1
|
ZHENG Y, CAO C, GUO Z, YAN J, LIANG X. [Applications of chromatography in glycomics]. Se Pu 2024; 42:646-657. [PMID: 38966973 PMCID: PMC11224943 DOI: 10.3724/sp.j.1123.2023.12003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Indexed: 07/06/2024] Open
Abstract
Glycomics, an emerging "omics" technology that was developed after genomics and proteomics, is a discipline that studies the composition, structure, and functions of glycomes in cells, tissues, and organisms. Glycomics plays key roles in understanding the laws of major life activities, disease prevention and treatment, and drug quality control and development. At present, the structural analysis of glycans relies mainly on mass spectrometry. However, glycans have low abundance in biological samples. In addition, factors such as variable monosaccharide compositions, differences in glycosidic bond positions and modes, diverse branching structures, contribute to the complexity of the compositions and structures of glycans, posing great challenges to glycomics research. Liquid chromatography can effectively remove matrix interferences and enhance glycan separation to improve the mass spectrometric response of glycans. Thus, liquid chromatography and liquid chromatography coupled with mass spectrometry are important technical tools that have been actively applied to solve these problems; these technologies play indispensable roles in glycomics research. Different studies have highlighted similarities and differences in the applications of various types of liquid chromatography, which also reflects the versatility and flexibility of this technology. In this review, we first discuss the enrichment methods for glycans and their applications in glycomics research from the perspective of chromatographic separation mechanisms. We then compare the advantages and disadvantages of these methods. Some glycan-enrichment modes include affinity, hydrophilic interactions, size exclusion, and porous graphitized carbon adsorption. A number of newly developed materials exhibit excellent glycan-enrichment ability. We enumerate the separation mechanisms of reversed-phase high performance liquid chromatography (RP-HPLC), high performance anion-exchange chromatography (HPAEC), hydrophilic interaction chromatography (HILIC), and porous graphitic carbon (PGC) chromatography in the separation and analysis of glycans, and describe the applications of these methods in the separation of glycans, glycoconjugates, and glyco-derivatives. Among these methods, HILIC and PGC chromatography are the most widely used, whereas HPAEC and RP-HPLC are less commonly used. The HILIC and RP-HPLC modes are often used for the separation of derived glycans. The ionization efficiency and detectability of glycans are significantly improved after derivatization. However, the derivatization process is relatively cumbersome, and byproducts inevitably affect the accuracy and completeness of the detection results. HPAEC and PGC chromatography exhibit good separation effects on nonderivative glycans, but issues related to the detection integrity of low-abundance glycans owing to their poor detection effect continue to persist. Therefore, the appropriate analytical method for a specific sample or target analyte or mutual verification must be selected. Finally, we highlight the research progress in various chromatographic methods coupled with mass spectrometry for glycomics analysis. Significant progress has been made in glycomics research in recent years owing to advancements in the development of chromatographic separation techniques. However, several significant challenges remain. As the development of novel separation materials and methods continues, chromatographic techniques may be expected to play a critical role in future glycomics research.
Collapse
|
2
|
Anderson KW, Hudgens JW. Hydrophilic Interaction Liquid Chromatography at Subzero Temperature for Hydrogen-Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2672-2679. [PMID: 37930109 PMCID: PMC10704588 DOI: 10.1021/jasms.3c00243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Chromatographic separations at subzero temperature significantly improve the precision of back-exchange-corrected hydrogen-deuterium exchange mass spectrometry (HDX-MS) determinations. Our previously reported dual-enzyme HDX-MS analysis instrument used reversed phase liquid chromatography (RPLC) at -30 °C, but high backpressures limited flow rates and required materials and equipment rated for very high pressures. Here, we report the design and performance of a dual-enzyme HDX-MS analysis instrument comprising a RPLC trap column and a hydrophilic interaction liquid chromatography (HILIC) analytical column in a two-dimensional RPLC-HILIC configuration at subzero temperature. During operation at -30 °C, the HILIC column manifests greatly reduced backpressure, which enables faster analytical flow rates and the use of materials rated for lower maximum pressures. The average peptide eluted from a HILIC column during a 40 min gradient at -30 °C contained ≈13% more deuterium than peptides eluted from a tandem RPLC-RPLC apparatus using a conventional 8 min gradient at 0 °C. A subset of peptides eluted from the HILIC apparatus contained ≈24% more deuterium.
Collapse
Affiliation(s)
- Kyle W. Anderson
- Bioprocess
Measurements Group, Biomolecular Measurement Division, National Institute of Standards and Technology, Rockville, Maryland 20850, United States
- Institute
for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| | - Jeffrey W. Hudgens
- Bioprocess
Measurements Group, Biomolecular Measurement Division, National Institute of Standards and Technology, Rockville, Maryland 20850, United States
- Institute
for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| |
Collapse
|
3
|
Molnarova K, Cokrtova K, Tomnikova A, Krizek T, Kozlik P. Liquid chromatography and capillary electrophoresis in glycomic and glycoproteomic analysis. MONATSHEFTE FUR CHEMIE 2022; 153:659-686. [PMID: 35754790 PMCID: PMC9212196 DOI: 10.1007/s00706-022-02938-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022]
Abstract
Glycosylation is one of the most significant and abundant post-translational modifications in cells. Glycomic and glycoproteomic analyses involve the characterization of oligosaccharides (glycans) conjugated to proteins. Glycomic and glycoproteomic analysis is highly challenging because of the large diversity of structures, low abundance, site-specific heterogeneity, and poor ionization efficiency of glycans and glycopeptides in mass spectrometry (MS). MS is a key tool for characterization of glycans and glycopeptides. However, MS alone does not always provide full structural and quantitative information for many reasons, and thus MS is combined with some separation technique. This review focuses on the role of separation techniques used in glycomic and glycoproteomic analyses, liquid chromatography and capillary electrophoresis. The most important separation conditions and results are presented and discussed. Graphical abstract
Collapse
Affiliation(s)
- Katarina Molnarova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Katerina Cokrtova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alice Tomnikova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomas Krizek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Kozlik
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
4
|
Balli OI, Uversky VN, Durdagi S, Coskuner-Weber O. Challenges and limitations in the studies of glycoproteins: A computational chemist's perspective. Proteins 2021; 90:322-339. [PMID: 34549826 DOI: 10.1002/prot.26242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 11/08/2022]
Abstract
Experimenters face challenges and limitations while analyzing glycoproteins due to their high flexibility, stereochemistry, anisotropic effects, and hydration phenomena. Computational studies complement experiments and have been used in characterization of the structural properties of glycoproteins. However, recent investigations revealed that computational studies face significant challenges as well. Here, we introduce and discuss some of these challenges and weaknesses in the investigations of glycoproteins. We also present requirements of future developments in computational biochemistry and computational biology areas that could be necessary for providing more accurate structural property analyses of glycoproteins using computational tools. Further theoretical strategies that need to be and can be developed are discussed herein.
Collapse
Affiliation(s)
- Oyku Irem Balli
- Molecular Biotechnology, Turkish-German University, Istanbul, Turkey
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | | |
Collapse
|
5
|
Abou Zeid L, Pell A, Tytus T, Delangle P, Bresson C. Separation of multiphosphorylated cyclopeptides and their positional isomers by hydrophilic interaction liquid chromatography (HILIC) coupled to electrospray ionization mass spectrometry (ESI-MS). J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1177:122792. [PMID: 34102536 DOI: 10.1016/j.jchromb.2021.122792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Peptides are efficient models used in different fields such as toxicology to study the interactions of several contaminants at the molecular scale, requiring the development of bio-analytical strategies. In this context, Hydrophilic interaction liquid chromatography (HILIC) coupled to electrospray ionization mass spectrometry (ESI-MS) was used to separate synthetic multiphosphorylated cyclopeptides and their positional isomers at physiological pH. We assessed (i) the selectivity of eleven HILIC columns, from different manufacturers and packed with diverse polar sorbents, and (ii) the effect of mobile phase composition on the separation selectivity. The best selectivity and baseline resolution were achieved with the columns grafted by neutral sorbents amide and diol. Furthermore, we investigated the HILIC retention mechanism of these peptides by examining the effect of the number of phosphorylated residues in the peptide scaffold on their retention. The peptide behavior followed the classical hydrophilic partitioning mechanism exclusively on amide and diol columns. This trend was not fully respected on bare and hybrid silica due to the attractive/repulsive interactions of the deprotonated surface silanol groups with the Arginine or Glutamate residues in the peptide scaffold according to the peptide sequence. The position of the phosphorylated amino acid in the peptide backbone also showed to have an impact on the retention, making possible the separation of positional isomers of these multiphosphorylated cyclic peptides using HILIC.
Collapse
Affiliation(s)
- Lana Abou Zeid
- Université Paris-Saclay, CEA, Service d'Etudes Analytiques et de Réactivité des Surfaces, F-91191 Gif-sur-Yvette, France; Sorbonne Université, F-75005 Paris, France.
| | - Albert Pell
- Université Paris-Saclay, CEA, Service d'Etudes Analytiques et de Réactivité des Surfaces, F-91191 Gif-sur-Yvette, France
| | - Théo Tytus
- Université Paris-Saclay, CEA, Service d'Etudes Analytiques et de Réactivité des Surfaces, F-91191 Gif-sur-Yvette, France
| | - Pascale Delangle
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38 000 Grenoble, France
| | - Carole Bresson
- Université Paris-Saclay, CEA, Service d'Etudes Analytiques et de Réactivité des Surfaces, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
6
|
Oultram JMJ, Pegler JL, Bowser TA, Ney LJ, Eamens AL, Grof CPL. Cannabis sativa: Interdisciplinary Strategies and Avenues for Medical and Commercial Progression Outside of CBD and THC. Biomedicines 2021; 9:biomedicines9030234. [PMID: 33652704 PMCID: PMC7996784 DOI: 10.3390/biomedicines9030234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Cannabis sativa (Cannabis) is one of the world’s most well-known, yet maligned plant species. However, significant recent research is starting to unveil the potential of Cannabis to produce secondary compounds that may offer a suite of medical benefits, elevating this unique plant species from its illicit narcotic status into a genuine biopharmaceutical. This review summarises the lengthy history of Cannabis and details the molecular pathways that underpin the production of key secondary metabolites that may confer medical efficacy. We also provide an up-to-date summary of the molecular targets and potential of the relatively unknown minor compounds offered by the Cannabis plant. Furthermore, we detail the recent advances in plant science, as well as synthetic biology, and the pharmacology surrounding Cannabis. Given the relative infancy of Cannabis research, we go on to highlight the parallels to previous research conducted in another medically relevant and versatile plant, Papaver somniferum (opium poppy), as an indicator of the possible future direction of Cannabis plant biology. Overall, this review highlights the future directions of cannabis research outside of the medical biology aspects of its well-characterised constituents and explores additional avenues for the potential improvement of the medical potential of the Cannabis plant.
Collapse
Affiliation(s)
- Jackson M. J. Oultram
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Joseph L. Pegler
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Timothy A. Bowser
- CannaPacific Pty Ltd., 109 Ocean Street, Dudley, NSW 2290, Australia;
| | - Luke J. Ney
- School of Psychological Sciences, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Andrew L. Eamens
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Christopher P. L. Grof
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
- CannaPacific Pty Ltd., 109 Ocean Street, Dudley, NSW 2290, Australia;
- Correspondence: ; Tel.: +612-4921-5858
| |
Collapse
|
7
|
Xiao H, Sun F, Suttapitugsakul S, Wu R. Global and site-specific analysis of protein glycosylation in complex biological systems with Mass Spectrometry. MASS SPECTROMETRY REVIEWS 2019; 38:356-379. [PMID: 30605224 PMCID: PMC6610820 DOI: 10.1002/mas.21586] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/27/2018] [Indexed: 05/16/2023]
Abstract
Protein glycosylation is ubiquitous in biological systems and plays essential roles in many cellular events. Global and site-specific analysis of glycoproteins in complex biological samples can advance our understanding of glycoprotein functions and cellular activities. However, it is extraordinarily challenging because of the low abundance of many glycoproteins and the heterogeneity of glycan structures. The emergence of mass spectrometry (MS)-based proteomics has provided us an excellent opportunity to comprehensively study proteins and their modifications, including glycosylation. In this review, we first summarize major methods for glycopeptide/glycoprotein enrichment, followed by the chemical and enzymatic methods to generate a mass tag for glycosylation site identification. We next discuss the systematic and quantitative analysis of glycoprotein dynamics. Reversible protein glycosylation is dynamic, and systematic study of glycoprotein dynamics helps us gain insight into glycoprotein functions. The last part of this review focuses on the applications of MS-based proteomics to study glycoproteins in different biological systems, including yeasts, plants, mice, human cells, and clinical samples. Intact glycopeptide analysis is also included in this section. Because of the importance of glycoproteins in complex biological systems, the field of glycoproteomics will continue to grow in the next decade. Innovative and effective MS-based methods will exponentially advance glycoscience, and enable us to identify glycoproteins as effective biomarkers for disease detection and drug targets for disease treatment. © 2019 Wiley Periodicals, Inc. Mass Spec Rev 9999: XX-XX, 2019.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| |
Collapse
|
8
|
Chen Y, Li J, Schmitz OJ. Development of an At-Column Dilution Modulator for Flexible and Precise Control of Dilution Factors to Overcome Mobile Phase Incompatibility in Comprehensive Two-Dimensional Liquid Chromatography. Anal Chem 2019; 91:10251-10257. [DOI: 10.1021/acs.analchem.9b02391] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yingzhuang Chen
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Hunan Normal University, Changsha 410081, China
| | | | | |
Collapse
|
9
|
Hargett AA, Renfrow MB. Glycosylation of viral surface proteins probed by mass spectrometry. Curr Opin Virol 2019; 36:56-66. [PMID: 31202133 PMCID: PMC7102858 DOI: 10.1016/j.coviro.2019.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022]
Abstract
Glycosylation is a common and biologically significant post-translational modification that is found on numerous virus surface proteins (VSPs). Many of these glycans affect virulence through modulating virus receptor binding, masking antigenic sites, or by stimulating the host immune response. Mass spectrometry (MS) has arisen as a pivotal technique for the characterization of VSP glycosylation. This review will cover how MS-based analyses, such as released glycan profiles, glycan site localization, site-occupancy, and site-specific heterogeneity, are being utilized to map VSP glycosylation. Furthermore, this review will provide information on how MS glycoprofiling data are being used in conjunction with molecular and structural experiments to provide a better understanding of the role of specific glycans in VSP function.
Collapse
Affiliation(s)
- Audra A Hargett
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
10
|
Mallik AK, Guragain S, Rahman MM, Takafuji M, Ihara H. L-Lysine-derived highly selective stationary phases for hydrophilic interaction chromatography: Effect of chain length on selectivity, efficiency, resolution, and asymmetry. SEPARATION SCIENCE PLUS 2019. [DOI: 10.1002/sscp.201800148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Abul K. Mallik
- Department of Applied Chemistry and Chemical Engineering; Faculty of Engineering and Technology; University of Dhaka; Dhaka Bangladesh
| | - Sudhina Guragain
- Department of Applied Chemistry and Biochemistry; Faculty of Engineering; Kumamoto University; Japan (currently at Department of Earth and Planetary Science; Harvard University; Cambridge Massachusetts USA
| | - Mohammed Mizanur Rahman
- Department of Applied Chemistry and Chemical Engineering; Faculty of Engineering and Technology; University of Dhaka; Dhaka Bangladesh
| | - Makoto Takafuji
- Department of Applied Chemistry and Biochemistry; Faculty of Engineering; Kumamoto University; Japan (currently at Department of Earth and Planetary Science; Harvard University; Cambridge Massachusetts USA
- Kumamoto Institute for Photo-Electro Organics (Phoenics); Japan
| | - Hirotaka Ihara
- Department of Applied Chemistry and Biochemistry; Faculty of Engineering; Kumamoto University; Japan (currently at Department of Earth and Planetary Science; Harvard University; Cambridge Massachusetts USA
- Kumamoto Institute for Photo-Electro Organics (Phoenics); Japan
| |
Collapse
|
11
|
Ikegami T. Hydrophilic interaction chromatography for the analysis of biopharmaceutical drugs and therapeutic peptides: A review based on the separation characteristics of the hydrophilic interaction chromatography phases. J Sep Sci 2019; 42:130-213. [DOI: 10.1002/jssc.201801074] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/17/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Tohru Ikegami
- Faculty of Molecular Chemistry and Engineering; Kyoto Institute of Technology; Kyoto Japan
- Institute of Pharmaceutical Sciences; Pharmaceutical (Bio-) Analysis; Eberhard-Karls Universität Tübingen; Tübingen Germany
| |
Collapse
|
12
|
Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB. Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses. Chem Rev 2018; 118:7886-7930. [PMID: 29553244 PMCID: PMC7757723 DOI: 10.1021/acs.chemrev.7b00732] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycomic and glycoproteomic analyses involve the characterization of oligosaccharides (glycans) conjugated to proteins. Glycans are produced through a complicated nontemplate driven process involving the competition of enzymes that extend the nascent chain. The large diversity of structures, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies of glycans all conspire to make the analysis arguably much more difficult than any other biopolymer. Furthermore, the large number of glycoforms associated with a specific protein site makes it more difficult to characterize than any post-translational modification. Nonetheless, there have been significant progress, and advanced separation and mass spectrometry methods have been at its center and the main reason for the progress. While glycomic and glycoproteomic analyses are still typically available only through highly specialized laboratories, new software and workflow is making it more accessible. This review focuses on the role of mass spectrometry and separation methods in advancing glycomic and glycoproteomic analyses. It describes the current state of the field and progress toward making it more available to the larger scientific community.
Collapse
Affiliation(s)
- L. Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gege Xu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Elisha Goonatilleke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California 95616, United States
- Foods for Health Institute, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
13
|
Qin ZN, Yu QW, Wang RQ, Feng YQ. Preparation of polymer monolithic column functionalized by arsonic acid groups for mixed-mode capillary liquid chromatography. J Chromatogr A 2018; 1547:21-28. [DOI: 10.1016/j.chroma.2018.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/28/2018] [Accepted: 03/04/2018] [Indexed: 02/09/2023]
|
14
|
Chen Y, Shu Y, Yang Z, Lv X, Tan W, Chen Y, Ma M, Chen B. The preparation of a poly (pentaerythritol tetraglycidyl ether-co-poly ethylene imine) organic monolithic capillary column and its application in hydrophilic interaction chromatography for polar molecules. Anal Chim Acta 2017; 988:104-113. [DOI: 10.1016/j.aca.2017.08.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/12/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
|
15
|
Simultaneous liquid chromatography/mass spectrometry determination of both polar and “multiresidue” pesticides in food using parallel hydrophilic interaction/reversed-phase liquid chromatography and a hybrid sample preparation approach. J Chromatogr A 2017; 1517:108-116. [DOI: 10.1016/j.chroma.2017.08.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 01/20/2023]
|
16
|
Darebna P, Novak P, Kucera R, Topolcan O, Sanda M, Goldman R, Pompach P. Changes in the expression of N- and O-glycopeptides in patients with colorectal cancer and hepatocellular carcinoma quantified by full-MS scan FT-ICR and multiple reaction monitoring. J Proteomics 2016; 153:44-52. [PMID: 27646713 DOI: 10.1016/j.jprot.2016.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/22/2016] [Accepted: 09/08/2016] [Indexed: 12/17/2022]
Abstract
Alternations in the glycosylation of proteins have been described in connection with several cancers, including hepatocellular carcinoma (HCC) and colorectal cancer. Analytical tools, which use combination of liquid chromatography and mass spectrometry, allow precise and sensitive description of these changes. In this study, we use MRM and FT-ICR operating in full-MS scan, to determine ratios of intensities of specific glycopeptides in HCC, colorectal cancer, and liver metastasis of colorectal cancer. Haptoglobin, hemopexin and complement factor H were detected after albumin depletion and the N-linked glycopeptides with fucosylated glycans were compared with their non-fucosylated forms. In addition, sialylated forms of an O-linked glycopeptide of hemopexin were quantified in the same samples. We observe significant increase in fucosylation of all three proteins and increase in bi-sialylated O-glycopeptide of hemopexin in HCC of hepatitis C viral (HCV) etiology by both LC-MS methods. The results of the MRM and full-MS scan FT-ICR analyses provide comparable quantitative readouts in spite of chromatographic, mass spectrometric and data analysis differences. Our results suggest that both workflows allow adequate relative quantification of glycopeptides and suggest that HCC of HCV etiology differs in glycosylation from colorectal cancer and liver metastasis of colorectal cancer. SIGNIFICANCE The article compares N- and O-glycosylation of several serum proteins in different diseases by a fast and easy sample preparation procedure in combination with high resolution Fourier transform ion cyclotron resonance mass spectrometry. The results show successful glycopeptides relative quantification in a complex peptide mixture by the high resolution instrument and the detection of glycan differences between the different types of cancer diseases. The presented method is comparable to conventional targeted MRM approach but allows additional curation of the data.
Collapse
Affiliation(s)
- Petra Darebna
- Department of Biochemistry, Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Petr Novak
- Institute of Microbiology v.v.i., Czech Academy of Sciences, Prague, Czech Republic; Department of Biochemistry, Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Radek Kucera
- Laboratory of Immunoanalysis, Faculty Hospital in Pilsen, Pilsen, Czech Republic
| | - Ondrej Topolcan
- Laboratory of Immunoanalysis, Faculty Hospital in Pilsen, Pilsen, Czech Republic
| | - Miloslav Sanda
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Petr Pompach
- Institute of Microbiology v.v.i., Czech Academy of Sciences, Prague, Czech Republic; Department of Biochemistry, Faculty of Sciences, Charles University, Prague, Czech Republic.
| |
Collapse
|
17
|
Lv X, Tan W, Chen Y, Chen Y, Ma M, Chen B, Yao S. Facile “one-pot” synthesis of poly(methacrylic acid)-based hybrid monolith via thiol-ene click reaction for hydrophilic interaction chromatography. J Chromatogr A 2016; 1454:49-57. [DOI: 10.1016/j.chroma.2016.05.072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/18/2016] [Accepted: 05/22/2016] [Indexed: 01/24/2023]
|
18
|
Zhang J, He T, Tang L, Zhang ZQ. Boronic acid functionalized Fe3
O4
magnetic microspheres for the specific enrichment of glycoproteins. J Sep Sci 2016; 39:1691-9. [DOI: 10.1002/jssc.201500921] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Jing Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an China
- Institute of Sport Biology, School of Physical Education; Shaanxi Normal University; Xi'an China
| | - Tian He
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an China
| | - Liang Tang
- Institute of Sport Biology, School of Physical Education; Shaanxi Normal University; Xi'an China
| | - Zhi-Qi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an China
| |
Collapse
|
19
|
Structure characterization of unexpected covalent O-sulfonation and ion-pairing on an extremely hydrophilic peptide with CE-MS and FT-ICR-MS. Anal Bioanal Chem 2015; 407:6637-55. [DOI: 10.1007/s00216-015-8826-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/22/2015] [Accepted: 06/03/2015] [Indexed: 01/05/2023]
|
20
|
Ahn YH, Kim JY, Yoo JS. Quantitative mass spectrometric analysis of glycoproteins combined with enrichment methods. MASS SPECTROMETRY REVIEWS 2015; 34:148-65. [PMID: 24889823 PMCID: PMC4340049 DOI: 10.1002/mas.21428] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/20/2013] [Indexed: 05/12/2023]
Abstract
Mass spectrometry (MS) has been a core technology for high sensitive and high-throughput analysis of the enriched glycoproteome in aspects of quantitative assays as well as qualitative profiling of glycoproteins. Because it has been widely recognized that aberrant glycosylation in a glycoprotein may involve in progression of a certain disease, the development of efficient analysis tool for the aberrant glycoproteins is very important for deep understanding about pathological function of the glycoprotein and new biomarker development. This review first describes the protein glycosylation-targeting enrichment technologies mainly employing solid-phase extraction methods such as hydrizide-capturing, lectin-specific capturing, and affinity separation techniques based on porous graphitized carbon, hydrophilic interaction chromatography, or immobilized boronic acid. Second, MS-based quantitative analysis strategies coupled with the protein glycosylation-targeting enrichment technologies, by using a label-free MS, stable isotope-labeling, or targeted multiple reaction monitoring (MRM) MS, are summarized with recent published studies.
Collapse
Affiliation(s)
- Yeong Hee Ahn
- Division of Mass Spectrometry, Korea Basic Science InstituteCheongwon-Gun, 363-883, Republic of Korea
| | - Jin Young Kim
- Division of Mass Spectrometry, Korea Basic Science InstituteCheongwon-Gun, 363-883, Republic of Korea
| | - Jong Shin Yoo
- Division of Mass Spectrometry, Korea Basic Science InstituteCheongwon-Gun, 363-883, Republic of Korea
| |
Collapse
|
21
|
Haggarty J, Oppermann M, Dalby MJ, Burchmore RJ, Cook K, Weidt S, Burgess KEV. Serially coupling hydrophobic interaction and reversed-phase chromatography with simultaneous gradients provides greater coverage of the metabolome. Metabolomics 2015; 11:1465-1470. [PMID: 26366140 PMCID: PMC4559102 DOI: 10.1007/s11306-014-0770-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/23/2014] [Indexed: 11/29/2022]
Abstract
The serial coupling of a reversed-phase liquid chromatography (RPLC) column to a hydrophilic interaction liquid chromatography (HILIC) column has been developed in recent years for the detection of polar and nonpolar metabolites. TCA intermediates, bile acid standards and numerous polar and non-polar metabolites extracted from beer were analysed using a combined RPLC/HILIC method. Non-polar metabolites were retained by the RPLC column. Polar metabolites not retained by the RPLC column were retained and separated by the HILIC column. The results from this study validate this simple yet powerful metabolomics approach.
Collapse
Affiliation(s)
- Jennifer Haggarty
- Polyomics, University of Glasgow, 211 Wolfson Wohl Translational Cancer Research Centre, Garscube Campus, Glasgow, G61 1QH UK
| | | | | | - Richard J. Burchmore
- Polyomics, University of Glasgow, 211 Wolfson Wohl Translational Cancer Research Centre, Garscube Campus, Glasgow, G61 1QH UK
| | - Ken Cook
- Thermo Fisher Scientific, Hemel Hempstead, UK
| | - Stefan Weidt
- Polyomics, University of Glasgow, 211 Wolfson Wohl Translational Cancer Research Centre, Garscube Campus, Glasgow, G61 1QH UK
| | - Karl E. V. Burgess
- Polyomics, University of Glasgow, 211 Wolfson Wohl Translational Cancer Research Centre, Garscube Campus, Glasgow, G61 1QH UK
| |
Collapse
|
22
|
Gao L, Du J, Wang C, Wei Y. Fabrication of a dendrimer-modified boronate affinity material for online selective enrichment of cis-diol-containing compounds and its application in determination of nucleosides in urine. RSC Adv 2015. [DOI: 10.1039/c5ra18443f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A high binding capacity dendrimer-modified boronate affinity material (SiO2@dBA) was synthesized and coupled with large-volume injection/online column-switching solid phase extraction to facilitate the determination process of cis-diols.
Collapse
Affiliation(s)
- Li Gao
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Jin Du
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| |
Collapse
|
23
|
Cabooter D, Choikhet K, Lestremau F, Dittmann M, Desmet G. Towards a generic variable column length method development strategy for samples with a large variety in polarity. J Chromatogr A 2014; 1372C:174-186. [PMID: 25465015 DOI: 10.1016/j.chroma.2014.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 11/19/2022]
Abstract
The development of a novel set-up for the sequential analysis of compounds with a large variety in polarity on HILIC and reversed-phase columns, coupled in series, is discussed. For this purpose, a commercially available ultra-high performance LC system, equipped with two switching valves is employed. The switching valves allow connecting the HILIC and reversed-phase columns either in series or in parallel to the system. An interface to couple the HILIC and reversed-phase columns is developed and optimized. The sample is first injected onto a HILIC column. Apolar compounds in the sample are not retained and will elute close to or within the void volume of the HILIC column. Accurate switching of the valves allows redirecting these compounds towards a trap loop while more polar compounds are retained and separated on the HILIC column. After separation and detection of the polar compounds, the configuration of the valves is switched again to direct the apolar compounds from the trap loop towards a reversed-phase column for separation. To deal with the incompatibility of the mobile phases of HILIC and reversed-phase column separations, commercially available Jet weaver mixers are included in the set-up to allow for an intermediate solvent exchange. The proof-of-concept is demonstrated for the analysis of pharmaceuticals that can be found in waste water and surface water. It is demonstrated that the set-up provides robust analyses with peak capacities that are intermediate to one-dimensional and two-dimensional separations.
Collapse
Affiliation(s)
- Deirdre Cabooter
- KU Leuven - University of Leuven, Department for Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, B-3000 Leuven, Belgium.
| | | | | | - Monika Dittmann
- Agilent Technologies R&D, Hewlett-Packard-Strasse 8, Waldbronn, Germany
| | - Gert Desmet
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, 1050 Brussel, Belgium
| |
Collapse
|
24
|
Ahn YH, Shin PM, Kim YS, Oh NR, Ji ES, Kim KH, Lee YJ, Kim SH, Yoo JS. Quantitative analysis of aberrant protein glycosylation in liver cancer plasma by AAL-enrichment and MRM mass spectrometry. Analyst 2014; 138:6454-62. [PMID: 24027776 DOI: 10.1039/c3an01126g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A lectin-coupled mass spectrometry (MS) approach was employed to quantitatively monitor aberrant protein glycosylation in liver cancer plasma. To do this, we compared the difference in the total protein abundance of a target glycoprotein between hepatocellular carcinoma (HCC) plasmas and hepatitis B virus (HBV) plasmas, as well as the difference in lectin-specific protein glycoform abundance of the target glycoprotein. Capturing the lectin-specific protein glycoforms from a plasma sample was accomplished by using a fucose-specific aleuria aurantia lectin (AAL) immobilized onto magnetic beads via a biotin-streptavidin conjugate. Following tryptic digestion of both the total plasma and its AAL-captured fraction of each HCC and HBV sample, targeted proteomic mass spectrometry was conducted quantitatively by a multiple reaction monitoring (MRM) technique. From the MRM-based analysis of the total plasmas and AAL-captured fractions, differences between HCC and HBV plasma groups in fucosylated glycoform levels of target glycoproteins were confirmed to arise from both the change in the total protein abundance of the target proteins and the change incurred by aberrant fucosylation on target glycoproteins in HCC plasma, even when no significant change occurs in the total protein abundance level. Combining the MRM-based analysis method with the lectin-capturing technique proved to be a successful means of quantitatively investigating aberrant protein glycosylation in cancer plasma samples. Additionally, it was elucidated that the differences between HCC and control groups in fucosylated biomarker candidates A1AT and FETUA mainly originated from an increase in fucosylation levels on these target glycoproteins, rather than an increase in the total protein abundance of the target glycoproteins.
Collapse
Affiliation(s)
- Yeong Hee Ahn
- Division of Mass Spectrometry, Korea Basic Science Institute, 804-1 Yangcheong-Ri, Ochang-Eup, Cheongwon-Gun 363-883, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Simon R, Passeron S, Lemoine J, Salvador A. Hydrophilic interaction liquid chromatography as second dimension in multidimensional chromatography with an anionic trapping strategy: application to prostate-specific antigen quantification. J Chromatogr A 2014; 1354:75-84. [PMID: 24931446 DOI: 10.1016/j.chroma.2014.05.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 12/17/2022]
Abstract
Liquid chromatography (LC) coupled with tandem mass spectrometry (MS-MS) in selected reaction monitoring mode (SRM) has become a widely used technique for the quantification of protein biomarkers in plasma and has already proven to give similar results compared to the conventional immunoassays. To improve the lack of insufficient sensitivity for quantification of low abundance protein, we propose a new two dimensional liquid chromatography (2D-LC-SRM) method for the quantitation of prostate specific antigen (PSA) in human plasma. The method centers on anion exchange cartridge between reversed-phase chromatography and hydrophilic interaction liquid chromatography (HILIC) in an on-line arrangement. The use of the anionic cartridge allows an easier online transfer of the analytes between both dimensions. Moreover, it provides an additional selectivity since the more basic peptides are not retained on this support. This setup has been applied to the quantification of prostate specific antigen (PSA) protein in plasma on a previous generation of mass spectrometer, which enabled a limit of quantification (LOQ) of 1ng/mL without any upfront immuno-depletion or intense off-line fractionation before the SRM analysis. The obtained LOQ is compatible with the required sensitivity for the clinically relevant plasma-based PSA tests.
Collapse
Affiliation(s)
- Romain Simon
- UMR 5280, Institut des sciences analytiques, Université de Lyon, Lyon 1, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Sébastien Passeron
- UMR 5280, Institut des sciences analytiques, Université de Lyon, Lyon 1, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Jérôme Lemoine
- UMR 5280, Institut des sciences analytiques, Université de Lyon, Lyon 1, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Arnaud Salvador
- UMR 5280, Institut des sciences analytiques, Université de Lyon, Lyon 1, 5 Rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
26
|
|
27
|
Mallik AK, Cheah WK, Shingo K, Ejzaki A, Takafuji M, Ihara H. Highly hydrophilic and nonionic poly(2-vinyloxazoline)-grafted silica: a novel organic phase for high-selectivity hydrophilic interaction chromatography. Anal Bioanal Chem 2014; 406:4585-93. [DOI: 10.1007/s00216-014-7868-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/22/2014] [Accepted: 04/29/2014] [Indexed: 12/19/2022]
|
28
|
Klavins K, Drexler H, Hann S, Koellensperger G. Quantitative metabolite profiling utilizing parallel column analysis for simultaneous reversed-phase and hydrophilic interaction liquid chromatography separations combined with tandem mass spectrometry. Anal Chem 2014; 86:4145-50. [PMID: 24678888 DOI: 10.1021/ac5003454] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this work, a fully automated parallel LC column method was established in order to perform orthogonal hydrophilic interaction chromatography (HILIC) and reversed-phase (RPLC) chromatography within one analytical run for targeted quantitative mass spectrometric determination of metabolites from central carbon metabolism. In this way, the analytical throughput could be significantly improved compared to previously established dual separation work flows involving two separate analytical runs. Two sample aliquots were simultaneously injected onto a dual column setup columns using a ten-port valve, and parallel separations were carried out. Sub 2 μm particle size stationary phases were employed for both separation methods. HILIC and RPLC eluents were combined post column followed by ESI-MS/MS detection. The orthogonal separations were optimized, aiming at an overall separation with 2 retention time segments, while reversed-phase separation was accomplished within 5.5 min; metabolites on the HILIC phase were retained for a minimum time of 6 min. The overall run time was 15 min. The setup was applied to the quantification of 30 primary intercellular metabolites, including amino acids, organic acids, and nucleotides employing internal standardization by a fully (13)C-labeled yeast extract. The comparison with HILIC-MS/MS and RPLC-MS/MS in separate analytical runs revealed that an excellent analytical performance was achieved by the parallel LC column method. The experimental repeatability (N = 5) was on average <5% (only for 2 compounds >5%). Moreover, limits of detection for the new approach ranging from 0.002-15 μM were in a good agreement with ones obtained in separate HILIC-MS/MS and RPLC-MS/MS runs (ranging from 0.01-44 μM).
Collapse
Affiliation(s)
- Kristaps Klavins
- Department of Chemistry, Division of Analytical Chemistry, University of Natural Resources and Life Sciences, BOKU-Vienna , Muthgasse 18, 1190 Vienna, Austria
| | | | | | | |
Collapse
|
29
|
Greco G, Grosse S, Letzel T. Robustness of a method based on the serial coupling of reversed-phase and zwitterionic hydrophilic interaction LC-MS for the analysis of phenols. J Sep Sci 2014; 37:630-4. [DOI: 10.1002/jssc.201301112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/17/2013] [Accepted: 01/10/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Giorgia Greco
- Chair of Urban Water Systems Engineering; Technische Universitaet Muenchen; Garching Germany
| | - Sylvia Grosse
- Chair of Urban Water Systems Engineering; Technische Universitaet Muenchen; Garching Germany
| | - Thomas Letzel
- Chair of Urban Water Systems Engineering; Technische Universitaet Muenchen; Garching Germany
| |
Collapse
|
30
|
Lam MPY, Law CH, Quan Q, Zhao Y, Chu IK. Fully automatable multidimensional reversed-phase liquid chromatography with online tandem mass spectrometry. Methods Mol Biol 2014; 1156:39-51. [PMID: 24791980 DOI: 10.1007/978-1-4939-0685-7_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Liquid chromatography (LC) is essential for sample fractionation in shotgun proteomics applications. With suitable design, common LC separation chemistries, including reversed-phase (RP) and strong cation exchange (SCX) mode, can be combined in online multidimensional LC to greatly enhance the overall separation power and, thus, proteome coverage. This protocol describes the design and assembly of a flexible online multidimensional RP-SCX-RP LC system that is compatible with deep proteome profiling on common shotgun proteomics platforms.
Collapse
Affiliation(s)
- Maggie P Y Lam
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | |
Collapse
|
31
|
D'Attoma A, Heinisch S. On-line comprehensive two dimensional separations of charged compounds using reversed-phase high performance liquid chromatography and hydrophilic interaction chromatography. Part II: application to the separation of peptides. J Chromatogr A 2013; 1306:27-36. [PMID: 23891372 DOI: 10.1016/j.chroma.2013.07.048] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/07/2013] [Accepted: 07/11/2013] [Indexed: 11/16/2022]
Abstract
In this second paper of a two-part series, on-line RPLC×HILIC is compared to on-line RPLC×RPLC through the separation of peptides. Our choices regarding the conditions are discussed. Injection effects and overloading effects are evaluated in both configurations. It is shown that whereas large volumes can be injected in the second dimension in RPLC×RPLC under HT-UHPLC conditions (>20% of the column dead volume), even small injection volumes (8% of the column the dead volume) have a detrimental effect on peak shapes in RPLC×HILIC. Advantages and limits of the two 2D-systems are compared through the 2D-separation of a tryptic digest of three proteins. A ten-fold gain in analysis time along with a significant gain in peak capacity are obtained with both systems compared to the most efficient one-dimensional separation of peptides recently published.
Collapse
Affiliation(s)
- Amélie D'Attoma
- Institut des Sciences Analytiques, UMR CNRS 5280, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | | |
Collapse
|
32
|
Alley WR, Mann BF, Novotny MV. High-sensitivity analytical approaches for the structural characterization of glycoproteins. Chem Rev 2013; 113:2668-732. [PMID: 23531120 PMCID: PMC3992972 DOI: 10.1021/cr3003714] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- William R. Alley
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
- National Center for Glycomics and Glycoproteomics, Indiana University, Bloomington, Indiana, United States
| | - Benjamin F. Mann
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
- National Center for Glycomics and Glycoproteomics, Indiana University, Bloomington, Indiana, United States
| | - Milos V. Novotny
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
- National Center for Glycomics and Glycoproteomics, Indiana University, Bloomington, Indiana, United States
- Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, United States
| |
Collapse
|
33
|
Greco G, Grosse S, Letzel T. Serial coupling of reversed-phase and zwitterionic hydrophilic interaction LC/MS for the analysis of polar and nonpolar phenols in wine. J Sep Sci 2013; 36:1379-88. [PMID: 23505207 DOI: 10.1002/jssc.201200920] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 11/06/2022]
Abstract
In the present study, an easy and efficient method based on the serial coupling of analytical reversed-phase and zwitterionic hydrophilic interaction liquid chromatography was developed for the simultaneous separation of polar and nonpolar phenols occurring in wine. The zwitterionic hydrophilic column was connected in series to the reversed-phase one via a T-piece, with which the ACN content in eluent of the second dimension was increased, in order to cope the solvent strength incompatibility between the two columns. The final mobile phase at low-flow rate (≤0.5 mL/min), high-ACN content (90%), and low-salt concentration was directed to an ESI-TOF-MS , for high accurate mass detections. The developed method was applied for the identification of target phenols in several wines. Retention time and peak width intra- and interday repeatability studies proved the reliability of the method for the simultaneous analysis of all the polar and nonpolar analytes in wine. The serial reversed-phase/zwitterionic hydrophilic interaction liquid chromatography coupling offered the possibility to enlarge the number of identified compounds and it represents a valid approach for nontarget analysis of complex samples by a single injection.
Collapse
Affiliation(s)
- Giorgia Greco
- Analytical Research Group, Institute of Water Quality Control, Technische Universität München, Garching, Germany.
| | | | | |
Collapse
|
34
|
SUZUKI S. Recent Developments in Liquid Chromatography and Capillary Electrophoresis for the Analysis of Glycoprotein Glycans. ANAL SCI 2013; 29:1117-28. [DOI: 10.2116/analsci.29.1117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Ray S, Takafuji M, Ihara H. Chromatographic evaluation of a newly designed peptide-silica stationary phase in reverse phase liquid chromatography and hydrophilic interaction liquid chromatography: Mixed mode behavior. J Chromatogr A 2012; 1266:43-52. [DOI: 10.1016/j.chroma.2012.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 11/17/2022]
|
36
|
Abstract
New analytical platforms have been developed in response to the need for attaining increased peak capacity for multicomponent complex analysis with higher sensitivity and characterization of the analytes, and high-throughput capabilities. This review outlines the fundamental principles of target and comprehensive 2D LC method development and encompasses applications of LC–LC and LC × LC coupled to MS in bioanalysis using a variety of online analytical procedures. It also provides a rationale for the usage of the most employed mass analyzers and ionization sources on these platforms.
Collapse
|
37
|
Hu Y, Mechref Y. Comparing MALDI-MS, RP-LC-MALDI-MS and RP-LC-ESI-MS glycomic profiles of permethylated N-glycans derived from model glycoproteins and human blood serum. Electrophoresis 2012; 33:1768-77. [PMID: 22740465 DOI: 10.1002/elps.201100703] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The glycomic profiling of purified glycoproteins and biological specimen is routinely achieved through different analytical methods, but mainly through MS and LC-MS. The enhanced ionization efficiency and improved tandem MS interpretation of permethylated glycans have prompted the popularity of this approach. This study focuses on comparing the glycomic profiling of permethylated N-glycans derived from model glycoproteins and human blood serum using MALDI-MS as well as RP-LC-MALDI-MS and RP-LC-ESI-MS. In the case of model glycoproteins, the glycomic profiles acquired using the three methods were very comparable. However, this was not completely true in the case of glycans derived from blood serum. RP-LC-ESI-MS analysis of reduced and permethylated N-glycans derived from 250 nl of blood serum allowed the confident detection of 73 glycans (the structures of which were confirmed by mass accuracy and tandem MS), while 53 and 43 structures were identified in the case of RP-LC-MALDI-MS and MALDI-MS analyses of the same sample, respectively. RP-LC-ESI-MS analysis facilitates automated and sensitive tandem MS acquisitions. The glycan structures that were detected only in the RP-LC-ESI-MS analysis were glycans existing at low abundances. This is suggesting the higher detection sensitivity of RP-LC-ESI-MS analysis, originating from both reduced competitive ionization and saturation of detectors, facilitated by the chromatographic separation. The latter also permitted the separation of several structural isomers; however, isomeric separations pertaining to linkages were not detected.
Collapse
Affiliation(s)
- Yunli Hu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | | |
Collapse
|
38
|
Analysis of multiple quaternary ammonium compounds in the brain using tandem capillary column separation and high resolution mass spectrometric detection. J Chromatogr A 2012; 1241:46-51. [DOI: 10.1016/j.chroma.2012.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/29/2012] [Accepted: 04/02/2012] [Indexed: 11/21/2022]
|
39
|
Lin H, Ou J, Zhang Z, Dong J, Wu M, Zou H. Facile Preparation of Zwitterionic Organic-Silica Hybrid Monolithic Capillary Column with an Improved “One-Pot” Approach for Hydrophilic-Interaction Liquid Chromatography (HILIC). Anal Chem 2012; 84:2721-8. [DOI: 10.1021/ac3001429] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Hui Lin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Ou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Zhenbin Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Dong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Minghuo Wu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- College of Environmental and Chemical
Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Hanfa Zou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| |
Collapse
|
40
|
Zauner G, Deelder AM, Wuhrer M. Recent advances in hydrophilic interaction liquid chromatography (HILIC) for structural glycomics. Electrophoresis 2012; 32:3456-66. [PMID: 22180202 DOI: 10.1002/elps.201100247] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review presents recent progress in employing hydrophilic interaction liquid chromatography (HILIC) for glycan and glycopeptides analysis. After an introduction of this technique, the following themes are addressed: (i) implementation of HILIC in large-scale studies for analyzing the human plasma N-glycome; (ii) the use of HILIC UPLC (ultrahigh pressure liquid chromatography) for fast high-resolution runs and its successful application with online MS for glycan and glycopeptide analysis; (iii) high-throughput profiling using HILIC solid-phase extraction in combination with MS detection; (iv) HILIC sample preparation for CE and CGE; (v) the latest glycoproteomic approaches implementing HILIC separation; (vi) future perspectives of HILIC including its use in large-scale glycoproteomics studies such as the analysis of entire glycoproteomes at the glycopeptide level.
Collapse
Affiliation(s)
- Gerhild Zauner
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
41
|
Gika H, Theodoridis G, Mattivi F, Vrhovsek U, Pappa-Louisi A. Retention prediction of a set of amino acids under gradient elution conditions in hydrophilic interaction liquid chromatography. J Sep Sci 2012; 35:376-83. [DOI: 10.1002/jssc.201100795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/31/2011] [Accepted: 10/31/2011] [Indexed: 11/08/2022]
|
42
|
Ray S, Takafuji M, Ihara H. A new peptide-silica bio-inspired stationary phase with an improved approach for hydrophilic interaction liquid chromatography. Analyst 2012; 137:4907-9. [DOI: 10.1039/c2an36024a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Lam MPY, Lau E, Siu SO, Ng DCM, Kong RPW, Chiu PCN, Yeung WSB, Lo C, Chu IK. Online combination of reversed-phase/reversed-phase and porous graphitic carbon liquid chromatography for multicomponent separation of proteomics and glycoproteomics samples. Electrophoresis 2011; 32:2930-40. [PMID: 22009802 DOI: 10.1002/elps.201100092] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/21/2011] [Accepted: 05/17/2011] [Indexed: 12/12/2022]
Abstract
In this paper, we describe an online combination of reversed-phase/reversed-phase (RP-RP) and porous graphitic carbon (PGC) liquid chromatography (LC) for multicomponent analysis of proteomics and glycoproteomics samples. The online RP-RP portion of this system provides comprehensive 2-D peptide separation based on sequence hydrophobicity at pH 2 and 10. Hydrophilic components (e.g. glycans, glycopeptides) that are not retained by RP are automatically diverted downstream to a PGC column for further trapping and separation. Furthermore, the RP-RP/PGC system can provide simultaneous extension of the hydropathy range and peak capacity for analysis. Using an 11-protein mixture, we found that the system could efficiently separate native peptides and released N-glycans from a single sample. We evaluated the applicability of the system to the analysis of complex biological samples using 25 μg of the lysate of a human choriocarcinoma cell line (BeWo), confidently identifying a total of 1449 proteins from a single experiment and up to 1909 distinct proteins from technical triplicates. The PGC fraction increased the sequence coverage through the inclusion of additional hydrophilic sequences that accounted for up to 6.9% of the total identified peptides from the BeWo lysate, with apparent preference for the detection of hydrophilic motifs and proteins. In addition, RP-RP/PGC is applicable to the analysis of complex glycomics samples, as demonstrated by our analysis of a concanavalin A-extracted glycoproteome from human serum; in total, 134 potentially N-glycosylated serum proteins, 151 possible N-glycosylation sites, and more than 40 possible N-glycan structures recognized by concanavalin A were simultaneously detected.
Collapse
Affiliation(s)
- Maggie P Y Lam
- Department of Chemistry, The University of Hong Kong, Hong Kong, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chen ML, Wei SS, Yuan BF, Feng YQ. Preparation of methacrylate-based monolith for capillary hydrophilic interaction chromatography and its application in determination of nucleosides in urine. J Chromatogr A 2011; 1228:183-92. [PMID: 21816405 DOI: 10.1016/j.chroma.2011.07.061] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 06/16/2011] [Accepted: 07/17/2011] [Indexed: 01/03/2023]
Abstract
A novel poly(N-acryloyltris(hydroxymethyl)aminomethane-co-pentaerythritol triacrylate) (NAHAM-co-PETA) monolith was prepared in the 100 μm i.d. capillary and investigated for capillary liquid chromatography (cLC). The polymer monolith was synthesized by in situ polymerization of NAHAM and PETA in the presence of polyethylene glycol (PEG) in dimethyl sulfoxide (DMSO) as the porogen. The porous structure of monolith was optimized by changing the ratio of NAHAM to PETA, the molecular weight and amount of PEG. To evaluate the separation performance of the resultant polymer monolith, several groups of model compounds (including nucleosides, benzoic acids and anilines) were selected to perform cLC separation. Our results showed that these model compounds can be baseline separated on the resultant poly(NAHAM-co-PETA) monolithic column with the optimized mobile phases. The column efficiency was estimated to be 87,000 plates/m for acrylamide. In addition, this monolithic column was coupled with on-line solid-phase microextraction (SPME) for the analysis of four nucleosides (uridine, adenosine, cytidine, guanosine) in urine. The limit of detection of the proposed method was in the range from 40 to 52 ng/mL. The method reproducibility was obtained by evaluating the intra- and inter-day precisions with relative standard deviations (RSDs) less than 8.3% and 10.2%, respectively. Recoveries of the target analytes from spiked urine samples were ranged from 86.5% to 106.8%.
Collapse
Affiliation(s)
- Ming-Luan Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | | | | | | |
Collapse
|
45
|
Intact protein analysis in the biopharmaceutical field. J Pharm Biomed Anal 2011; 55:810-22. [DOI: 10.1016/j.jpba.2011.01.031] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 01/18/2011] [Accepted: 01/21/2011] [Indexed: 01/09/2023]
|
46
|
Siu SO, Lam MPY, Lau E, Kong RPW, Lee SMY, Chu IK. Fully automatable two-dimensional reversed-phase capillary liquid chromatography with online tandem mass spectrometry for shotgun proteomics. Proteomics 2011; 11:2308-19. [DOI: 10.1002/pmic.201100110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 10/16/2010] [Accepted: 03/08/2011] [Indexed: 01/09/2023]
|