1
|
Li Z, Cheng L, Xu X, Jia R, Zhu S, Zhang Q, Cheng G, Wu B, Liu Z, Tong X, Xiao B, Dai F. Cuproptosis-based layer-by-layer silk fibroin nanoplatform-loaded PD-L1 siRNA combining photothermal and chemodynamic therapy against metastatic breast cancer. Mater Today Bio 2024; 29:101298. [PMID: 39469315 PMCID: PMC11513806 DOI: 10.1016/j.mtbio.2024.101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/29/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Cuproptosis is a newly identified form of copper-dependent cell death that differs from other known pathways. This discovery provides a new way to explore copper-based nanomaterial applications in cancer therapy. This study used a layer-by-layer self-assembling method to load Cu2-xS nanoparticle (NP) cores with the siRNA of the PD-L1 immune escape-related gene and wrap a silk fibroin (SF) shell to form a multifunctional copper-based SF nanoplatform, denoted as CuS-PEI-siRNA-SFNs. CuS-PEI-siRNA-SFNs induced cuproptosis and exerted an antitumor effect via multiple mechanisms, including photothermal therapy (PTT), chemodynamic therapy (CDT), and immune activation. The presence of significant dihydrolipoamide S-acetyltransferase (DLAT) oligomers in 4T1 cells treated with CuS-PEI-siRNA-SFNs indicated the triggering of cuproptosis. Furthermore, in vivo experimental results showed that CuS-PEI-siRNA-SFNs efficiently accumulated in the tumor tissues of 4T1 tumor-bearing mice inhibited primary tumor and lung metastasis, and displayed excellent biosafety and antitumor activity. This study demonstrated that the synergistic effect of cuproptosis, PTT, CDT, and immune activation showed promise for treating metastatic breast cancer.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- National Agricultural Exhibition Center, China Agricultural Museum, Beijing, China
| | - Lan Cheng
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Xiang Xu
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Rui Jia
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Siyu Zhu
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Qian Zhang
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Guotao Cheng
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Baiqing Wu
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Zulan Liu
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Bo Xiao
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Linnik DS, Tarakanchikova YV, Zyuzin MV, Lepik KV, Aerts JL, Sukhorukov G, Timin AS. Layer-by-Layer technique as a versatile tool for gene delivery applications. Expert Opin Drug Deliv 2021; 18:1047-1066. [DOI: 10.1080/17425247.2021.1879790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dmitrii S. Linnik
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Yana V. Tarakanchikova
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Nanobiotechnology Laboratory, St. Petersburg Academic University, St. Petersburg, Russia
| | - Mikhail V. Zyuzin
- Department of Physics and Engineering, ITMO University, St. Petersburg, Russia
| | - Kirill V. Lepik
- Department of Hematology, Transfusion, and Transplantation, First I. P. Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Joeri L. Aerts
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Neuro-Aging & Viro-Immunotherapy Lab (NAVI), Vrije Universiteit Brussel, Brussels, Belgium
| | - Gleb Sukhorukov
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- School of Engineering and Material Science, Queen Mary University of London, London, UK
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia
| | - Alexander S. Timin
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
4
|
Albert R, Kristóf E, Zahuczky G, Szatmári-Tóth M, Veréb Z, Oláh B, Moe MC, Facskó A, Fésüs L, Petrovski G. Triamcinolone regulated apopto-phagocytic gene expression patterns in the clearance of dying retinal pigment epithelial cells. A key role of Mertk in the enhanced phagocytosis. Biochim Biophys Acta Gen Subj 2014; 1850:435-46. [PMID: 25450174 DOI: 10.1016/j.bbagen.2014.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/03/2014] [Accepted: 10/22/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND The apopto-phagocytic gene expression patterns during clearance of dying cells in the retina and the effect of triamcinolone (TC) upon these processes have relevance to development of age-related macular degeneration (AMD). METHODS ARPE-19 cells and primary human retinal pigment epithelium (hRPE) were induced to undergo cell death by anoikis and the clearance of these cells by living hRPE/ARPE-19 or human monocyte-derived macrophages (HMDMs) in the presence or absence of TC was quantified by flow cytometry. TaqMan low-density gene expression array determining known markers of phagocytosis and loss-of-function studies on selected apopto-phagocytic genes was carried out in HMDM engulfing anoikic cells. RESULTS The glucocorticoid TC had a profound phagocytosis-enhancing effect on HMDM engulfing anoikic ARPE-19 or hRPE cells, causing a selective upregulation of the Mer tyrosine kinase (MERTK) receptor, while decreasing the expression of the AXL receptor tyrosine kinase and thrombospondin-1 (THSB-1). The key role of the MERTK could be demonstrated in HMDM engulfing dying cells using gene silencing as well as blocking antibodies. Similar pathways were found upregulated in living ARPE-19 engulfing anoikic ARPE-19 cells. Gas6 treatment enhanced phagocytosis in TC-treated HMDMs. CONCLUSIONS Specific agonists of the Mertk receptor may have a potential role as phagocytosis enhancers in the retina and serve as future targets for AMD therapy. GENERAL SIGNIFICANCE The use of Gas6 as enhancer of retinal phagocytosis via the MerTK receptor, alone or in combination with other specific ligands of the tyrosine kinase receptors' family may have a potential role in AMD therapy.
Collapse
Affiliation(s)
- Réka Albert
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary; Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, and MTA-DE Stem cell, Apoptosis and Genomics Research Group, University of Debrecen, Debrecen, Hungary
| | - Endre Kristóf
- Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, and MTA-DE Stem cell, Apoptosis and Genomics Research Group, University of Debrecen, Debrecen, Hungary
| | | | - Mária Szatmári-Tóth
- Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, and MTA-DE Stem cell, Apoptosis and Genomics Research Group, University of Debrecen, Debrecen, Hungary
| | - Zoltán Veréb
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary; Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, and MTA-DE Stem cell, Apoptosis and Genomics Research Group, University of Debrecen, Debrecen, Hungary
| | - Brigitta Oláh
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary; Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, and MTA-DE Stem cell, Apoptosis and Genomics Research Group, University of Debrecen, Debrecen, Hungary
| | - Morten C Moe
- Centre of Eye Research, Department of Ophthalmology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Andrea Facskó
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Fésüs
- Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, and MTA-DE Stem cell, Apoptosis and Genomics Research Group, University of Debrecen, Debrecen, Hungary
| | - Goran Petrovski
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary; Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, and MTA-DE Stem cell, Apoptosis and Genomics Research Group, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
5
|
siRNA delivery via electropulsation: a review of the basic processes. Methods Mol Biol 2014; 1121:81-98. [PMID: 24510814 DOI: 10.1007/978-1-4614-9632-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Due to their capacity for inducing strong and sequence specific gene silencing in cells, small interfering RNAs (siRNAs) are now recognized not only as powerful experimental tools for basic research in Molecular biology but with promising potentials in therapeutic development. Delivery is a bottleneck in many studies. There is a common opinion that full potential of siRNA as therapeutic agent will not be attained until better methodologies for its targeted intracellular delivery to cells and tissues are developed. Electropulsation (EP) is one of the physical methods successfully used to transfer siRNA into living cells in vitro and in vivo. This review will describe how siRNA electrotransfer obeys characterized biophysical processes (cell-size-dependent electropermeabilization, electrophoretic drag) with a strong control of a low loss of viability. Protocols can be easily adjusted by a proper setting of the electrical parameters and pulsing buffers. EP can be easily directly applied on animals. Preclinical studies showed that electropermeabilization brings a direct cytoplasmic distribution of siRNA and an efficient silencing of the targeted protein expression. EP appears as a promising tool for clinical applications of gene silencing. A panel of successful trials will be given.
Collapse
|
6
|
Substrate-mediated, high-efficiency siRNA electroporation. Methods Mol Biol 2014. [PMID: 24510819 DOI: 10.1007/978-1-4614-9632-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Here, we outline a method for surface-mediated transfection of small interfering RNA (siRNA) using electroporation. Cells are cultured on an electrode carrying siRNA. After the cells are adhered on the electrode surface, an electric pulse is applied to release siRNA from the surface and transfect it into the cells. A siRNA electroporation microarray is also presented for high-throughput screening of the functions of many siRNAs.
Collapse
|
7
|
Abstract
Electroporation is a simple yet powerful technique for breaching the cell membrane barrier. The applications of electroporation can be generally divided into two categories: the release of intracellular proteins, nucleic acids and other metabolites for analysis and the delivery of exogenous reagents such as genes, drugs and nanoparticles with therapeutic purposes or for cellular manipulation. In this review, we go over the basic physics associated with cell electroporation and highlight recent technological advances on microfluidic platforms for conducting electroporation. Within the context of its working mechanism, we summarize the accumulated knowledge on how the parameters of electroporation affect its performance for various tasks. We discuss various strategies and designs for conducting electroporation at the microscale and then focus on analysis of intracellular contents and delivery of exogenous agents as two major applications of the technique. Finally, an outlook for future applications of microfluidic electroporation in increasingly diverse utilities is presented.
Collapse
Affiliation(s)
- Tao Geng
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA. Fax: +1-540-231-5022; Tel: +1-540-231-8681
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA 24061, USA
| |
Collapse
|
8
|
Lee SK, Tung CH. A fabricated siRNA nanoparticle for ultra-long gene silencing in vivo. ADVANCED FUNCTIONAL MATERIALS 2013; 23:3488-3493. [PMID: 24999314 PMCID: PMC4078887 DOI: 10.1002/adfm.201202777] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Persistent gene silencing is crucially required for the successful therapeutics of short interfering RNA (siRNA). Here, we describe a nanoparticle based delivery system which assembled by layering siRNAs between protease degradable polypeptides to extend the therapeutic window. These tightly packed nanoparticles are efficiently taken up by cells by endocytosis, and the fabricated siRNAs are gradually released following intracellular degradation of the polypeptide layers. During cell division, the particles are distributed to the daughter cells. Due to the slow degradation through the multiple layers, the particles continuously release siRNA in all cells. Using this controlled release construct, the in vivo gene silencing effect of siRNA is consistent for an ultra-long period of time (>3 weeks) with only a single treatment.
Collapse
|
9
|
Van Tassel PR. Polyelectrolyte adsorption and layer-by-layer assembly: Electrochemical control. Curr Opin Colloid Interface Sci 2012. [DOI: 10.1016/j.cocis.2011.08.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Zelikin AN, Städler B. Intelligent Polymer Thin Films and Coatings for Drug Delivery. INTELLIGENT SURFACES IN BIOTECHNOLOGY 2012:243-290. [DOI: 10.1002/9781118181249.ch7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Wohl BM, Engbersen JF. Responsive layer-by-layer materials for drug delivery. J Control Release 2012; 158:2-14. [DOI: 10.1016/j.jconrel.2011.08.035] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/23/2011] [Indexed: 11/30/2022]
|
12
|
Yang SH, Ko EH, Choi IS. Formation of thiol-functionalized silica films by layer-by-layer self-assembly and biomimetic silicification. Macromol Res 2011. [DOI: 10.1007/s13233-011-0512-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Ariga K, McShane M, Lvov YM, Ji Q, Hill JP. Layer-by-layer assembly for drug delivery and related applications. Expert Opin Drug Deliv 2011; 8:633-44. [DOI: 10.1517/17425247.2011.566268] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Lee SK, Han MS, Asokan S, Tung CH. Effective gene silencing by multilayered siRNA-coated gold nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:364-70. [PMID: 21294265 PMCID: PMC3099143 DOI: 10.1002/smll.201001314] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 08/26/2010] [Indexed: 05/23/2023]
Abstract
Small interfering RNA (siRNA) has been widely proposed to treat various diseases by silencing genes, but its delivery remains a challenge. A well controlled assembly approach is applied to prepare a protease-assisted nanodelivery system. Protease-degradable poly-L-lysine (PLL) and siRNA are fabricated onto gold nanoparticles (AuNPs), by alternating the charged polyelectrolytes. In this study, up to 4 layers of PLL and 3 layers of siRNA (sR3P) are coated. Due to the slow degradation of PLL, the incorporated siRNA is released gradually and shows extended gene-silencing effects. Importantly, the inhibition effect in cells is found to correlate with the number of siRNA layers.
Collapse
Affiliation(s)
- Seung Koo Lee
- Department of Radiology, The Methodist Hospital Research Institute, Weill Cornell Medical College, 6565 Fannin St. B5-009, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
15
|
Wang CHK, Pun SH. Substrate-mediated nucleic acid delivery from self-assembled monolayers. Trends Biotechnol 2011; 29:119-26. [PMID: 21208672 DOI: 10.1016/j.tibtech.2010.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/16/2010] [Accepted: 11/19/2010] [Indexed: 12/12/2022]
Abstract
Substrate-mediated nucleic acid (NA) delivery involves the immobilization of NAs or NA delivery vehicles to biomaterials for localized transfection of cells. Self-assembled monolayers (SAMs) offer an easy system to immobilize delivery vectors. SAMs form well-defined surfaces; therefore, the effect of surface composition on vector immobilization and transfection efficiency can also be studied. To date, the most effective SAM-mediated delivery systems have utilized nonspecific interactions for immobilization; however, systems that rely on specific interactions between vector and surface can impart higher control of spatial and/or temporal delivery. This review summarizes systems that use both specific and nonspecific interactions for gene delivery from SAMs; highlights progress and remaining challenges; and explores other specific recognition modalities that might be employed for future applications in surface-mediated NA delivery.
Collapse
Affiliation(s)
- Chung-Huei K Wang
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
| | | |
Collapse
|