Institute of Analytical Chemistry, Freiberg, Germany.
| | | | | | | |
Collapse
|
38
|
Moreda-Piñeiro A, Peña-Vázquez E, Hermelo-Herbello P, Bermejo-Barrera P, Moreda-Piñeiro J, Alonso-Rodríguez E, Muniategui-Lorenzo S, López-Mahía P, Prada-Rodríguez D. Matrix Solid-Phase Dispersion as a Sample Pretreatment for the Speciation of Arsenic in Seafood Products. Anal Chem 2008; 80:9272-8. [DOI: 10.1021/ac801622u] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antonio Moreda-Piñeiro
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, Avenida das Ciencias, s/n. 15782, Santiago de Compostela, Spain, Department of Analytical Chemistry, Faculty of Sciences, University of A Coruña, Campus da Zapateira, s/n 15071, A Coruña, Spain, and University Institute of Environment, University of A Coruña, Pazo de Lóngora, Liáns, 15179, Oleiros, Spain
| | - Elena Peña-Vázquez
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, Avenida das Ciencias, s/n. 15782, Santiago de Compostela, Spain, Department of Analytical Chemistry, Faculty of Sciences, University of A Coruña, Campus da Zapateira, s/n 15071, A Coruña, Spain, and University Institute of Environment, University of A Coruña, Pazo de Lóngora, Liáns, 15179, Oleiros, Spain
| | - Paloma Hermelo-Herbello
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, Avenida das Ciencias, s/n. 15782, Santiago de Compostela, Spain, Department of Analytical Chemistry, Faculty of Sciences, University of A Coruña, Campus da Zapateira, s/n 15071, A Coruña, Spain, and University Institute of Environment, University of A Coruña, Pazo de Lóngora, Liáns, 15179, Oleiros, Spain
| | - Pilar Bermejo-Barrera
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, Avenida das Ciencias, s/n. 15782, Santiago de Compostela, Spain, Department of Analytical Chemistry, Faculty of Sciences, University of A Coruña, Campus da Zapateira, s/n 15071, A Coruña, Spain, and University Institute of Environment, University of A Coruña, Pazo de Lóngora, Liáns, 15179, Oleiros, Spain
| | - Jorge Moreda-Piñeiro
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, Avenida das Ciencias, s/n. 15782, Santiago de Compostela, Spain, Department of Analytical Chemistry, Faculty of Sciences, University of A Coruña, Campus da Zapateira, s/n 15071, A Coruña, Spain, and University Institute of Environment, University of A Coruña, Pazo de Lóngora, Liáns, 15179, Oleiros, Spain
| | - Elia Alonso-Rodríguez
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, Avenida das Ciencias, s/n. 15782, Santiago de Compostela, Spain, Department of Analytical Chemistry, Faculty of Sciences, University of A Coruña, Campus da Zapateira, s/n 15071, A Coruña, Spain, and University Institute of Environment, University of A Coruña, Pazo de Lóngora, Liáns, 15179, Oleiros, Spain
| | - Soledad Muniategui-Lorenzo
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, Avenida das Ciencias, s/n. 15782, Santiago de Compostela, Spain, Department of Analytical Chemistry, Faculty of Sciences, University of A Coruña, Campus da Zapateira, s/n 15071, A Coruña, Spain, and University Institute of Environment, University of A Coruña, Pazo de Lóngora, Liáns, 15179, Oleiros, Spain
| | - Purificación López-Mahía
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, Avenida das Ciencias, s/n. 15782, Santiago de Compostela, Spain, Department of Analytical Chemistry, Faculty of Sciences, University of A Coruña, Campus da Zapateira, s/n 15071, A Coruña, Spain, and University Institute of Environment, University of A Coruña, Pazo de Lóngora, Liáns, 15179, Oleiros, Spain
| | - Darío Prada-Rodríguez
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, Avenida das Ciencias, s/n. 15782, Santiago de Compostela, Spain, Department of Analytical Chemistry, Faculty of Sciences, University of A Coruña, Campus da Zapateira, s/n 15071, A Coruña, Spain, and University Institute of Environment, University of A Coruña, Pazo de Lóngora, Liáns, 15179, Oleiros, Spain
| |
Collapse
|
39
|
Hu W, Zheng F, Hu B. Simultaneous separation and speciation of inorganic As(III)/As(V) and Cr(III)/Cr(VI) in natural waters utilizing capillary microextraction on ordered mesoporous Al2O3 prior to their on-line determination by ICP-MS. JOURNAL OF HAZARDOUS MATERIALS 2008; 151:58-64. [PMID: 17597291 DOI: 10.1016/j.jhazmat.2007.05.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 05/15/2007] [Accepted: 05/15/2007] [Indexed: 05/16/2023]
Abstract
In this paper, a system of flow injection (FI) capillary microextraction (CME) on line coupled with inductively plasma mass spectrometry (ICP-MS) was proposed for simultaneous separation and speciation of inorganic As(III)/As(V) and Cr(III)/Cr(VI) in natural waters. Ordered mesoporous Al2O3 coating was prepared by sol-gel technology and used as CME coating material. Various experimental parameters affecting the capillary microextraction of inorganic arsenic and chromium species have been investigated and optimized. Under the optimized conditions, the limits of detection were 0.7 and 18 ng L(-1) for As(V) and Cr(VI), 3.4 and 74 ng L(-1) for As(III) and Cr(III), respectively, with an enrichment factor of 5 and a sampling frequency of 8h(-1). The relative standard deviations (R.S.D.) were 3.1, 4.0, 2.8 and 3.9% (C=1 ng mL(-1), n=7) for As(V), As(III), Cr(VI) and Cr(III), respectively. The proposed method was successfully applied for the analysis of inorganic arsenic and chromium species in mineral water, tap water and lake water with the recovery of 94-105%. In order to verify the accuracy of the method, two certified reference of GSBZ50027-94 and GSBZ50004-88 water samples were analyzed and the results obtained were in good agreement with the certified values. The ordered mesoporous Al2O3 coated capillary showed an excellent solvent and thermal stability and could be re-used for more than 30 times without decreasing extraction efficiency.
Collapse
Affiliation(s)
- Wenling Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | | | | |
Collapse
|
40
|
Hata A, Endo Y, Nakajima Y, Ikebe M, Ogawa M, Fujitani N, Endo G. HPLC‐ICP‐MS Speciation Analysis of Arsenic in Urine of Japanese Subjects without Occupational Exposure. J Occup Health 2007; 49:217-23. [PMID: 17575402 DOI: 10.1539/joh.49.217] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The toxicity and carcinogenicity of arsenic depend on its species. Individuals living in Japan consume much seafood that contains high levels of organoarsenics. Speciation analysis of urinary arsenic is required to clarify the health risks of arsenic intake. There has been no report of urinary arsenic analysis in Japan using high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). We performed speciation analysis of urinary arsenic for 210 Japanese male subjects without occupational exposure using HPLC-ICP-MS. The median values of urinary arsenics were as follows: sodium arsenite (AsIII), 3.5; sodium arsenate (AsV), 0.1; monomethylarsonic acid (MMA), 3.1; dimethylarsinic acid (DMA), 42.6; arsenobetaine (AsBe), 61.3; arsenocholine, trimethylarsine oxide, and unidentified arsenics (others), 5.2; and total arsenic (total As), 141.3 microgAs/l. The median creatinine-adjusted values were as follows: AsIII, 3.0; AsV, 0.1; MMA, 2.6; DMA, 35.9; AsBe, 52.1; others 3.5; and total As, 114.9 microgAs/g creatinine. Our findings indicate that DMA and AsBe levels in Japan are much higher than those found in Italian and American studies. It appears that the high levels of DMA and AsBe observed in Japan may be due in part to seafood intake. ACGIH and DFG set the BEI and BAT values for occupational arsenic exposure as 35 microgAs/l and 50 microgAs/l, respectively, using the sum of inorganic arsenic (iAs), MMA, and DMA. In the general Japanese population, the sums of these were above 50 microgAs/l in 115 (55%) samples. We therefore recommend excluding DMA concentration in monitoring of iAs exposure.
Collapse
Affiliation(s)
- Akihisa Hata
- Department of Preventive Medicine and Environmental Health, Graduate School of Medicine, Osaka City University, Japan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Hirner AV. Speciation of alkylated metals and metalloids in the environment. Anal Bioanal Chem 2006; 385:555-67. [PMID: 16715277 DOI: 10.1007/s00216-006-0368-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 02/13/2006] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
The analytical methodology for speciation of metals and metalloids associated with alkyl groups and biomacromolecules is critically reviewed. Alkylated metals and metalloids are not only known to be produced by microbial methylation within most anaerobic compartments in the environment, but also in the course of enzymatic transformations during human metabolism. Because of the toxicological relevance of these compounds present in trace to ultratrace concentrations, firm species identification and exact quantification are essential. While many instrumental techniques coupling chromatography (GC, HPLC, CE, GE) with plasma mass spectrometry (ICP-MS) are available for quantification, methods used for structural identification often suffer from inadequate sensitivity (EI-MS, ESI-MS, MALDI-MS, FT-ICRMS). Other problems encountered are sample derivatisation artefacts, lack of suitable standards for quantification, lack of equilibrium between spikes and sample, and the integrity of metal-protein association during separation, in particular during SDS-PAGE. Selected application examples with respect to mercury and arsenic speciation will be discussed critically.
Collapse
Affiliation(s)
- Alfred V Hirner
- Institute of Environmental Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 3-5, 45141 Essen, Germany.
| |
Collapse
|
42
|
Nakajima Y, Endo Y, Inoue Y, Yamanaka K, Kato K, Wanibuchi H, Endo G. Ingestion of Hijiki seaweed and risk of arsenic poisoning. Appl Organomet Chem 2006. [DOI: 10.1002/aoc.1085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|