1
|
Ma T, Dong X, Liang I, Chen J, Tao Y, Chen J, Xu D, Liang F. A cellulose paper decorated with gold(-silver) nanoparticles for SERS-based immunoassays. Talanta 2025; 294:128170. [PMID: 40262350 DOI: 10.1016/j.talanta.2025.128170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025]
Abstract
Surface-enhanced Raman scattering (SERS)-based immunoassays offer an unprecedented method for the early diagnosis of biomarkers. However, challenges in reliability often hinder their broader applications. This study introduces a novel approach employing in situ-prepared cellulose paper decorated with gold and gold-silver nanoparticles (Au(-Ag) CP) to construct a highly sensitive and stable paper-based SERS substrate. Building on this, we developed robust SERS immunosubstrates and immunoprobes, enabling a versatile immunoassay platform. This platform demonstrated exceptional performance in detecting disease markers. Using gold nanoparticles probe with Au CP, a limit of detection (LOD) of 29.71 fg/mL was achieved for the COVID-19 antigen, while the Au-Ag CP coupled with the Au-core Ag-shell (Au@Ag) probes achieved an LOD of 10.79 fg/mL for cardiac troponin I (cTnI). Both detection modes featured a broad dynamic range from 10-13 to 10-8 g/mL and sustained stability, retaining comparable LOD after 5 weeks of storage. The paper-based SERS immunoassay platform presented here holds promise for rapid, ultra-sensitive biomarker detection, offering a transformative tool for advancing diagnostic technologies.
Collapse
Affiliation(s)
- Tao Ma
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China.
| | - Xiaoqiang Dong
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Iris Liang
- Union County Magnet High School, Scotch Plains, NJ, 07076, USA
| | - Jiuzhou Chen
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Yi Tao
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Junling Chen
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Dandan Xu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China; Improve Biotechnology, Summit, NJ, 07901, USA.
| |
Collapse
|
2
|
Mikac L, Gebavi H, Perrault J, Ivanda M. Development of a simple SERS substrate for the detection of pollutants and nanoplastics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 339:126255. [PMID: 40288020 DOI: 10.1016/j.saa.2025.126255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/01/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
This study investigates the development and characterisation of Ag- and Au-coated silicon filter substrates developed for surface-enhanced Raman spectroscopy (SERS) applications. Silver nanoparticles were synthesised by immersing silicon filters in an AgNO3 solution, with the immersion time playing a crucial role in nanoparticle distribution and SERS efficiency. The highest performance was observed at an immersion time of 30-60 min and allowed the detection of 4-mercaptobenzoic acid (4-MBA) at nanomolar concentrations. To improve stability and tunability, gold was sputtered onto the Ag-coated substrates. Optimal performance was achieved with 6 min of Au sputtering, which allowed picomolar sensitivity for 4-MBA and micromolar detection of melamine. These substrates were further tested for the detection of polystyrene (PS) and polyethylene (PE) nanoplastic particles by Raman mapping with particles down to 50 nm. The successful identification showed great potential for the micro-Raman analysis of nanomaterials. The results emphasise the high sensitivity, versatility and ease of production of the SERS substrates and highlight their potential for applications in environmental and food monitoring, especially for the detection of nanoplastics.
Collapse
Affiliation(s)
- Lara Mikac
- Laboratory for Molecular Physics and Synthesis of New Materials, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Hrvoje Gebavi
- Laboratory for Molecular Physics and Synthesis of New Materials, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Justin Perrault
- Polytech Nantes, University of Nantes, Rue Christian Pauc, 44300 Nantes, France
| | - Mile Ivanda
- Laboratory for Molecular Physics and Synthesis of New Materials, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| |
Collapse
|
3
|
Wang Q, Gao X, Bo Z, Song C, Wang Q, Lin J. Adsorption Potential of Ag Nanoparticles with Azvudine (FNC) Investigated by Density Functional Theory and Raman Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8611-8618. [PMID: 40127308 DOI: 10.1021/acs.langmuir.4c05056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Azvudine (FNC) is a dual-target inhibitor of HIV reverse transcriptase and accessory protein Vif, which can effectively inhibit the reverse transcription and replication of the HIV virus in vivo and can also be used for the treatment of novel coronavirus infection. In this article, density functional theory (DFT) combined with surface-enhanced Raman spectroscopy (SERS) is used for the first time to study the interaction between FNC and Ag nanoparticles. In order to predict the potential binding sites of FNC and Ag nanoparticles (AgNPs) of the SERS effect, the geometric configuration of FNC molecules is optimized by the B3LYP-D3/6-311++G(d,p) method, and the natural bond orbital (NBO) properties, molecular electrostatic potential (MEP), Frontier molecular orbitals (FMOs), and molecular polarizability of FNC molecules are studied. The study of the SERS chemical enhancement mechanism of FNC at different adsorption sites of the Ag6 nanocluster confirmed that there is charge transfer between the FNC molecule and the Ag6 nanocluster, which can adsorb and form stable FNC-Ag6 complexes. Subsequently, the Raman spectra of FNC and the FNC-Ag6 complex are compared and analyzed, and the adsorption conformation of FNC on the silver surface is determined based on the SERS surface selection rule. The results provide a theoretical basis for exploring the mechanism of chemical enhancement between FNC and Ag nanoparticles.
Collapse
Affiliation(s)
- Qi Wang
- School of Physics, Changchun University of Science and Technology, Jilin 130022, China
| | - Xun Gao
- School of Physics, Changchun University of Science and Technology, Jilin 130022, China
- Jilin Provincial Key Laboratory of Ultrafast and Extreme Ultraviolet Optics, Jilin 130022, China
- Zhongshan Institute of Changchun University of Science and Technology, Guangdong 528437, China
| | - Zhuang Bo
- School of Physics, Changchun University of Science and Technology, Jilin 130022, China
| | - Chao Song
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin 130022, China
| | - Qiuyun Wang
- School of Physics, Changchun University of Science and Technology, Jilin 130022, China
| | - Jingquan Lin
- School of Physics, Changchun University of Science and Technology, Jilin 130022, China
- Jilin Provincial Key Laboratory of Ultrafast and Extreme Ultraviolet Optics, Jilin 130022, China
- Zhongshan Institute of Changchun University of Science and Technology, Guangdong 528437, China
| |
Collapse
|
4
|
Diao X, Qi G, Li X, Tian Y, Li J, Jin Y. Label-Free Exosomal SERS Detection Assisted by Machine Learning for Accurately Discriminating Cell Cycle Stages and Revealing the Molecular Mechanisms during the Mitotic Process. Anal Chem 2025; 97:5093-5101. [PMID: 39999424 DOI: 10.1021/acs.analchem.4c06240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Cell cycle analysis is crucial for disease diagnosis and treatment, especially for investigating cell heterogeneity and regulating cell behaviors. Exosomes are highly appealing as noninvasive biomarkers for monitoring real-time changes in the cell cycle due to their abundant molecular information inherited from their metrocyte cells and reflecting the state of these cells to some extent. However, to our knowledge, the relationship between exosomes and the cell cycle has not been reported. Herein, we successfully monitored the variation of exosomal surface-enhanced Raman spectroscopy (SERS) spectra to discriminate different cell cycle stages (G0/G1, S, and G2/M phases) based on label-free surface-enhanced Raman spectroscopy (SERS) combined with the machine learning method of linear discriminant analysis (LDA). An average accuracy of 85% based on the trained SERS spectra of exosomes from different cell cycle stages confirmed the high reliability of the support vector machine (SVM) algorithm for analyzing dynamic changes in the cell cycle at different time points. Importantly, the related molecular mechanisms among mitotic processes (prometaphase, metaphase, and anaphase/telophase) and unique biomolecular events between cancerous (HeLa) and normal (H8) cells were also revealed by the present label-free SERS detection platform. Based on SERS analysis, the content of phenylalanine (Phe) within HeLa cells increased, and some structures of proteins containing Phe and tryptophan (Trp) residues may be transformed during the mitotic process. Notably, the α-helix and β-sheet of proteins coexisted in HeLa cells; meanwhile, the α-helix of the proteins was more dominant in H8 cells than in HeLa cells. The strategy is effective for discriminating cell cycle stages and elucidating the associated molecular events during the cell mitotic process and will provide potential application value for guiding the cell cycle treatment strategies of cancer in the future.
Collapse
Affiliation(s)
- Xingkang Diao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - GuoHua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xinli Li
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130061, P. R. China
| | - Yu Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
5
|
Wang H, Bian Z, Wang Y, Niu H, Yang Z, Li H. Rapid detection and quantitative analysis of thiram in fruits using a shape-adaptable flexible SERS substrate combined with deep learning. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1884-1891. [PMID: 39925033 DOI: 10.1039/d4ay02098g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Ensuring food safety necessitates rapid identification of pesticide residues on fruits. Herein, we developed a shape-adaptable flexible surface-enhanced Raman scattering (SERS) substrate, combined with a deep learning algorithm, to quickly detect and quantitatively analyze thiram on fruit surfaces. This SERS substrate was fabricated by depositing silver nanoparticles (Ag NPs) onto a thin, corrugated polydimethylsiloxane (PDMS) film. This innovative design improves physical flexibility, ensuring conformal contact with curved surfaces while achieving high sensitivity, reproducibility, and mechanical robustness. The corrugated Ag NPs@PDMS thin film was able to directly detect thiram at concentrations as low as 10-7 M on tomato and blueberry peels, exhibiting consistent SERS activity with small interference from the fruit's shape. Furthermore, we developed a one-dimensional convolutional neural network (1D CNN) model, trained using a dataset of SERS signals from thiram, for quantitative analysis. The developed model achieved high prediction accuracy, with a coefficient of determination (R2) of 0.9905 and a root mean square error (RMSE) of 0.1364. The integration of our flexible SERS substrate, which adapts well to irregular surfaces, with the 1D CNN algorithm for quantitative analysis, holds great potential for rapid thiram detection in fruits.
Collapse
Affiliation(s)
- Hongjun Wang
- School of Physical Science and Information Engineering, Liaocheng University, Liaocheng, 252000, PR China.
| | - Ziyang Bian
- School of Physical Science and Information Engineering, Liaocheng University, Liaocheng, 252000, PR China.
| | - Yue Wang
- School of Physical Science and Information Engineering, Liaocheng University, Liaocheng, 252000, PR China.
| | - Huijuan Niu
- School of Physical Science and Information Engineering, Liaocheng University, Liaocheng, 252000, PR China.
| | - Zhenshan Yang
- School of Physical Science and Information Engineering, Liaocheng University, Liaocheng, 252000, PR China.
| | - Hefu Li
- School of Physical Science and Information Engineering, Liaocheng University, Liaocheng, 252000, PR China.
| |
Collapse
|
6
|
Cui Q, Shen J, Jia H, Li T, Cao S, Dong S, Wei Y, Zou L, Chen Y, Wang Y, Ning J, Li L. Simultaneous detection of mixed colorants adulterated in black tea based on various morphological SERS sensors. Food Res Int 2025; 199:115364. [PMID: 39658164 DOI: 10.1016/j.foodres.2024.115364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/16/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Colorant adulteration is a common problem in tea safety control; thus, a rapid identification method is required. In this study, we optimized the fabrication parameters of various sensors to enhance their performance. R6G was used as a probe molecule, demonstrating that the sensnor remained stable for 120 days. Based on surface-enhanced Raman spectroscopy, the optimized sensors were used to identify and quantify mixed colorants (sunset yellow, lemon yellow, carmine, and erythrosine). Partial least squares prediction models were developed for each colorant (0.5-300 μg/mL), with R2 > 0.900 and RPD > 2.27; these indicated the accuracy of the sensors. The results also revealed a model recovery range of 95.9 % to 116 %, with RSD < 3.94 %, indicating the universality of our proposed method. Overall, the proposed method enables the detection of mixed-colorant adulteration in black tea within 3 min, thereby representing a novel method for the assessment of tea quality.
Collapse
Affiliation(s)
- Qingqing Cui
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jingfei Shen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Huiyan Jia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Shuci Cao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Shuai Dong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Li Zou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yurong Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Luqing Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
7
|
Zhai JM, Xu S, Wu XH, Fu SY, Liang P, Guan ZQ, Zhang YJ, Li JF. Construction of a Convenient and Highly Sensitive Sensor for the Detection of Myo in Serum Based on ELI-SERS. ACS Sens 2024; 9:6852-6860. [PMID: 39680914 DOI: 10.1021/acssensors.4c02695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Acute myocardial infarction (AMI) is one of the most common causes of sudden death in cardiovascular disease, and myoglobin (Myo) is the first protein to be released in the blood after the attack, which is an important biomarker for clinical detection of AMI. The "Golden Rescue Time" for acute myocardial infarction is to intervene within the first 30 min after the attack; therefore, a rapid and accurate Myo detection method is needed urgently. In this study, we designed a combined enzyme-linked immunosorbent assay (ELISA) technique with surface-enhanced Raman scattering (SERS) immunoassay (ELI-SERS), which integrates the small sample volume, ease of operation, and excellent linearity of ELISA while utilizing the SERS technique and selecting the molecule with the Raman signal (IR-808), which is in resonance with the excitation wavelength, for further signal enhancement. The sensitivity of the system was further improved by optimizing the key factors in the assay such as incubation time, particle concentration, and temperature. Compared with the sandwich-structured magnetic bead method, no collection and concentration steps are required, simplifying the operation and ultimately realizing a sensitivity of a 5.3 pg/mL antigen detectable in 6 min. In actual serum samples, we achieve 100% accuracy and sensitivity by adding blockers to exclude the effect of heterophilic antibodies in serum and to reduce false positives in blank samples. We also validated the hepatitis B surface antigen test, demonstrating the universality of our system. Overall, this study designed an ultrasensitive and convenient SERS sensor for the detection of Myo, which extends the practical application of SERS and also contributes methods for the detection of other biomarkers.
Collapse
Affiliation(s)
- Jia-Min Zhai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Shanshan Xu
- College of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| | - Xiao-Hang Wu
- College of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| | - Shi-Ying Fu
- College of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Zhen-Qun Guan
- Concert Bioscience (Xiamen) Co., Ltd., Xiamen 361101, China
| | - Yue-Jiao Zhang
- College of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
- College of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| |
Collapse
|
8
|
Qi G, Diao X, Tian Y, Sun D, Jin Y. Electroactivated SERS Nanoplatform for Rapid and Sensitive Detection and Identification of Tumor-Derived Exosome miRNA. Anal Chem 2024; 96:18519-18527. [PMID: 39523538 DOI: 10.1021/acs.analchem.4c04402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Exosomal miRNA expression derived from tumor cells provides a valuable and promising noninvasive modality for the early diagnosis and assessment of the efficacy of cancer treatment. However, accurate detection and identification of miRNA within exosomes have been challenging due to its low abundance and the complexity and tedious extraction with large sample volumes in the separation process. Here, we developed an electrically activated nanoplatform for rapid and sensitive detection and identification of exosome miRNA, through triggering miRNA release by opening exosomes that were captured on the electrode surface using a slightly applied electric field (50 mV), and simultaneously detected them with surface-enhanced Raman spectroscopy (SERS) in situ. The method possessed superior specificity and sensitivity for exosomal miRNA detection, with a low detection concentration of 0.5 nM. The SERS sensor chips also showed a superior sensing performance of exosomal miRNA in complex body fluids such as urine and blood. We found that exosomal miRNA contents derived from tumor cells were significantly higher than those in normal cells, and importantly, the concentrations of exosomes secreted from three different cell lines were distinctly augmented after mild electrical stimulation (ES) treatment. Furthermore, the miRNA expression within exosomes was upregulated after the ES treatment of cells. The developed approach and SERS detection platform for exosomal miRNA are promising for noninvasive and precise screening, classification, and monitoring of cancer.
Collapse
Affiliation(s)
- Guohua Qi
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xingkang Diao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Yu Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Dan Sun
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, P. R. China
| | - Yongdong Jin
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
9
|
Xie Y, Chen L, Cui K, Zeng Y, Luo X, Deng X. A novel photoreduction deposition induced AuNPs/COFs composite for SERS detection of macrolide antibiotics. Talanta 2024; 279:126547. [PMID: 39018951 DOI: 10.1016/j.talanta.2024.126547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/08/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
As we all know, SERS (Surface-enhanced Raman spectroscopy) is widely used in sensing, analysis and detection. The covalent organic frameworks (COFs) have performed well as a material for supporting metal nanoparticles and facilitating analyte adsorption in SERS, which may greatly enhance the detection sensitivity and reproducibility. The synthesis of traditional metal/COFs composites involved chemical reduction methods, however, the resulting metallic NPs exhibited reduced capacity to enhance SERS due to their small particle sizes (usually <20 nm). This paper presented a novel photoreduction method for the facile growth of AuNPs (diameters: 75 nm) on COFs matrix under light control, which represents the first report of such synthesis on COF. Subsequently, the photoreduction deposition induced AuNPs/COFs composites, which served as highly sensitive and reproducible SERS-active substrates for capturing the spectral information of four types of macrolide antibiotics. The detection limits for the four macrolide antibiotics were determined to be 3.30 × 10-11, 3.43 × 10-10, 1.10 × 10-10 and 5.78 × 10-11 M, respectively, exhibiting excellent linear relationships within the concentration range of 10-10 to 10-3 M. Therefore, our proposed SERS method opens up a new idea for the development of SERS substrates and environmental safety monitoring, and it has great potential for ensuring food safety in the future.
Collapse
Affiliation(s)
- Yalin Xie
- School of Science, Xihua University, Chengdu Sichuan, 610039, China
| | - Liping Chen
- School of Science, Xihua University, Chengdu Sichuan, 610039, China
| | - Kaixin Cui
- School of Science, Xihua University, Chengdu Sichuan, 610039, China
| | - Yu Zeng
- School of Science, Xihua University, Chengdu Sichuan, 610039, China
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu Sichuan, 610039, China.
| | - Xiaojun Deng
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
10
|
Visbal CA, Cervantes WR, Marín L, Betancourt J, Pérez A, Diosa JE, Rodríguez LA, Mosquera-Vargas E. The Fabrication of Gold Nanostructures as SERS Substrates for the Detection of Contaminants in Water. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1525. [PMID: 39330680 PMCID: PMC11434667 DOI: 10.3390/nano14181525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Gold nanostructures (AuNSs) were used to fabricate surface-enhanced Raman spectroscopy (SERS) substrates. These AuNSs were produced using the solid-state dewetting method from thin films. The fragmentation process was studied at 300 °C, with durations of thermal treatment of 1, 3, 6, and 12 h. These SERS substrates were then employed to detect Rhodamine B (RhB) as the model analyte, simulating a contaminant in the water at a concentration of 5 ppm. The morphology of the AuNSs was examined using SEM, which revealed a spheroidal shape that began to coalesce at 12 h. The size of the AuNSs was estimated to range from 22 ± 7 to 24 ± 6 nm, depending on the annealing time. The localized surface plasmon resonance of the AuNSs was determined using absorption spectroscopy, showing a shift as the annealing time increased. The SERS signals of RhB adsorbed on the AuNS substrates were validated by performing a 10 × 10 point map scan over each sample surface (1, 3, 6, and 12 h), and a comparative analysis showed no significant differences in the positions of the bands; however, variations in intensity enhancement ranged from 5 to 123 times at 6 and 1 h, respectively.
Collapse
Affiliation(s)
- Cristhian A. Visbal
- Grupo de Películas Delgadas, Departamento de Física, Universidad del Valle, Santiago de Cali 760032, Colombia; (C.A.V.); (J.B.)
| | - Wilkendry Ramos Cervantes
- Institución Educativa Número Dos, Maicao 442001, Colombia;
- Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, Santiago de Cali 760032, Colombia; (A.P.); (J.E.D.); (L.A.R.); (E.M.-V.)
| | - Lorena Marín
- Grupo de Películas Delgadas, Departamento de Física, Universidad del Valle, Santiago de Cali 760032, Colombia; (C.A.V.); (J.B.)
- Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, Santiago de Cali 760032, Colombia; (A.P.); (J.E.D.); (L.A.R.); (E.M.-V.)
| | - John Betancourt
- Grupo de Películas Delgadas, Departamento de Física, Universidad del Valle, Santiago de Cali 760032, Colombia; (C.A.V.); (J.B.)
- Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, Santiago de Cali 760032, Colombia; (A.P.); (J.E.D.); (L.A.R.); (E.M.-V.)
| | - Angélica Pérez
- Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, Santiago de Cali 760032, Colombia; (A.P.); (J.E.D.); (L.A.R.); (E.M.-V.)
- Grupo de Óptica Cuántica, Departamento de Física, Universidad del Valle, Santiago de Cali 760032, Colombia
| | - Jesús E. Diosa
- Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, Santiago de Cali 760032, Colombia; (A.P.); (J.E.D.); (L.A.R.); (E.M.-V.)
- Grupo de Transiciones de Fase y Materiales Funcionales, Departamento de Física, Universidad del Valle, Santiago de Cali 760032, Colombia
| | - Luis Alfredo Rodríguez
- Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, Santiago de Cali 760032, Colombia; (A.P.); (J.E.D.); (L.A.R.); (E.M.-V.)
- Grupo de Transiciones de Fase y Materiales Funcionales, Departamento de Física, Universidad del Valle, Santiago de Cali 760032, Colombia
| | - Edgar Mosquera-Vargas
- Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, Santiago de Cali 760032, Colombia; (A.P.); (J.E.D.); (L.A.R.); (E.M.-V.)
- Grupo de Transiciones de Fase y Materiales Funcionales, Departamento de Física, Universidad del Valle, Santiago de Cali 760032, Colombia
| |
Collapse
|
11
|
Huang Z, Peng J, Xu L, Liu P. Development and Application of Surface-Enhanced Raman Scattering (SERS). NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1417. [PMID: 39269079 PMCID: PMC11397088 DOI: 10.3390/nano14171417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Since the discovery of the phenomenon of surface-enhanced Raman scattering (SERS), it has gradually become an important tool for the analysis of material compositions and structures. The applications of SERS have been expanded from the fields of environmental and materials science to biomedicine due to the extremely high sensitivity and non-destructiveness of SERS-based analytical technology that even allows single-molecule detection. This article provides a comprehensive overview of the surface-enhanced Raman scattering (SERS) phenomenon. The content is divided into several main sections: basic principles and the significance of Raman spectroscopy; historical advancements and technological progress in SERS; and various practical applications across different fields. We also discuss how electromagnetic fields contribute to the SERS effect, the role of chemical interactions in enhancing Raman signals, a modeling and computational approaches to understand and predict SERS effects.
Collapse
Affiliation(s)
- Zhenkai Huang
- School of Materials and Energy, Foshan University, Foshan 528000, China
| | - Jianping Peng
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Liguo Xu
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Peijiang Liu
- Reliability Physics and Application Technology of Electronic Component Key Laboratory, The 5th Electronics Research Institute of the Ministry of Industry and Information Technology, Guangzhou 510610, China
| |
Collapse
|
12
|
Hassan M, Zhao Y, Zughaier SM. Recent Advances in Bacterial Detection Using Surface-Enhanced Raman Scattering. BIOSENSORS 2024; 14:375. [PMID: 39194603 DOI: 10.3390/bios14080375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
Rapid identification of microorganisms with a high sensitivity and selectivity is of great interest in many fields, primarily in clinical diagnosis, environmental monitoring, and the food industry. For over the past decades, a surface-enhanced Raman scattering (SERS)-based detection platform has been extensively used for bacterial detection, and the effort has been extended to clinical, environmental, and food samples. In contrast to other approaches, such as enzyme-linked immunosorbent assays and polymerase chain reaction, SERS exhibits outstanding advantages of rapid detection, being culture-free, low cost, high sensitivity, and lack of water interference. This review aims to cover the development of SERS-based methods for bacterial detection with an emphasis on the source of the signal, techniques used to improve the limit of detection and specificity, and the application of SERS in high-throughput settings and complex samples. The challenges and advancements with the implementation of artificial intelligence (AI) are also discussed.
Collapse
Affiliation(s)
- Manal Hassan
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Yiping Zhao
- Department of Physics and Astronomy, University of Georgia, Athens, GA 30602, USA
| | - Susu M Zughaier
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
13
|
Li S, Ling Y, Chen J, Yuan X, Zhang Z. Portable Copper-Based Electrochemical SERS Sensor for Point-of-Care Testing of Paraquat and Diquat by On-Site Electrostatic Preconcentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39008657 DOI: 10.1021/acs.langmuir.4c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
With the advent of portable Raman spectrometers, the deployment of surface-enhanced Raman spectroscopy (SERS) in point-of-care testing (POCT) has been initiated. Within any analytical framework employing SERS, the acuity and selectivity inherent to the SERS substrate are of paramount importance. In this article, we utilize in situ electrochemical passivation technology to fabricate CuI passivation film, which serves as a flexible copper-based SERS substrate. Furthermore, portable electrochemical SERS (EC-SERS) sensors were prepared by combining this with laser direct writing technology. The detection signal was amplified using electrostatic preconcentration technology, showcasing impressive sensitivity, selectivity, and stability in pesticide detection. The detected concentrations of paraquat and diquat in tea reached as low as 3.36 and 2.43 μg/kg, respectively. Furthermore, the application of electrostatic preconcentration facilitated selective target molecule aggregation on the SERS sensor, markedly increasing Raman signal strength and enabling single-molecule detection. This research introduces an innovative POCT method for pesticides, promising to advance environmental monitoring's analytical capabilities.
Collapse
Affiliation(s)
- Shilin Li
- Lab of Advanced Materials, School of Materials Sciences and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Yunhan Ling
- Lab of Advanced Materials, School of Materials Sciences and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Jianyue Chen
- Institute of New Functional Materials Co., Ltd, Guangxi Institute of Industrial Technology, Nanning 530200, China
| | - Xiaoming Yuan
- School of Science, China University of Geosciences, Beijing 100083, PR China
| | - Zhengjun Zhang
- Lab of Advanced Materials, School of Materials Sciences and Engineering, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
14
|
Li J, Feng Y, Liang L, Liao F, Huang W, Li K, Cui G, Zuo Z. Flexible Multicavity SERS Substrate Based on Ag Nanoparticle-Decorated Aluminum Hydrous Oxide Nanoflake Array for Highly Sensitive In Situ Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35771-35780. [PMID: 38935816 DOI: 10.1021/acsami.4c05642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Flexible surface-enhanced Raman scattering (SERS) substrates are very promising to meet the needs for real-time and on-field detection in practical applications. However, high-performance flexible SERS substrates often suffer from complexity and high cost in fabrication, limiting their widespread applications. Herein, we developed a facile method to fabricate a flexible multicavity SERS substrate composed of a silver nanoparticle (AgNP)-decorated aluminum hydrous oxide nanoflake array (NFA) grown on a polydimethylsiloxane (PDMS) membrane. Strong plasmon couplings promoted by multiple nanocavities afford high-density hotspots within such a flexible AgNPs@NFA/PDMS film, boosting high SERS sensitivity with an enhancement factor (EF) of ∼1.54 × 109, and a limit of detection (LOD) of ∼7.4 × 10-13 M for rhodamine 6G (R6G) molecules. Furthermore, benefiting from the high sensitivity, high mechanical stability, and transparency of this substrate, in situ SERS detections of trace thiram and crystal violet (CV) molecules on the surface of cherry tomatoes and fish have been realized, with LODs much lower than the maximum allowable limit in food, demonstrating the great potential of such a flexible substrate in food safety monitoring. More importantly, the preparation processes are very simple and environmentally friendly, and the techniques involved are completely compatible with well-established silicon device technologies. Therefore, large-area fabrication with low cost can be readily realized, enabling the extensive applications of SERS sensors in daily life.
Collapse
Affiliation(s)
- Jiapu Li
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua South Road, Wuhu 241003, China
| | - Yuan Feng
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua South Road, Wuhu 241003, China
| | - Li Liang
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua South Road, Wuhu 241003, China
| | - Feng Liao
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua South Road, Wuhu 241003, China
| | - Wanxia Huang
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua South Road, Wuhu 241003, China
| | - Kuanguo Li
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua South Road, Wuhu 241003, China
| | - Guanglei Cui
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua South Road, Wuhu 241003, China
| | - Zewen Zuo
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua South Road, Wuhu 241003, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, 189 Jiuhua South Road, Wuhu 241003, China
| |
Collapse
|
15
|
Lipovka A, Fatkullin M, Averkiev A, Pavlova M, Adiraju A, Weheabby S, Al-Hamry A, Kanoun O, Pašti I, Lazarevic-Pasti T, Rodriguez RD, Sheremet E. Surface-Enhanced Raman Spectroscopy and Electrochemistry: The Ultimate Chemical Sensing and Manipulation Combination. Crit Rev Anal Chem 2024; 54:110-134. [PMID: 35435777 DOI: 10.1080/10408347.2022.2063683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
One of the lessons we learned from the COVID-19 pandemic is that the need for ultrasensitive detection systems is now more critical than ever. While sensors' sensitivity, portability, selectivity, and low cost are crucial, new ways to couple synergistic methods enable the highest performance levels. This review article critically discusses the synergetic combinations of optical and electrochemical methods. We also discuss three key application fields-energy, biomedicine, and environment. Finally, we selected the most promising approaches and examples, the open challenges in sensing, and ways to overcome them. We expect this work to set a clear reference for developing and understanding strategies, pros and cons of different combinations of electrochemical and optical sensors integrated into a single device.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Olfa Kanoun
- Technische Universität Chemnitz, Chemnitz, Germany
| | - Igor Pašti
- Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Tamara Lazarevic-Pasti
- Department of Physical Chemistry, "VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Vinca, Serbia
| | | | | |
Collapse
|
16
|
Jinachandran A, Kokulnathan T, Wang TJ, Kumar KMA, Kumar J, Panneerselvam R. Silver nanopopcorns decorated on flexible membrane for SERS detection of nitrofurazone. Mikrochim Acta 2024; 191:347. [PMID: 38802574 DOI: 10.1007/s00604-024-06421-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
The synthesis of three-dimensional silver nanopopcorns (Ag NPCs) onto a flexible polycarbonate membrane (PCM) for the detection of nitrofurazone (NFZ) on the fish surface by surface-enhanced Raman spectroscopy (SERS) is presented. The proposed flexible Ag-NPCs/PCM SERS substrate exhibits significant Raman signal intensity enhancement with the measured enhancement factor of 2.36 × 106. This is primarily attributed to the hotspots created on Ag NPCs, including numerous nanoscale protrusions and internal crevices distributed across the surface of Ag NPCs. The detection of NFZ by this flexible SERS substrate demonstrates a low limit of detection (LOD) of 3.7 × 10-9 M and uniform and reproducible Raman signal intensities with a relative standard deviation below 8.34%. It also exhibits excellent stability, retaining 70% of its efficacy even after 10 days of storage. Notably, the practical detection of NFZ in tap water, honey water, and fish surfaces achieves LOD values of 1.35 × 10-8 M, 5.76 × 10-7 M, and 3.61 × 10-8 M, respectively, which highlights its effectiveness across different sample types. The developed Ag-NPCs/PCM SERS substrate presents promising potential for sensitive SERS detection of toxic substances in real-world samples.
Collapse
Affiliation(s)
- Arunima Jinachandran
- Raman Research Laboratory, Department of Chemistry, SRM University-AP, Andhra Pradesh, Amaravati, 522503, India
| | - Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan.
| | | | - Jayasree Kumar
- Raman Research Laboratory, Department of Chemistry, SRM University-AP, Andhra Pradesh, Amaravati, 522503, India
| | - Rajapandiyan Panneerselvam
- Raman Research Laboratory, Department of Chemistry, SRM University-AP, Andhra Pradesh, Amaravati, 522503, India.
| |
Collapse
|
17
|
Aligholizadeh D, Johnson M, Hondrogiannis E, Devadas MS. Detection with NO Modification: (N═O)-Au Interactions for Instantaneous Label-Free Detection of N-Nitrosodiphenylamine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7405-7411. [PMID: 38551809 DOI: 10.1021/acs.langmuir.3c03739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Increasing concerns have been raised about dangerous, yet nearly undetectable levels of nitrosamines in foods, medications, and drinking water. Their ubiquitous presence and carcinogenicity necessitates a method of sensitive and selective detection of these potent toxins. While the detection of two major nitrosamines─N-nitrosodimethylamine and N-nitrosodiethylamine─has seen success, low detection limits are scarcer for the other members of this class. One member, N-nitrosodiphenylamine (NDPhA), has had little progress not only in its detection in low quantities but also in its detection at all. NDPhA has unique difficulty in its identification due to its aromaticity, making it far more problematic to distinguish in the common GC-MS or LC-MS/MS methods used for nitrosamine sensing. Despite this detection barrier, it has been listed among the top 6 carcinogenic nitrosamines by the Food and Drug Administration as of 2023. Due to its evasive nature, a unique methodology must be applied to facilitate its sensitive identification. Herein, we describe the use of surface-enhanced Raman spectroscopy for the first account of liquid-phase detection of NDPhA using cysteamine-functionalized gold nanostars and a portable Raman spectrometer. Our methodology requires no chemical modification to the nitrosated structure as well as the usage of two well-understood biocompatible materials: cysteamine and gold nanoparticles.
Collapse
Affiliation(s)
| | - Mansoor Johnson
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
| | - Ellen Hondrogiannis
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
| | - Mary Sajini Devadas
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
| |
Collapse
|
18
|
Zhao Y, Kumar A, Yang Y. Unveiling practical considerations for reliable and standardized SERS measurements: lessons from a comprehensive review of oblique angle deposition-fabricated silver nanorod array substrates. Chem Soc Rev 2024; 53:1004-1057. [PMID: 38116610 DOI: 10.1039/d3cs00540b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Recently, there has been an exponential growth in the number of publications focusing on surface-enhanced Raman scattering (SERS), primarily driven by advancements in nanotechnology and the increasing demand for chemical and biological detection. While many of these publications have focused on the development of new substrates and detection-based applications, there is a noticeable lack of attention given to various practical issues related to SERS measurements and detection. This review aims to fill this gap by utilizing silver nanorod (AgNR) SERS substrates fabricated through the oblique angle deposition method as an illustrative example. The review highlights and addresses a range of practical issues associated with SERS measurements and detection. These include the optimization of SERS substrates in terms of morphology and structural design, considerations for measurement configurations such as polarization and the incident angle of the excitation laser, and exploration of enhancement mechanisms encompassing both intrinsic properties induced by the structure and materials, as well as extrinsic factors arising from wetting/dewetting phenomena and analyte size. The manufacturing and storage aspects of SERS substrates, including scalable fabrication techniques, contamination control, cleaning procedures, and appropriate storage methods, are also discussed. Furthermore, the review delves into device design considerations, such as well arrays, flow cells, and fiber probes, and explores various sample preparation methods such as drop-cast and immersion. Measurement issues, including the effect of excitation laser wavelength and power, as well as the influence of buffer, are thoroughly examined. Additionally, the review discusses spectral analysis techniques, encompassing baseline removal, chemometric analysis, and machine learning approaches. The wide range of AgNR-based applications of SERS, across various fields, is also explored. Throughout the comprehensive review, key lessons learned from collective findings are outlined and analyzed, particularly in the context of detailed SERS measurements and standardization. The review also provides insights into future challenges and perspectives in the field of SERS. It is our hope that this comprehensive review will serve as a valuable reference for researchers seeking to embark on in-depth studies and applications involving their own SERS substrates.
Collapse
Affiliation(s)
- Yiping Zhao
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| | - Amit Kumar
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| | - Yanjun Yang
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
19
|
He P, Dumont E, Göksel Y, Slipets R, Schmiegelow K, Chen Q, Zor K, Boisen A. SERS mapping combined with chemometrics, for accurate quantification of methotrexate from patient samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123536. [PMID: 37862841 DOI: 10.1016/j.saa.2023.123536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Despite the technological development in Raman instrumentation that has democratized access to 2D sample scanning capabilities, most quantitative surface-enhanced Raman scattering (SERS) analyses are still performed by only acquiring a single or a few spectra per sample and performing univariate data analysis on those. This strategy can however reach its limit when analytes need to be detected and quantified in complex matrices. In that case, surface fouling and competition between the target analyte and interfering compounds can impair univariate SERS data analysis, underlining the need for a more in-depth data analysis strategy based on exploiting of full-spectrum information. In this paper, a multivariate data analysis strategy was developed, for analyzing SERS maps of methotrexate (MTX) from patient samples, including all steps from baseline correction, selection of wavelength, and the relevant pixels in the map (image threshold segmentation), as well as quantitative model construction based on partial-least squares regression. Among the different baseline correction methods evaluated, standard normal variable transformation and Savitzky-Golay smoothing proved to be more suitable, while the genetic algorithm wavelength screening method was able to screen out MTX-related SERS spectral regions more efficiently. Importantly, with the here-developed process, it was sufficient to use MTX-spiked commercial serum when building quantitative models, removing the need to work with MTX-spiked patient samples, and consequently enabling time- and resource-saving quantitative analyses. Besides, the developed multivariate data analysis approach showed superior performances compared with univariate analysis, with 30 % improved sensitivity (detection limit of 5.7 µM), 25 % higher reproducibility (average relative standard variation of 15.6 %), and 110 % better accuracy (average prediction error of -10.5 %).
Collapse
Affiliation(s)
- Peihuan He
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark; School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Elodie Dumont
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark; BioInnovation Institute Foundation, Copenhagen N, 2200, Denmark.
| | - Yaman Göksel
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark; BioInnovation Institute Foundation, Copenhagen N, 2200, Denmark
| | - Roman Slipets
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark; BioInnovation Institute Foundation, Copenhagen N, 2200, Denmark
| | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen 2100, Denmark
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Kinga Zor
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark; BioInnovation Institute Foundation, Copenhagen N, 2200, Denmark
| | - Anja Boisen
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark; BioInnovation Institute Foundation, Copenhagen N, 2200, Denmark
| |
Collapse
|
20
|
Banchelli M, Tombelli S, de Angelis M, D'Andrea C, Trono C, Baldini F, Giannetti A, Matteini P. Molecular beacon decorated silver nanowires for quantitative miRNA detection by a SERS approach. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6165-6176. [PMID: 37961002 DOI: 10.1039/d3ay01661g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Advantages of biosensors based on surface enhanced Raman scattering (SERS) rely on improved sensitivity and specificity, and suited reproducibility in detecting a target molecule that is localized in close proximity to a SERS-active surface. Herein, a comprehensive study on the realization of a SERS biosensor designed for detecting miRNA-183, a miRNA biomarker that is specific for chronic obstructive pulmonary disease (COPD), is presented. The used strategy exploits a signal-off mechanism by means of a labelled molecular beacon (MB) as the oligonucleotide biorecognition element immobilized on a 2D SERS substrate, based on spot-on silver nanowires (AgNWs) and a multi-well low volume cell. The MB was properly designed by following a dedicated protocol to recognize the chosen miRNA. A limit of detection down to femtomolar concentration (3 × 10-16 M) was achieved and the specificity of the biosensor was proved. Furthermore, the possibility to regenerate the sensing system through a simple procedure is shown: with regeneration by using HCl 1 mM, two detection cycles were performed with a good recovery of the initial MB signal (83%) and a reproducible signal after hybridization.
Collapse
Affiliation(s)
- Martina Banchelli
- Istituto di Fisica Applicata Nello Carrara - CNR, Via Madonna del Piano 10, Sesto F.no (FI), Italy.
| | - Sara Tombelli
- Istituto di Fisica Applicata Nello Carrara - CNR, Via Madonna del Piano 10, Sesto F.no (FI), Italy.
| | - Marella de Angelis
- Istituto di Fisica Applicata Nello Carrara - CNR, Via Madonna del Piano 10, Sesto F.no (FI), Italy.
| | - Cristiano D'Andrea
- Istituto di Fisica Applicata Nello Carrara - CNR, Via Madonna del Piano 10, Sesto F.no (FI), Italy.
| | - Cosimo Trono
- Istituto di Fisica Applicata Nello Carrara - CNR, Via Madonna del Piano 10, Sesto F.no (FI), Italy.
| | - Francesco Baldini
- Istituto di Fisica Applicata Nello Carrara - CNR, Via Madonna del Piano 10, Sesto F.no (FI), Italy.
| | - Ambra Giannetti
- Istituto di Fisica Applicata Nello Carrara - CNR, Via Madonna del Piano 10, Sesto F.no (FI), Italy.
| | - Paolo Matteini
- Istituto di Fisica Applicata Nello Carrara - CNR, Via Madonna del Piano 10, Sesto F.no (FI), Italy.
| |
Collapse
|
21
|
Hernandez S, Perez-Estebanez M, Cheuquepan W, Perales-Rondon JV, Heras A, Colina A. Raman, UV-Vis Absorption, and Fluorescence Spectroelectrochemistry for Studying the Enhancement of the Raman Scattering Using Nanocrystals Activated by Metal Cations. Anal Chem 2023; 95:16070-16078. [PMID: 37871281 PMCID: PMC10633809 DOI: 10.1021/acs.analchem.3c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Raman signal enhancement is fundamental to develop different analytical tools for chemical analysis, interface reaction studies, or new materials characterization, among others. Thus, phenomena such as surface-enhanced Raman scattering (SERS) have been used for decades to increase the sensitivity of Raman spectroscopy, leading to a huge development of this field. Recently, an alternative method to SERS for the amplification of Raman signals has been reported. This method, known as electrochemical surface oxidation-enhanced Raman scattering (EC-SOERS), has been experimentally described. However, to date, it has not yet been fully understood. In this work, new experimental data that clarify the origin of the Raman enhancement in SOERS are provided. The use of a complete and unique set of combined spectroelectrochemistry techniques, including time-resolved operando UV-vis absorption, fluorescence, and Raman spectroelectrochemistry, reveals that such enhancement is related to the generation of dielectric or semiconductor nanocrystals on the surface of the electrode and that the interaction between the target molecule and the dielectric substrate is mediated by metal cations. According to these results, the interaction metal electrode-nanocrystal-metal cation-molecule is proposed as being responsible for the Raman enhancement in Ag and Cu substrates. Elucidation of the origin of the Raman enhancement will help to promote the rational design of SOERS substrates as an attractive alternative to the well-known SERS phenomenon.
Collapse
Affiliation(s)
- Sheila Hernandez
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| | - Martin Perez-Estebanez
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| | - William Cheuquepan
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
- Bernal
Institute, University of Limerick (UL), Limerick V94 T9PX, Ireland
- Department
of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Juan V. Perales-Rondon
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| | - Aranzazu Heras
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| | - Alvaro Colina
- Department
of Chemistry, Universidad de Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| |
Collapse
|
22
|
Wu Z, Liu J, Wang Z, Chen L, Xu Y, Ma Z, Kong D, Luo D, Liu YJ. Nanosphere Lithography-Enabled Hybrid Ag-Cu Surface-Enhanced Raman Spectroscopy Substrates with Enhanced Absorption of Excitation Light. BIOSENSORS 2023; 13:825. [PMID: 37622911 PMCID: PMC10452600 DOI: 10.3390/bios13080825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
We demonstrated a low-cost, highly sensitive hybrid Ag-Cu substrate with enhanced absorption for the excitation laser beam via the nanosphere lithography technique. The hybrid Ag-Cu surface-enhanced Raman spectroscopy (SERS) substrate consists of a Cu nanoarray covered with Ag nanoparticles. The geometry of the deposited Cu nanoarray is precisely determined through a self-assembly nanosphere etching process, resulting in optimized absorption for the excitation laser beam. Further Raman enhancement is achieved by incorporating plasmonic hotspots formed by dense Ag nanoparticles, grown by immersing the prepared Cu nanoarray in a silver nitrate solution. The structural design enables analytical enhancement factor of hybrid Ag-Cu SERS substrates of 1.13 × 105. The Ag-Cu SERS substrates exhibit a highly sensitive and reproducible SERS activity, with a low detection limit of 10-13 M for Rhodamine 6G detection and 10-9 M for 4,4'-Bipyridine. Our strategy could pave an effective and promising approach for SERS-based rapid detection in biosensors, environmental monitoring and food safety.
Collapse
Affiliation(s)
- Zixuan Wu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (Z.W.); (Z.W.); (L.C.); (Y.X.); (Z.M.); (D.K.); (D.L.)
| | - Jianxun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (Z.W.); (Z.W.); (L.C.); (Y.X.); (Z.M.); (D.K.); (D.L.)
- Shenzhen Engineering Research Center for High Resolution Light Field Display and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhenming Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (Z.W.); (Z.W.); (L.C.); (Y.X.); (Z.M.); (D.K.); (D.L.)
- Shenzhen Engineering Research Center for High Resolution Light Field Display and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lei Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (Z.W.); (Z.W.); (L.C.); (Y.X.); (Z.M.); (D.K.); (D.L.)
- Shenzhen Engineering Research Center for High Resolution Light Field Display and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiwei Xu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (Z.W.); (Z.W.); (L.C.); (Y.X.); (Z.M.); (D.K.); (D.L.)
| | - Zongjun Ma
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (Z.W.); (Z.W.); (L.C.); (Y.X.); (Z.M.); (D.K.); (D.L.)
- Shenzhen Engineering Research Center for High Resolution Light Field Display and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Delai Kong
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (Z.W.); (Z.W.); (L.C.); (Y.X.); (Z.M.); (D.K.); (D.L.)
- Shenzhen Engineering Research Center for High Resolution Light Field Display and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dan Luo
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (Z.W.); (Z.W.); (L.C.); (Y.X.); (Z.M.); (D.K.); (D.L.)
| | - Yan Jun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (Z.W.); (Z.W.); (L.C.); (Y.X.); (Z.M.); (D.K.); (D.L.)
- Shenzhen Engineering Research Center for High Resolution Light Field Display and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
23
|
Song D, Wang T, Zhuang L. Preparation of SiO 2@Au Nanoparticle Photonic Crystal Array as Surface-Enhanced Raman Scattering (SERS) Substrate. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2156. [PMID: 37570474 PMCID: PMC10421477 DOI: 10.3390/nano13152156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Surface-enhanced Raman scattering technology plays a prominent role in spectroscopy. By introducing plasmonic metals and photonic crystals as a substrate, SERS signals can achieve further enhancement. However, the conventional doping preparation methods of these SERS substrates are insufficient in terms of metal-loading capacity and the coupling strength between plasmonic metals and photonic crystals, both of which reduce the SERS activity and reproducibility of SERS substrates. In this work, we report an approach combining spin-coating, surface modification, and in situ reduction methods. Using this approach, a photonic crystal array of SiO2@Au core-shell structure nanoparticles was prepared as a SERS substrate (SiO2@Au NP array). To study the SERS properties of these substrates, Rhodamine 6G was employed as the probe molecule. Compared with a Au-SiO2 NP array prepared using doping methods, the SiO2@Au NP array presented better SERS properties, and it reproduced the SERS spectra after one month. The detection limit of the Rhodamine 6G on SiO2@Au NP array reached 1 × 10-8 mol/L; furthermore, the relative standard deviation (9.82%) of reproducibility and the enhancement factor (1.51 × 106) were evaluated. Our approach provides a new potential option for the preparation of SERS substrates and offers a potential advantage in trace contaminant detection, and nondestructive testing.
Collapse
Affiliation(s)
| | | | - Lin Zhuang
- Institute for Solar Energy Systems, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510006, China; (D.S.); (T.W.)
| |
Collapse
|
24
|
Ying Y, Tang Z, Liu Y. Material design, development, and trend for surface-enhanced Raman scattering substrates. NANOSCALE 2023. [PMID: 37335252 DOI: 10.1039/d3nr01456h] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful and non-invasive spectroscopic technique that can provide rich and specific chemical fingerprint information for various target molecules through effective SERS substrates. In view of the strong dependence of the SERS signals on the properties of the SERS substrates, design, exploration, and construction of novel SERS-active nanomaterials with low cost and excellent performance as the SERS substrates have always been the foundation and the top priority for the development and application of the SERS technology. This review specifically focuses on the extensive progress made in the SERS-active nanomaterials and their enhancement mechanism since the first discovery of SERS on the nanostructured plasmonic metal substrates. The design principles, unique functions, and influencing factors on the SERS signals of different types of SERS-active nanomaterials are highlighted, and insight into their future challenge and development trends is also suggested. It is highly expected that this review could benefit a complete understanding of the research status of the SERS-active nanomaterials and arouse the research enthusiasm for them, leading to further development and wider application of the SERS technology.
Collapse
Affiliation(s)
- Yue Ying
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaling Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Ilyas A, Dyussupova A, Sultangaziyev A, Shevchenko Y, Filchakova O, Bukasov R. SERS immuno- and apta-assays in biosensing/bio-detection: Performance comparison, clinical applications, challenges. Talanta 2023; 265:124818. [PMID: 37453393 DOI: 10.1016/j.talanta.2023.124818] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Surface Enhanced Raman Spectroscopy is increasingly used as a sensitive bioanalytical tool for detection of variety of analytes ranging from viruses and bacteria to cancer biomarkers and toxins, etc. This comprehensive review describes principles of operation and compares the performance of immunoassays and aptamer assays with Surface Enhanced Raman scattering (SERS) detection to each other and to some other bioassay methods, including ELISA and fluorescence assays. Both immuno- and aptamer-based assays are categorized into assay on solid substrates, assays with magnetic nanoparticles and assays in laminar flow or/and strip assays. The best performing and recent examples of assays in each category are described in the text and illustrated in the figures. The average performance, particularly, limit of detection (LOD) for each of those methods reflected in 9 tables of the manuscript and average LODs are calculated and compared. We found out that, on average, there is some advantage in terms of LOD for SERS immunoassays (0.5 pM median LOD of 88 papers) vs SERS aptamer-based assays (1.7 pM median LOD of 51 papers). We also tabulated and analyzed the clinical performance of SERS immune and aptamer assays, where selectivity, specificity, and accuracy are reported, we summarized the best examples. We also reviewed challenges to SERS bioassay performance and real-life application, including non-specific protein binding, nanoparticle aggregation, limited nanotag stability, sometimes, relatively long time to results, etc. The proposed solutions to those challenges are also discussed in the review. Overall, this review may be interesting not only to bioanalytical chemist, but to medical and life science researchers who are interested in improvement of bioanalyte detection and diagnostics.
Collapse
Affiliation(s)
- Aisha Ilyas
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan
| | | | | | - Yegor Shevchenko
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan
| | - Olena Filchakova
- Department of Biology, SSH, Nazarbayev University, Astana, Kazakhstan
| | - Rostislav Bukasov
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan.
| |
Collapse
|
26
|
Matamoros-Ambrocio M, Sánchez-Mora E, Gómez-Barojas E. Surface-Enhanced Raman Scattering (SERS) Substrates Based on Ag-Nanoparticles and Ag-Nanoparticles/Poly (methyl methacrylate) Composites. Polymers (Basel) 2023; 15:2624. [PMID: 37376270 DOI: 10.3390/polym15122624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
SERS substrates formed by spherical silver nanoparticles (Ag-NPs) with a 15 nm average diameter adsorbed on Si substrate at three different concentrations and Ag/PMMA composites formed by an opal of PMMA microspheres of 298 nm average diameter were synthesized. The Ag-NPs were varied at three different concentrations. We have observed from SEM micrographs, in the Ag/PMMA composites, the periodicity of the PMMA opals is slightly altered as the Ag-NP concentration is increased; as a consequence of this effect, the PBGs maxima shift toward longer wavelengths, decrease in intensity, and broaden as the Ag-NP concentration is increased in the composites. The performance of single Ag-NP and Ag/PMMA composites as SERS substrates was determined using methylene blue (MB) as a probe molecule with concentrations in the range of 0.5 µM to 2.5 µM. We found that in both single Ag-NP and Ag/PMMA composites as SERS substrates, the enhancement factor (EF) increases as the Ag-NP concentration is increased. We highlight that the SERS substrate with the highest concentration of Ag-NPs has the highest EF due to the formation of metallic clusters on the surface, which generates more "hot spots". The comparison of the EFs of the single Ag-NP with those of Ag/PMMA composite SERS substrates shows that the EFs of the former are nearly 10-fold higher than those of Ag/PMMA composites. This result is obtained probably due to the porosity of the PMMA microspheres that decreases the local electric field strength. Furthermore, PMMA exerts a shielding effect that affects the optical efficiency of Ag-NPs. Moreover, the metal-dielectric surface interaction contributes to the decrease in the EF. Other aspect to consider in our results is in relation to the difference in the EF of the Ag/PMMA composite and Ag-NP SERS substrates and is due to the existing mismatch between the frequency range of the PMMA opal stop band and the LSPR frequency range of the Ag metal nanoparticles adsorbed on the PMMA opal host matrix.
Collapse
Affiliation(s)
- Mayra Matamoros-Ambrocio
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS-ICUAP), Benemérita Universidad Autónoma de Puebla, P.O. Box 196, Puebla 72570, Mexico
| | - Enrique Sánchez-Mora
- Institute of Physics, Benemérita Universidad Autónoma de Puebla, Eco Campus Valsequillo, Independencia O 2 sur No. 50, San Pedro Zacachimalpa, P.O. Box J-48, Puebla 72960, Mexico
| | - Estela Gómez-Barojas
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS-ICUAP), Benemérita Universidad Autónoma de Puebla, P.O. Box 196, Puebla 72570, Mexico
| |
Collapse
|
27
|
Rodriguez L, Zhang Z, Wang D. Recent advances of Raman spectroscopy for the analysis of bacteria. ANALYTICAL SCIENCE ADVANCES 2023; 4:81-95. [PMID: 38715923 PMCID: PMC10989577 DOI: 10.1002/ansa.202200066] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 11/17/2024]
Abstract
Rapid and sensitive bacteria detection and identification are becoming increasingly important for a wide range of areas including the control of food safety, the prevention of infectious diseases, and environmental monitoring. Raman spectroscopy is an emerging technology which provides comprehensive information for the analysis of bacteria in a short time and with high sensitivity. Raman spectroscopy offers many advantages including relatively simple operation, non-destructive analysis, and information on molecular differences between bacteria species and strains. A variety of biochemical properties can be measured in a single spectrum. This short review covers the recent advancements and applications of Raman spectroscopy for bacteria analysis with specific focuses on bacteria detection, bacteria identification and discrimination, as well as bacteria antibiotic susceptibility testing in 2022. The development of novel substrates, the combination with other techniques, and the utilization of advanced data processing tools for the improvement of Raman spectroscopy and future directions are discussed.
Collapse
Affiliation(s)
- Linsey Rodriguez
- Department of Nutrition and Food SciencesTexas Woman's UniversityDentonTexasUSA
| | - Zhiyun Zhang
- Research and DevelopmentDaisy BrandGarlandTexasUSA
| | - Danhui Wang
- Department of Nutrition and Food SciencesTexas Woman's UniversityDentonTexasUSA
| |
Collapse
|
28
|
Qin H, Zhao S, Gong H, Yu Z, Chen Q, Liang P, Zhang D. Recent Progress in the Application of Metal Organic Frameworks in Surface-Enhanced Raman Scattering Detection. BIOSENSORS 2023; 13:bios13040479. [PMID: 37185554 PMCID: PMC10136131 DOI: 10.3390/bios13040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
Metal-organic framework (MOF) compounds are centered on metal ions or metal ion clusters, forming lattices with a highly ordered periodic porous network structure by connecting organic ligands. As MOFs have the advantages of high porosity, large specific surface area, controllable pore size, etc., they are widely used in gas storage, catalysis, adsorption, separation and other fields. SERS substrate based on MOFs can not only improve the sensitivity of SERS analysis but also solve the problem of easy aggregation of substrate nanoparticles. By combining MOFs with SERS, SERS performance is further improved, and tremendous research progress has been made in recent years. In this review, three methods of preparing MOF-based SERS substrates are introduced, and the latest applications of MOF-based SERS substrates in biosensors, the environment, gases and medical treatments are discussed. Finally, the current status and prospects of MOF-based SERS analysis are summarized.
Collapse
Affiliation(s)
- Haojia Qin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Shuai Zhao
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Huaping Gong
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Chen
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - De Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
29
|
Yang F, Wen P, Tang L, Wang R, Wang Y, Li D, Xu Y, Chen L. A flexible surface-enhanced Raman Spectroscopy chip integrated with microlens. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122129. [PMID: 36413826 DOI: 10.1016/j.saa.2022.122129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
A novel flexible Surface-enhanced Raman Spectroscopy (SERS) chip integrated with microlens was proposed and designed, which consisted of PDMS film, planoconvex microlens, and silver nanoparticles (AgNPs) monolayer, and was of high signal collection efficiency. The flexible PDMS film integrated with microlens was designed by optical simulation, and fabricated by optimized micromachining process. AgNPs monolayer were uniformly assembled on the other side of the PDMS film through a liquid-liquid interface self-assembly method to form SERS chip. The prepared chip revealed excellent SERS performance with a Raman enhancement factor of about 107 and a signal variation of <11.5 %. The SERS chip was successfully utilized for in-situ detection of thiram residues on tomato skins, and its characteristic peaks could still be clearly distinguished when the concentration was down to 2.5 μM. It was shown that the proposed SERS chip was suitable for in-situ detection of a real sample on complex surface morphology and shown potential prospect in the fields of chemical and biomedical detections.
Collapse
Affiliation(s)
- Feng Yang
- School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Ping Wen
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China; School of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou 635000, China
| | - Lianggui Tang
- School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing 400067, China
| | - Rongxiu Wang
- School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yiyan Wang
- School of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou 635000, China
| | - Dongling Li
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| | - Yi Xu
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| | - Li Chen
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
30
|
Lin X, Li J. Applications of In Situ Raman Spectroscopy on Rechargeable Batteries and Hydrogen Energy Systems. ChemElectroChem 2023. [DOI: 10.1002/celc.202201003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xiu‐Mei Lin
- Department of Chemistry and Environment Science Minnan Normal University Zhangzhou 363000 China
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering College of Energy College of Materials Xiamen University Xiamen 361005 China
| | - Jian‐Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering College of Energy College of Materials Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361005 China
- Shenzhen Research Institute of Xiamen University Shenzhen 518000 China
| |
Collapse
|
31
|
Kreider ME, Burke Stevens M. Material Changes in Electrocatalysis: An In Situ/Operando Focus on the Dynamics of Cobalt‐Based Oxygen Reduction and Evolution Catalysts. ChemElectroChem 2022. [DOI: 10.1002/celc.202200958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Melissa E. Kreider
- Department of Chemical Engineering Stanford University 443 Via Ortega, Stanford California 94305 United States
- SUNCAT Center for Interface Science and Catalysis SLAC National Accelerator Laboratory Menlo Park California 94025 United States
| | - Michaela Burke Stevens
- SUNCAT Center for Interface Science and Catalysis SLAC National Accelerator Laboratory Menlo Park California 94025 United States
| |
Collapse
|
32
|
Su HS, Chang X, Xu B. Surface-enhanced vibrational spectroscopies in electrocatalysis: Fundamentals, challenges, and perspectives. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Perumal J, Lee P, Dev K, Lim HQ, Dinish US, Olivo M. Machine Learning Assisted Real-Time Label-Free SERS Diagnoses of Malignant Pleural Effusion due to Lung Cancer. BIOSENSORS 2022; 12:940. [PMID: 36354448 PMCID: PMC9688333 DOI: 10.3390/bios12110940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
More than half of all pleural effusions are due to malignancy of which lung cancer is the main cause. Pleural effusions can complicate the course of pneumonia, pulmonary tuberculosis, or underlying systemic disease. We explore the application of label-free surface-enhanced Raman spectroscopy (SERS) as a point of care (POC) diagnostic tool to identify if pleural effusions are due to lung cancer or to other causes (controls). Lung cancer samples showed specific SERS spectral signatures such as the position and intensity of the Raman band in different wave number region using a novel silver coated silicon nanopillar (SCSNP) as a SERS substrate. We report a classification accuracy of 85% along with a sensitivity and specificity of 87% and 83%, respectively, for the detection of lung cancer over control pleural fluid samples with a receiver operating characteristics (ROC) area under curve value of 0.93 using a PLS-DA binary classifier to distinguish between lung cancer over control subjects. We have also evaluated discriminative wavenumber bands responsible for the distinction between the two classes with the help of a variable importance in projection (VIP) score. We found that our label-free SERS platform was able to distinguish lung cancer from pleural effusions due to other causes (controls) with higher diagnostic accuracy.
Collapse
Affiliation(s)
- Jayakumar Perumal
- Translational Biophotonics Laboratory, Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
| | - Pyng Lee
- Respiratory and Critical Care Medicine, National University Hospital, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Kapil Dev
- Translational Biophotonics Laboratory, Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
| | - Hann Qian Lim
- Translational Biophotonics Laboratory, Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
| | - U. S. Dinish
- Translational Biophotonics Laboratory, Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
| | - Malini Olivo
- Translational Biophotonics Laboratory, Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
| |
Collapse
|
34
|
A Simple Aptamer SERS Sensor Based on Mesoporous Silica for the Detection of Chlorpyrifos. Foods 2022; 11:foods11213331. [PMID: 36359944 PMCID: PMC9654504 DOI: 10.3390/foods11213331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Chlorpyrifos is an organophosphorus insecticide, which can be used to control a variety of chewing and piercing mouthparts pests in agricultural production. It can destroy the normal nerve impulse conduction by inhibiting the activity of acetylcholinesterase or cholinesterase in the nerves, causing a series of poisoning symptoms. In order to achieve the quantitative analysis of chlorpyrifos residues in agricultural products, an aptamer-controlled signal molecule release method was developed in this study. The signal molecule 4-ATP of surface-enhanced Raman spectroscopy (SERS) was loaded into aminated mesoporous silica nanoparticles (MSNs-NH2) prepared by the one pot method, and then coated with an aptamer of chlorpyrifos through electrostatic interaction. The specific binding of the aptamer and chlorpyrifos led to the release of 4-ATP, and the amount of 4-ATP released was positively correlated with the amount of chlorpyrifos. Finally, the standard curve of chlorpyrifos quantitative detection based on SERS was established. Meanwhile, Ag-carrying mesoporous silica (Ag@MSNs) was prepared as the reinforcement substrate for SERS detection. The results showed that there was a good linear correlation between the Raman intensity and the concentration of chlorpyrifos at 25−250 ng/mL, and the limit of detection (LOD) was 19.87 ng/mL. The recoveries of chlorpyrifos in the apple and tomato samples were 90.08−102.2%, with RSD < 3.32%. This method has high sensitivity, specificity, reproducibility and stability, and can be used for the quantitative detection of chlorpyrifos in the environment and agricultural products.
Collapse
|
35
|
Li J, Li J, Yi W, Yin M, Fu Y, Xi G. A Metallic Niobium Nitride with Open Nanocavities for Surface-Enhanced Raman Spectroscopy. Anal Chem 2022; 94:14635-14641. [PMID: 36239397 DOI: 10.1021/acs.analchem.2c02691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The construction of open hot-spot structures that facilitate the entry of analytes is crucial for surface-enhanced Raman spectroscopy. Here, metallic niobium nitride (NbN) three-dimensional (3D) hierarchical networks with open nanocavity structure are first found to exhibit a strong visible-light localized surface plasmon resonance (LSPR) effect and extraordinary surface-enhanced Raman scattering (SERS) performance. The unique nanocavity structure allows easy entry of molecules, promoting the utilization of electromagnetic hot spots. The NbN substrate has a lowest detection limit of 1.0 × 10-12 M and a Raman enhancement factor (EF) of 1.4 × 108 for contaminants. Furthermore, the NbN hierarchical networks possess outstanding environmental durability, high signal reproducibility, and detection universality. The remarkable SERS sensitivity of the NbN substrate can be attributed to the joint effect of LSPR and interfacial charge transport (CT).
Collapse
Affiliation(s)
- Jingbin Li
- Key Laboratory of Analytical Chemistry for Consumer Products, Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| | - Junfang Li
- Key Laboratory of Analytical Chemistry for Consumer Products, Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| | - Wencai Yi
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Meng Yin
- Key Laboratory of Analytical Chemistry for Consumer Products, Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| | - Yanling Fu
- Key Laboratory of Analytical Chemistry for Consumer Products, Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| | - Guangcheng Xi
- Key Laboratory of Analytical Chemistry for Consumer Products, Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| |
Collapse
|
36
|
Jeong K, Stanwix PL, May EF, Aman ZM. Surface-Enhanced Raman Scattering Imaging of Cetylpyridinium Chloride Adsorption to a Solid Surface. Anal Chem 2022; 94:14169-14176. [PMID: 36190408 DOI: 10.1021/acs.analchem.2c01929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surface active agents (surfactants) have found a variety of critical technological applications, from helping infant lungs breathe to fugitive dust control at industrial sites. Surfactant molecules adsorb to an interface and facilitate a decrease in the surface free energy (interfacial tension) between two immiscible phases. However, a limited number of methods (e.g., holography and fluorescence microscopy) achieved visualization of surfactant molecule distribution in multiphase systems qualitatively. To probe the efficacy and/or adsorption density of surfactants at such interfaces quantitatively, we demonstrate here a direct observation of surfactant adsorption by surface-enhanced Raman scattering (SERS). This work details the development of a research platform to study surfactant adsorption using Raman imaging. The imaging and analysis were successfully benchmarked against conventional interfacial tension measurements and thermodynamic theory employed to estimate surfactant adsorption at equilibrium. This in situ Raman-based experimental method provides a platform to interrogate structure-function relationships that inform the design process for new surfactant species.
Collapse
Affiliation(s)
- Kwanghee Jeong
- Fluid Science and Resources Division, School of Engineering, The University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia6009, Australia
| | - Paul L Stanwix
- Fluid Science and Resources Division, School of Engineering, The University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia6009, Australia
| | - Eric F May
- Fluid Science and Resources Division, School of Engineering, The University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia6009, Australia
| | - Zachary M Aman
- Fluid Science and Resources Division, School of Engineering, The University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia6009, Australia
| |
Collapse
|
37
|
Ibáñez D, Begoña González-García M, Busto J, Pérez-Junquera A, Hernández-Santos D, Fanjul-Bolado P. Development of a novel Raman cell for the easy handling of spectroelectrochemical measurements. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Li H, Merkl P, Sommertune J, Thersleff T, Sotiriou GA. SERS Hotspot Engineering by Aerosol Self-Assembly of Plasmonic Ag Nanoaggregates with Tunable Interparticle Distance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201133. [PMID: 35670133 PMCID: PMC9353460 DOI: 10.1002/advs.202201133] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/23/2022] [Indexed: 06/01/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful sensing technique. However, the employment of SERS sensors in practical applications is hindered by high fabrication costs from processes with limited scalability, poor batch-to-batch reproducibility, substrate stability, and uniformity. Here, highly scalable and reproducible flame aerosol technology is employed to rapidly self-assemble uniform SERS sensing films. Plasmonic Ag nanoparticles are deposited on substrates as nanoaggregates with fine control of their interparticle distance. The interparticle distance is tuned by adding a dielectric spacer during nanoparticle synthesis that separates the individual Ag nanoparticles within each nanoaggregate. The dielectric spacer thickness dictates the plasmonic coupling extinction of the deposited nanoaggregates and finely tunes the Raman hotspots. By systematically studying the optical and morphological properties of the developed SERS surfaces, structure-performance relationships are established and the optimal hot-spots occur for interparticle distance of 1 to 1.5 nm among the individual Ag nanoparticles, as also validated by computational modeling, are identified for the highest signal enhancement of a molecular Raman reporter. Finally, the superior stability and batch-to-batch reproducibility of the developed SERS sensors are demonstrated and their potential with a proof-of-concept practical application in food-safety diagnostics for pesticide detection on fruit surfaces is explored.
Collapse
Affiliation(s)
- Haipeng Li
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSE‐17177Sweden
| | - Padryk Merkl
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSE‐17177Sweden
| | | | - Thomas Thersleff
- Department of Materials and Environmental ChemistryStockholm UniversityStockholm10691Sweden
| | - Georgios A. Sotiriou
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSE‐17177Sweden
| |
Collapse
|
39
|
Rapid and sensitive detection of ovarian cancer biomarker using a portable single peak Raman detection method. Sci Rep 2022; 12:12459. [PMID: 35864143 PMCID: PMC9304383 DOI: 10.1038/s41598-022-13859-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/30/2022] [Indexed: 11/08/2022] Open
Abstract
Raman spectroscopy (RS) is a widely used non-destructive technique for biosensing applications because of its ability to detect unique ‘fingerprint’ spectra of biomolecules from the vibrational bands. To detect these weak fingerprint spectra, a complex detection system consisting of expensive detectors and optical components are needed. As a result, surface enhanced Raman spectroscopy (SERS) method were used to increase the Raman signal multifold beyond 1012 times. However, complexity of the entire Raman detection system can be greatly reduced if a short wavelength region/unique single spectral band can distinctly identify the investigating analyte, thereby reducing the need of multiple optical components to capture the entire frequency range of Raman spectra. Here we propose the development of a rapid, single peak Raman technique for the detection of epithelial ovarian cancers (EOC)s through haptoglobin (Hp), a prognostic biomarker. Hp concentration in ovarian cyst fluid (OCF) can be detected and quantified using Raman spectroscopy-based in vitro diagnostic assay. The uniqueness of the Raman assay is that, only in the presence of the analyte Hp, the assay reagent undergoes a biochemical reaction that results in product formation. The unique Raman signature of the assay output falls within the wavenumber region 1500–1700 cm−1 and can be detected using our single peak Raman system. The diagnostic performance of our Raman system had 100.0% sensitivity, 85.0% specificity, 100.0% negative predictive value and 84.2% positive predictive value when compared to gold standard paraffin histology in a proof-of-concept study on 36 clinical OCF samples. When compared to blood-based serum cancer antigen 125 (CA125) levels, the Raman system-based assay had higher diagnostic accuracy when compared to CA125, especially in early-stage EOCs.
Collapse
|
40
|
Recent Developments in Surface-Enhanced Raman Spectroscopy and Its Application in Food Analysis: Alcoholic Beverages as an Example. Foods 2022; 11:foods11142165. [PMID: 35885407 PMCID: PMC9316878 DOI: 10.3390/foods11142165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) is an emerging technology that combines Raman spectroscopy and nanotechnology with great potential. This technology can accurately characterize molecular adsorption behavior and molecular structure. Moreover, it can provide rapid and sensitive detection of molecules and trace substances. In practical application, SERS has the advantages of portability, no need for sample pretreatment, rapid analysis, high sensitivity, and ‘fingerprint’ recognition. Thus, it has great potential in food safety detection. Alcoholic beverages have a long history of production in the world. Currently, a variety of popular products have been developed. With the continuous development of the alcoholic beverage industry, simple, on-site, and sensitive detection methods are necessary. In this paper, the basic principle, development history, and research progress of SERS are summarized. In view of the chemical composition, the beneficial and toxic components of alcoholic beverages and the practical application of SERS in alcoholic beverage analysis are reviewed. The feasibility and future development of SERS are also summarized and prospected. This review provides data and reference for the future development of SERS technology and its application in food analysis.
Collapse
|
41
|
Briñas E, González VJ, Herrero MA, Zougagh M, Ríos Á, Vázquez E. SERS-Based Methodology for the Quantification of Ultratrace Graphene Oxide in Water Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9527-9535. [PMID: 35700386 PMCID: PMC9261266 DOI: 10.1021/acs.est.2c00937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The extensive use of graphene materials in real-world applications has increased their potential release into the environment. To evaluate their possible health and ecological risks, there is a need for analytical methods that can quantify these materials at very low concentrations in environmental media such as water. In this work, a simple, reproducible, and sensitive method to detect graphene oxide (GO) in water samples using the surface-enhanced Raman spectroscopy (SERS) technique is presented. The Raman signal of graphene is enhanced when deposited on a substrate of gold nanoparticles (AuNPs), thus enabling its determination at low concentrations with no need for any preconcentration step. The practical limit of quantification achieved with the proposed method was 0.1 ng mL-1, which is lower than the predicted concentrations for graphene in effluent water reported to date. The optimized procedure has been successively applied to the determination of ultratraces of GO in water samples.
Collapse
Affiliation(s)
- Elena Briñas
- Department
of Organic Chemistry, Regional Institute
of Applied Scientific Research (IRICA), 13071 Ciudad Real, Spain
| | - Viviana Jehová González
- Department
of Organic Chemistry, Regional Institute
of Applied Scientific Research (IRICA), 13071 Ciudad Real, Spain
| | - María Antonia Herrero
- Department
of Organic Chemistry, Regional Institute
of Applied Scientific Research (IRICA), 13071 Ciudad Real, Spain
- Department
of Organic Chemistry, Faculty of Science and Chemistry Technologies, University of Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Mohammed Zougagh
- Department
of Organic Chemistry, Regional Institute
of Applied Scientific Research (IRICA), 13071 Ciudad Real, Spain
- Department
of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain
| | - Ángel Ríos
- Department
of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain
- Department
of Analytical Chemistry and Food Technology, University of Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Ester Vázquez
- Department
of Organic Chemistry, Regional Institute
of Applied Scientific Research (IRICA), 13071 Ciudad Real, Spain
- Department
of Organic Chemistry, Faculty of Science and Chemistry Technologies, University of Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| |
Collapse
|
42
|
Chen A, Lv Y, Wu Y, Zhu Y. Gradient Annealing as a New Strategy to Fabricate Gradient Nanoparticle Array on Microwires. NANOSCALE RESEARCH LETTERS 2022; 17:59. [PMID: 35726040 PMCID: PMC9209622 DOI: 10.1186/s11671-022-03698-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Creating gradients of nanostructure on the surface has found broad applications such as enhanced optical spectroscopy, optical storage of information, and broadband solar energy harvesting. Here, a facile strategy is presented for fabricating gradient nanoparticle arrays with tunable size. It takes a ZnO:Ga microwire as the starting material, and the Ga3+ doping gradient along the microwire is induced by the high voltage applied. Such a doping gradient facilitates the formation of a temperature gradient in a Joule heating process. And this temperature gradient produced by this technique can be as high as 800 °C/mm, which could be later used for gradient annealing of thin metal films. After annealing, the thin metal films turn to gradient nanoparticle arrays. The obtained gradient nanoparticle arrays are confirmed effective in multi-wavelength surface enhanced Raman scattering enhancement.
Collapse
Affiliation(s)
- Anqi Chen
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - You Lv
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yanyan Wu
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuan Zhu
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China.
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
43
|
Yan S, Li Y, Peng Y, Ma S, Han D. Detection of nitrofurans residues in honey using surface-enhanced Raman spectroscopy. J Food Sci 2022; 87:3318-3328. [PMID: 35676764 DOI: 10.1111/1750-3841.16198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/26/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022]
Abstract
Residues of veterinary antibiotics in honey may be damaging to human health. Surface-enhanced Raman scattering spectroscopy (SERS) is an emerging technology widely applied in food safety. SERS has advantages of enabling fingerprint identification and fast detection, as well as does not require complex pretreatment. Considering the overuse of nitrofurans in honeybee breeding, SERS combined with spectral preprocessing was used to detect nitrofurantoin in honey. By using standardized experimental procedures and improved spectral correction methods, the lowest detection limit of nitrofurantoin was 0.1321 mg/kg. A good linear relationship in the partial least squares regression model was found among spiked samples, which allowed prediction of nitrofurantoin content in honey sample ( R C 2 $R_C^2$ = 0.9744; R P 2 $R_P^2$ = 0.976; RMSECV = 1.0353 mg/kg; RMSEP = 0.9987 mg/kg). Collectively, these results reliably demonstrated that quantification is more accurate when spectral preprocessing is better controlled. Therefore, this study indicates that SERS could be further implemented in fast and onsite detection of nitrofurantoin in honey for improved food safety. PRACTICAL APPLICATION: This article presents a novel SERS-based method for the rapid detection of nitrofurantoin residues in honey. The original spectra were corrected by multiple linear regression based on the fitting baseline. This study aims to develop a rapid onsite detection method for toxic hazardous substance residues in food.
Collapse
Affiliation(s)
- Shuai Yan
- College of Engineering, China Agricultural University, Beijing, P. R. China
| | - Yongyu Li
- College of Engineering, China Agricultural University, Beijing, P. R. China
| | - Yankun Peng
- College of Engineering, China Agricultural University, Beijing, P. R. China
| | - Shaojin Ma
- College of Engineering, China Agricultural University, Beijing, P. R. China
| | - Donghai Han
- College of Food science and Nutrition Engineering, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
44
|
Moldovan R, Vereshchagina E, Milenko K, Iacob BC, Bodoki AE, Falamas A, Tosa N, Muntean CM, Farcău C, Bodoki E. Review on combining surface-enhanced Raman spectroscopy and electrochemistry for analytical applications. Anal Chim Acta 2022; 1209:339250. [PMID: 35569862 DOI: 10.1016/j.aca.2021.339250] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
The discovery of surface enhanced Raman scattering (SERS) from an electrochemical (EC)-SERS experiment is known as a historic breakthrough. Five decades have passed and Raman spectroelectrochemistry (SEC) has developed into a common characterization tool that provides information about the electrode-electrolyte interface. Recently, this technique has been successfully explored for analytical purposes. EC was found to highly improve the performances of SERS sensors, providing, among others, controlled adsorption of analytes and increased reproducibility. In this review, we highlight the potential of EC-SERS sensors to be implemented for point-of-need (PON) analyses as miniaturized devices, and their ability to revolutionize fields like quality control, diagnosis or environmental and food safety. Important developments have been achieved in Raman spectroelectrochemistry, which now represents a promising alternative to conventional analytical methods and interests more and more researchers. The studies included in this review open endless possibilities for real-life EC-SERS analytical applications.
Collapse
Affiliation(s)
- Rebeca Moldovan
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur, 400349, Cluj-Napoca, Romania
| | - Elizaveta Vereshchagina
- Department of Microsystems and Nanotechnology (MiNaLab), SINTEF Digital, Gaustadalléen 23C, 0373, Oslo, Norway
| | - Karolina Milenko
- Department of Microsystems and Nanotechnology (MiNaLab), SINTEF Digital, Gaustadalléen 23C, 0373, Oslo, Norway
| | - Bogdan-Cezar Iacob
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur, 400349, Cluj-Napoca, Romania
| | - Andreea Elena Bodoki
- General and Inorganic Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, 12, Ion Creangă, 400010, Cluj-Napoca, Romania
| | - Alexandra Falamas
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Nicoleta Tosa
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Cristina M Muntean
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Cosmin Farcău
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania.
| | - Ede Bodoki
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur, 400349, Cluj-Napoca, Romania.
| |
Collapse
|
45
|
Hendricks-Leukes NR, Jonas MR, Mlamla ZC, Smith M, Blackburn JM. Dual-Approach Electrochemical Surface-Enhanced Raman Scattering Detection of Mycobacterium tuberculosis in Patient-Derived Biological Specimens: Proof of Concept for a Generalizable Method to Detect and Identify Bacterial Pathogens. ACS Sens 2022; 7:1403-1418. [PMID: 35561012 DOI: 10.1021/acssensors.2c00121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The recent surge in infectious disease-causing pathogens, resulting in global catastrophe, has merited a pivotal quest toward point-of-care (POC) diagnostics. Mycobacterium tuberculosis (MTB) is still the top bacterium-based infectious disease-causing pathogen worldwide. In a concerted effort toward simplifying and decentralizing the discriminatory screening of MTB causing pathogens, electrochemical surface-enhanced Raman scattering (EC-SERS) was adopted to create a customized screening tool. The development strategy combined five key factors, including (i) a simplified Tollens'-based chemical synthesis method for bulk supply of silver nanoparticles, (ii) the deliberate surface modification of nanoparticles with carefully selected polyelectrolytes to resemble the conditioning layer usually found on a natural substratum, (iii) uniform SERS-active films formed through simple unprogrammed assembly, (iv) the controlled manipulation of the local electric field through applied voltage using a technique that does not conform to the limitations of classical EC-SERS, and (v) the inherent specificity of the target-specific SERS vibrational signature. The EC-SERS platform was able to discriminatively detect and identify TB-derived mycobacteria, including three clinically relevant MTB strains, TB-H37Rv, TB-HN878, and TB-CDC1551. Moreover, a customized voltage stepping protocol, compatible with either the inclusion of a short preincubation step or with in situ EC-SERS is illustrated. From the obtained SERS vibrational signatures, a band indicating a mode unique to TB-derived/TB-affiliated mycobacteria and thus not observed for other bacterial types used in this study was illustrated. Furthermore, provisional investigation, done as prelude for assessing the potential for translational adaptability of the EC-SERS technique toward POC clinical settings for sputum and urine specimens, was carried out.
Collapse
Affiliation(s)
- Nicolette R. Hendricks-Leukes
- Department of Integrative Biomedical Sciences, Division of Chemical & Systems Biology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Mario R. Jonas
- Department of Pathology, Division of Human Genetics, Sickle Africa Data Coordinating Centre, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Zandile C. Mlamla
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon 21000, France
- Plateforme de Lipidomique, Université de Bourgogne Franche-Comté, Dijon 21000, France
| | - Muneerah Smith
- Department of Integrative Biomedical Sciences, Division of Chemical & Systems Biology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Jonathan M. Blackburn
- Department of Integrative Biomedical Sciences, Division of Chemical & Systems Biology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
46
|
Fan S, Wang X, Li Y, Chen X, Chen H, Schultz ZD, Li Z. High-Throughput Surface-Enhanced Raman Scattering for Screening Chemical Sensor Candidates Enabled by Bipolar Electrochemistry. ACS Sens 2022; 7:1431-1438. [PMID: 35465660 DOI: 10.1021/acssensors.2c00137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A variety of hydrothermal or electrochemical methods have been explored to prepare noble metal nanostructures as surface-enhanced Raman scattering (SERS) substrates. However, most of those metallic nanoarrays are structurally homogeneous, which makes it laborious to select the high-performance substrates for particular Raman sensing purposes. Here, a high-throughput SERS imaging strategy is demonstrated for the first time for screening chemical sensors with sub-nanomolar sensitivities. Bipolar electrochemistry was applied to generate Au or Au-Ag gradient nanoarrays with diverse chemical compositions, morphologies, and particle dimensions ranging from several nanometers to micrometers. The selected "hot-spots" on the Au-Ag alloy nanoarray exhibited a 660-fold enhancement in SERS intensity compared to those on the pure Au gradient nanoarray. The SERS screening of 4-aminothiophenol, 4-nitrothiophenol, and 4-mercaptobenzoic acid was carried out that provided a limit of detection (LOD) between 1 and 5 pM. The distinctive LODs among three thiophenolic Raman probes are ascribed to the differences in the affinity of the probe to the alloy, orientation of the metal-ligand monolayer, or plasmonic environment of the nanoarray surface. As a continuous, rapid, and cost-effective manner to fabricate transitional nanostructures and screen out SERS responsive sites, this method not only facilitates controllable synthesis of noble metal nanoarrays but has the potential to provide an alternative tool for ultrasensitive chemical sensing on a wide range of bimetallic substrates.
Collapse
Affiliation(s)
- Sanjun Fan
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Xinyu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Yingling Li
- Instrumental Analysis Center of Shenzhen University, Shenzhen University, Shenzhen, Guangdong 518055, P.R. China
| | - Xiaofeng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Haotian Chen
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, Oxford OX1 3QZ, United Kingdom
| | - Zachary D. Schultz
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| | - Zheng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
47
|
Bonatti L, Nicoli L, Giovannini T, Cappelli C. In silico design of graphene plasmonic hot-spots. NANOSCALE ADVANCES 2022; 4:2294-2302. [PMID: 35706845 PMCID: PMC9113057 DOI: 10.1039/d2na00088a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/15/2022] [Indexed: 05/27/2023]
Abstract
We propose a route for the rational design of engineered graphene-based nanostructures, which feature enormously enhanced electric fields in their proximity. Geometrical arrangements are inspired by nanopatterns allowing single molecule detection on noble metal substrates, and are conceived to take into account experimental feasibility and ease in fabrication processes. The attention is especially focused on enhancement effects occurring close to edge defects and grain boundaries, which are usually present in graphene samples. There, very localized hot-spots are created, with enhancement factors comparable to noble metal substrates, thus potentially paving the way for single molecule detection from graphene-based substrates.
Collapse
Affiliation(s)
- Luca Bonatti
- Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa Italy
| | - Luca Nicoli
- Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa Italy
| | | | - Chiara Cappelli
- Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa Italy
| |
Collapse
|
48
|
Feng L, Li C, Wang L, Li J, Liu X, Li Q, Luo S, Shen J. Self-Referenced Surface-Enhanced Raman Scattering Nanosubstrate for the Quantitative Detection of Neurotransmitters. ACS APPLIED BIO MATERIALS 2022; 5:2403-2410. [PMID: 35417131 DOI: 10.1021/acsabm.2c00272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantitative, label-free detection of neurotransmitters is of vital importance to the diagnosis and treatment of neurologic diseases. The surface-enhanced Raman scattering (SERS) effect has great application prospects in the field of biosensing and bioimaging because of its unique nondestructive testing and its capability of being used in molecular fingerprint identification. However, the quantitative SERS analysis of neurotransmitters is still a great challenge because of the poor reproducibility of the SERS-active sites, as well as the small Raman cross-section and low physiological concentration of neurotransmitter molecules. Here, we report the development of a stellate gold nanostructure with a 1 nm interior gap for the quantitative detection of neurotransmitters. The internal reference embedded into the hollow gap of the stellate gold nanoparticle allows the calibration of the signal of analytes absorbed on the surface, which improves the R-squared value of the linear fitting curve from 0.56 to 0.97 for quantitative dopamine detection. Our developed self-referenced SERS substrate holds great potential for label-free, quantitative SERS-based biosensing.
Collapse
Affiliation(s)
- Lingyu Feng
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cong Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lihua Wang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200127, China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shihua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
49
|
Zhang N, Zhao J, Chen D, Yuan G. Electrodeposition of a Silver Nanoparticle Substrate with Application for Surface-Enhanced Raman Spectroscopy (SERS). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2056745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Nan Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang, China
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology, College of Materials and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Jianwei Zhao
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology, College of Materials and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Deli Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Material, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Guiyun Yuan
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology, College of Materials and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
50
|
Wang X, Lu A, Bai Z, Xu T. A Multilayer Interlaced Ag Nanosheet Film Prepared by an Electrodeposition Method on a PPy@PEDOT:PSS Film: A Strategy to Prepare Sensitive Surface-Enhanced Raman Scattering Substrates. ACS OMEGA 2022; 7:9380-9387. [PMID: 35350326 PMCID: PMC8945060 DOI: 10.1021/acsomega.1c06387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/28/2022] [Indexed: 06/19/2023]
Abstract
A highly sensitive multilayer interlaced silver (Ag) nanosheet (MISN) film was prepared on a PPy@PEDOT:PSS film via an electrodeposition method for surface-enhanced Raman scattering (SERS) applications. After the PPy@PEDOT:PSS film was pretreated with ascorbic acid solution, many sparse Ag nanoparticles (NPs) could be directly reduced on the surface of the PPy@PEDOT:PSS film in AgNO3 solution. Then, the MISN film was directionally grown along the surface of sparse Ag NPs by using an electrochemical galvanostatic method to form a Ag/PPy@PEDOT:PSS film for a SERS substrate. The results indicated that with the increase in electrodeposition time, the density of Ag nanosheets was also increased for boosting the SERS effect. Accordingly, owing to the directional growth of Ag NPs, the increase in the length-width ratio of single Ag nanosheets would further promote the SERS signal of the substrate. Moreover, the maximum enhancement factor of the SERS substrate could reach to 12,478, and the minimum limit of detection of melamine solution was down to 5.42 ng/mL. The SERS sensitivity of the Ag nanosheet film reached 100.65. This method of preparing the SERS substrate provides a novel and robust strategy for the low-cost and high-sensitivity detection in biomedicine, drugs, and food.
Collapse
Affiliation(s)
- Xueqin Wang
- College
of Medicine, Guizhou University, Guiyang City 550025, China
- Guizhou
Province Key Laboratory for Photoelectronic Technology and Application, Guizhou University, Guiyang City 550025, China
| | - Anjiang Lu
- Guizhou
Province Key Laboratory for Photoelectronic Technology and Application, Guizhou University, Guiyang City 550025, China
| | - Zhongchen Bai
- College
of Medicine, Guizhou University, Guiyang City 550025, China
- Guizhou
Province Key Laboratory for Photoelectronic Technology and Application, Guizhou University, Guiyang City 550025, China
| | - Tianwen Xu
- College
of Medicine, Guizhou University, Guiyang City 550025, China
- Guizhou
Province Key Laboratory for Photoelectronic Technology and Application, Guizhou University, Guiyang City 550025, China
| |
Collapse
|