1
|
Jie-Liu, Xu JZ, Rao ZM, Zhang WG. Industrial production of L-lysine in Corynebacterium glutamicum: progress and prospects. Microbiol Res 2022; 262:127101. [DOI: 10.1016/j.micres.2022.127101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 11/24/2022]
|
2
|
Wendler S, Otto A, Ortseifen V, Bonn F, Neshat A, Schneiker-Bekel S, Walter F, Wolf T, Zemke T, Wehmeier UF, Hecker M, Kalinowski J, Becher D, Pühler A. Comprehensive proteome analysis of Actinoplanes sp. SE50/110 highlighting the location of proteins encoded by the acarbose and the pyochelin biosynthesis gene cluster. J Proteomics 2015; 125:1-16. [DOI: 10.1016/j.jprot.2015.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/02/2015] [Accepted: 04/12/2015] [Indexed: 01/05/2023]
|
3
|
Poetsch A, Haussmann U, Burkovski A. Proteomics of corynebacteria: From biotechnology workhorses to pathogens. Proteomics 2011; 11:3244-55. [PMID: 21674800 DOI: 10.1002/pmic.201000786] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 11/09/2022]
Abstract
Corynebacteria belong to the high G+C Gram-positive bacteria (Actinobacteria) and are closely related to Mycobacterium and Nocardia species. The best investigated member of this group of almost seventy species is Corynebacterium glutamicum, a soil bacterium isolated in 1957, which is used for the industrial production of more than two million tons of amino acids per year. This review focuses on the technical advances made in proteomics approaches during the last years and summarizes applications of these techniques with respect to C. glutamicum metabolic pathways and stress response. Additionally, selected proteome applications for other biotechnologically important or pathogenic corynebacteria are described.
Collapse
Affiliation(s)
- Ansgar Poetsch
- Lehrstuhl Biochemie der Pflanzen, Ruhr-Universität Bochum, Germany
| | | | | |
Collapse
|
4
|
Vertommen A, Panis B, Swennen R, Carpentier SC. Challenges and solutions for the identification of membrane proteins in non-model plants. J Proteomics 2011; 74:1165-81. [PMID: 21354347 DOI: 10.1016/j.jprot.2011.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/04/2011] [Accepted: 02/16/2011] [Indexed: 01/27/2023]
Abstract
The workhorse for proteomics in non-model plants is classical two-dimensional electrophoresis, a combination of iso-electric focusing and SDS-PAGE. However, membrane proteins with multiple membrane spanning domains are hardly detected on classical 2-DE gels because of their low abundance and poor solubility in aqueous media. In the current review, solutions that have been proposed to handle these two problems in non-model plants are discussed. An overview of alternative techniques developed for membrane proteomics is provided together with a comparison of their strong and weak points. Subsequently, strengths and weaknesses of the different techniques and methods to evaluate the identification of membrane proteins are discussed. Finally, an overview of recent plant membrane proteome studies is provided with the used separation technique and the number of identified membrane proteins listed.
Collapse
Affiliation(s)
- A Vertommen
- Laboratory of Tropical Crop Improvement, Department of Biosystems, K.U. Leuven, Kasteelpark Arenberg 13, B-3001 Heverlee, Belgium
| | | | | | | |
Collapse
|
5
|
Fränzel B, Poetsch A, Trötschel C, Persicke M, Kalinowski J, Wolters DA. Quantitative proteomic overview on the Corynebacterium glutamicum l-lysine producing strain DM1730. J Proteomics 2010; 73:2336-53. [DOI: 10.1016/j.jprot.2010.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 06/16/2010] [Accepted: 07/07/2010] [Indexed: 11/15/2022]
|
6
|
Shoffner J, Hyams L, Langley GN, Cossette S, Mylacraine L, Dale J, Ollis L, Kuoch S, Bennett K, Aliberti A, Hyland K. Fever plus mitochondrial disease could be risk factors for autistic regression. J Child Neurol 2010; 25:429-34. [PMID: 19773461 DOI: 10.1177/0883073809342128] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Autistic spectrum disorders encompass etiologically heterogeneous persons, with many genetic causes. A subgroup of these individuals has mitochondrial disease. Because a variety of metabolic disorders, including mitochondrial disease show regression with fever, a retrospective chart review was performed and identified 28 patients who met diagnostic criteria for autistic spectrum disorders and mitochondrial disease. Autistic regression occurred in 60.7% (17 of 28), a statistically significant increase over the general autistic spectrum disorder population (P < .0001). Of the 17 individuals with autistic regression, 70.6% (12 of 17) regressed with fever and 29.4% (5 of 17) regressed without identifiable linkage to fever or vaccinations. None showed regression with vaccination unless a febrile response was present. Although the study is small, a subgroup of patients with mitochondrial disease may be at risk of autistic regression with fever. Although recommended vaccinations schedules are appropriate in mitochondrial disease, fever management appears important for decreasing regression risk.
Collapse
Affiliation(s)
- John Shoffner
- Medical Neurogenetics, LLC, Atlanta, Georgia 30338, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ali I, Aboul-Enein HY, Singh P, Singh R, Sharma B. Separation of biological proteins by liquid chromatography. Saudi Pharm J 2010; 18:59-73. [PMID: 23960722 DOI: 10.1016/j.jsps.2010.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 11/03/2009] [Indexed: 01/11/2023] Open
Abstract
After the success of human genome project, proteome is a new emerging field of biochemistry as it provides the knowledge of enzymes (proteins) interactions with different body organs and medicines administrated into human body. Therefore, the study of proteomics is very important for the development of new and effective drugs to control many lethal diseases. In proteomics study, analyses of proteome is essential and significant from the pathological point of views, i.e., in several serious diseases such as cancer, Alzheimer's disease and aging, heart diseases and also for plant biology. The separation and identification of proteomics is a challenging job due to their complex structures and closely related physico-chemical behaviors. However, the recent advances in liquid chromatography make this job easy. Various kinds of liquid chromatography, along with different detectors and optimization strategies, have been discussed in this article. Besides, attempts have been made to include chirality concept in proteomics for understanding mechanism and medication of various disease controlled by different body proteins.
Collapse
Key Words
- 2D-nano LC, two-dimensional nano liquid chromatography quadrupole
- ACN, acetonitrile
- AIEC, anion exchange chromatography
- CEC, capillary electro-chromatography
- CIEF, capillary isoelectric focusing
- CSF, cerebrospinal fluid
- Chirality
- EC, electro-chromatography
- ESI-LC–MS, electrospray ionization liquid chromatography–mass spectrometry
- FA, formic acid
- FLP, FMRF amide-like peptide
- FT-ICR-MS, ion cyclotron resonance-mass spectrometry
- GPI-APs, glycosylphosphadylinositol anchored proteins
- GSH, glutathione stimulating hormone
- GSTs, glutathione-S-transferase isoenzyme
- Gene
- HFBA, heptafluorobutyric acid
- HPLC, high performance liquid chromatography
- ICAT, isotope coded affinity tag
- IEF-SEC, isoelectrofocussing size-exclusion chromatography
- IMCD, inner medullary collecting duct
- LC-Q-TOF, liquid chromatography-quadrupole time-of-flight tandem mass
- LC-dual ESI, liquid chromatography dual electrospray ionization-Fourier transform
- LC–MS, liquid chromatography–mass spectrometry
- Liquid chromatography
- MALDI-TOF, matrix-assisted laser desorption/ionization-time-of flight
- MFGM, milk fat globule membranes
- MMA, mass measurement accuracy
- MPC, mesenchymal progenitor cell
- MS/MS, spectrometry
- NLFs, Nasal lavage fluids
- NLP, neuropeptide like protein
- Nano detection
- PC2, prohormone convertase-2
- PS II, photosystem II
- Preparation
- Proteomics
- Q-TOFMS/MS, time-of-flight tandem-mass spectrometry
- RPLC, reversed phase liquid chromatography
- SCX, strong cation exchange
- SEC, size-exclusion chromatography
- TFA, trifluoroacetic acid
- TIC, total ion current
- TRAF, tumor necrosis factor receptor
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi 110 025, India
| | | | | | | | | |
Collapse
|
8
|
Rabilloud T, Vaezzadeh AR, Potier N, Lelong C, Leize-Wagner E, Chevallet M. Power and limitations of electrophoretic separations in proteomics strategies. MASS SPECTROMETRY REVIEWS 2009; 28:816-843. [PMID: 19072760 DOI: 10.1002/mas.20204] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Proteomics can be defined as the large-scale analysis of proteins. Due to the complexity of biological systems, it is required to concatenate various separation techniques prior to mass spectrometry. These techniques, dealing with proteins or peptides, can rely on chromatography or electrophoresis. In this review, the electrophoretic techniques are under scrutiny. Their principles are recalled, and their applications for peptide and protein separations are presented and critically discussed. In addition, the features that are specific to gel electrophoresis and that interplay with mass spectrometry (i.e., protein detection after electrophoresis, and the process leading from a gel piece to a solution of peptides) are also discussed.
Collapse
|
9
|
Fränzel B, Fischer F, Trötschel C, Poetsch A, Wolters D. The two-phase partitioning system--a powerful technique to purify integral membrane proteins of Corynebacterium glutamicum for quantitative shotgun analysis. Proteomics 2009; 9:2263-72. [PMID: 19322788 DOI: 10.1002/pmic.200800766] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We established a single consecutive strategy which assigned the most comprehensive number of integral membrane proteins from Gram-positive bacteria to date. For this purpose, we adapted a biphasic partitioning system for the biotechnologically intensively used Corynebacterium glutamicum and proved for the first time that such a system is well suited for quantitative comparison. 297 integral membrane proteins were identified by our integrated approach, which depletes stringently cytosolic proteins. In combination with our previously developed SIMPLE strategy, our data comprise 61% (374 integral membrane proteins) of the entire membrane proteome, which aims towards an almost comprehensive coverage. Wild type and a production strain of C. glutamicum were compared by (15)N metabolic labelling and quantitation was obtained by spectral counting and peak areas. Both quantification strategies display a consistent trend in up or downregulation of proteins. Nevertheless, spectral counting often provides results indicating a much stronger regulation compared to ProRata values. Either spectral counting seems to exaggerate protein regulation or ProRata tends to attenuate the information about the regulation level. We highlight some of the biologically relevant candidates, which prove that our approach helps to give a deeper quantitative insight towards the understanding of transport and other membrane associated processes, important for strain development of C. glutamicum.
Collapse
Affiliation(s)
- Benjamin Fränzel
- Department of Analytical Chemistry, Ruhr-University Bochum, Bochum, Germany
| | | | | | | | | |
Collapse
|
10
|
Abstract
About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.
Collapse
Affiliation(s)
- Ansgar Poetsch
- Lehrstuhl für Biochemie der Pflanzen, Ruhr Universität Bochum, Bochum, Germany.
| | | |
Collapse
|
11
|
Barriuso-Iglesias M, Schluesener D, Barreiro C, Poetsch A, Martín JF. Response of the cytoplasmic and membrane proteome of Corynebacterium glutamicum ATCC 13032 to pH changes. BMC Microbiol 2008; 8:225. [PMID: 19091079 PMCID: PMC2627906 DOI: 10.1186/1471-2180-8-225] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 12/17/2008] [Indexed: 11/10/2022] Open
Abstract
Background C. glutamicum has traditionally been grown in neutral-pH media for amino acid production, but in a previous article we reported that this microorganism is a moderate alkaliphile since it grows optimally at pH 7.0–9.0, as shown in fermentor studies under tightly controlled pH conditions. We determined the best pH values to study differential expression of several genes after acidic or basic pH conditions (pH 6.0 for acidic expression and pH 9.0 for alkaline expression). Thus, it was interesting to perform a detailed analysis of the pH-adaptation response of the proteome of C. glutamicum ATCC 13032 to clarify the circuits involved in stress responses in this bacterium. In this paper we used the above indicated pH conditions, based on transcriptional studies, to confirm that pH adaptation results in significant changes in cytoplasmatic and membrane proteins. Results The cytoplasmatic and membrane proteome of Corynebacterium glutamicum ATCC 13032 at different pH conditions (6.0, 7.0 and 9.0) was analyzed by classical 2D-electrophoresis, and by anion exchange chromatography followed by SDS-PAGE (AIEC/SDS-PAGE). A few cytoplasmatic proteins showed differential expression at the three pH values with the classical 2D-technique including a hypothetical protein cg2797, L-2.3-butanediol dehydrogenase (ButA), and catalase (KatA). The AIEC/SDS-PAGE technique revealed several membrane proteins that respond to pH changes, including the succinate dehydrogenase complex (SdhABCD), F0F1-ATP synthase complex subunits b, α and δ (AtpF, AtpH and AtpA), the nitrate reductase II α subunit (NarG), and a hypothetical secreted/membrane protein cg0752. Induction of the F0F1-ATP synthase complex β subunit (AtpD) at pH 9.0 was evidenced by Western analysis. By contrast, L-2.3-butanediol dehydrogenase (ButA), an ATPase with chaperone activity, the ATP-binding subunit (ClpC) of an ATP-dependent protease complex, a 7 TMHs hypothetical protein cg0896, a conserved hypothetical protein cg1556, and the dihydrolipoamide acyltransferase SucB, were clearly up-regulated at pH 6.0. Conclusion The observed protein changes explain the effect of the extracellular pH on the growth and physiology of C. glutamicum. Some of the proteins up-regulated at alkaline pH respond also to other stress factors suggesting that they serve to integrate the cell response to different stressing conditions.
Collapse
Affiliation(s)
- Mónica Barriuso-Iglesias
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Av. Real, 1, 24006. León, Spain.
| | | | | | | | | |
Collapse
|